Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型训练全流程

Answer

大模型训练通常包括以下全流程:

  1. 收集海量数据:如同教导孩子成为博学多才之人,要让其阅读大量书籍、观看纪录片、与人交谈,对于 AI 模型,就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。
  2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。
  3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,如 Transformer 架构,这种架构擅长处理序列数据(如文本)。
  4. 训练模型:如同孩子开始学习,AI 模型开始“阅读”提供的数据,通过反复阅读尝试预测句子中的下一个词,从而逐渐学会理解和生成人类语言。

此外,大模型训练还可以类比为“上学参加工作”:

  1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。
  2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。
  3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。
  4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。
  5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。

一般训练还会有以下步骤:

  1. 无监督学习:模型通过分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。
  2. 清洗出好的数据。
  3. 指令微调:训练模型理解并执行具体指令,如翻译文本以回答问题,输入内容包括特定格式的指令、输入和输出。
  4. 对齐过程:通过引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。

虽然各公司具体实现细节可能是机密,但这些步骤共同构成了构建高效、实用大语言模型的过程,最终产生的模型可能含有高达 1750 亿个参数。在开源与闭源模型的开发策略中,开源模型依赖社区贡献,闭源模型由企业投入大量资源开发,两种策略都旨在推动大语言模型技术发展和应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

胎教级教程:万字长文带你理解 RAG 全流程

旁白当你发现大模型的效果并没有你预期想的那么好时,你打算放弃但是你也听到了另一种声音:如果大模型没有你想的那么好,可能是你没有了解他的能力边界。你不想就这么放弃,为了更好的理解大模型,你首先了解了他的创建过程[heading2]1.收集海量数据[content]想象一下,我们要教一个孩子成为一个博学多才的人。我们会怎么做?我们会让他阅读大量的书籍,观看各种纪录片,与不同背景的人交谈等。对于AI模型来说,这个过程就是收集海量的文本数据。例子:研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。[heading2]2.预处理数据[content]在孩子开始学习之前,我们可能会先整理这些资料,确保内容适合他的年龄和学习能力。同样,AI研究人员也需要清理和组织收集到的数据。例子:删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。[heading2]3.设计模型架构[content]就像我们要为孩子设计一个学习计划一样,研究人员需要设计AI模型的"大脑"结构。这通常是一个复杂的神经网络。这里我们就不展开了,我们只需要了解,为了让AI能够很好的学习知识,科学家们设计了一种特定的架构。例子:研究人员可能会使用Transformer架构,这是一种特别擅长处理序列数据(如文本)的神经网络结构。[heading2]4.训练模型[content]就像孩子开始阅读和学习一样,AI模型开始"阅读"我们提供的所有数据。这个过程被称为"训练"。例子:模型会反复阅读数据,尝试预测句子中的下一个词。比如给出"太阳从东方__",模型学会预测"升起"。通过不断重复这个过程,模型逐渐学会理解和生成人类语言。

大模型入门指南

通俗来讲,大模型就是输入大量语料,来让计算机获得类似人类的“思考”能力,使之能够理解自然语言,能够进行『文本生成』、『推理问答』、『对话』、『文档摘要』等工作。既然是学习,那我们就可以用『上学参加工作』这件事来类比大模型的训练、使用过程:1.找学校::训练LLM需要大量的计算,因此GPU更合适,因此只有购买得起大量GPU的贵族学校才有资本训练自己的大模型2.确定教材::大模型顾名思义就是大,需要的数据量特别多,几千亿序列(Token)的输入基本是标配3.找老师::即用什么样的算法讲述“书本”中的内容,让大模型能够更好理解Token之间的关系4.就业指导::学完书本中的知识后,为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导5.搬砖::就业指导完成后,下面就要正式干活了,比如进行一次翻译、问答等,在大模型里称之为推导(infer)在LLM中,Token([2])被视为模型处理和生成的文本单位。它们可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁。在将输入进行分词时,会对其进行数字化,形成一个词汇表(Vocabulary),比如:The cat sat on the mat,会被分割成“The”、“cat”、“sat”等的同时,会生成下面的词汇表:|Token|ID||-|-||The|345||cat|1256||sat|1726||…|…|

学习笔记:【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人

大语言模型训练过程涉及几个关键步骤:无监督学习:这一阶段模型通过分析大量文本数据,学习到语言的基本结构和常识,具备文本补齐能力而非直接回答问题。模型将人类的知识通过向量化的方法转换,从而获得基础的语言模型。清洗出好的数据指令微调:在此阶段,模型被训练以理解并执行具体指令,如翻译文本,从而能够回答问题。这一阶段涉及的数据输入量相对于无监督学习阶段有所减少。输入内容包括3个部分,中间可能有分隔符*Instruct:请你翻译下面这段话*Input:一段英文*Output:一段中文对齐过程:通过引入人类的评价标准(奖励函数)和处理特定的格式要求,进一步优化模型的输出以符合人类的期望。这包括处理文化、道德等方面的细节,以确保模型的输出更加贴近人类的价值观。排序相信在这个过程中,OpenAI很有可能自己构建了一套强大的标注组织体系,高效,又能对抗标注人员能力强依赖。说起来人工标注符合scaling law。虽然具体的实现细节可能是各公司的机密,但大体上,这些步骤共同构成了构建一个高效、实用的大语言模型的过程,最终产生的模型可能含有高达1750亿个参数。在开源与闭源模型的开发策略中,开源模型依赖于社区的贡献和集体智慧,而闭源模型则通常由企业投入大量资源进行开发。尽管方法不同,但两种策略都旨在推动大语言模型技术的发展和应用。

Others are asking
我打算用windsurf、coze、飞书多维表格来搭建自动流程,重新为我推荐相关学习内容
以下是为您推荐的相关学习内容: 一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率 逐步搭建 AI 智能体: 搭建选择内容推荐流,用于根据用户输入的“想看 xxx 内容”,在飞书多维表格的稍后读存储地址中检索现有的收藏记录,匹配符合阅读兴趣的内容记录。 新建工作流「recommendRead」,根据弹窗要求自定义工作流信息。 工作流全局流程设置: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令即开始流程,判断哪些用户输入是在交代想阅读的内容主题交由外层 bot 的大模型判断。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:添加「飞书多维表格search_records」插件,设置{{app_token}}参数,在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回所需查询结果,也可通过额外配置定向检索未读状态的收藏记录。 4.4 大模型节点:采用批处理对检索出来的收藏记录逐个进行相关性匹配,可优化用户提示词提升匹配精准度。 输入观点一键生成文案短视频 基于其它博主开源的视频生成工作流做了功能优化,实现视频全自动创建。 功能:通过表单输入主题观点,提交后自动创建文案短视频,并推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程) 大体路径: 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 发布 coze 智能体到飞书多维表格。 在多维表格中使用字段捷径,引用该智能体。 在多维表格中创建自动化流程,推送消息给指定飞书用户。
2025-02-26
如何用ai包揽整套生成抖音短视频的流程
以下是用 AI 包揽整套生成抖音短视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 在制作过程中,还可以参考以下内容: 确定视频风格和尺寸,比如使用 Fanbook 中的 niji6 模型以及sref 指令,选择 16:9 的尺寸。 设定故事主线和镜头,根据主题确定风格和时长,进一步扩充每一个画面,参考分镜头的基本格式要求,按照场景、地点、镜号、画面描述、台词、音效等维度进行填充,尽可能精简人物对话,提炼重点。当对某一句台词没有足够的画面灵感时,可以借助语言大模型来帮助。 任务划分方面,制片人做整体框架的搭建,图像创意者要有清奇的脑洞并储备素材,视频制作者要熟悉运营各种视频工具,编剧要熟悉角色、善于运用 AI 文本工具,还有配音和配乐等工作。在实际操作中,GPT 完成脚本可能需要大量人工干预,MJ 出图出卡也需要人工调词和审核。
2025-02-25
我希望画项目流程图
以下是使用 AI 绘制项目流程图的相关信息: 推荐工具和平台: 1. Lucidchart: 简介:强大的在线图表制作工具,集成 AI 功能,可自动化绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图等。AI 功能可帮助自动化布局和优化设计。 功能:集成 Office 365,方便与其他 Office 应用协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 简化图表创建过程,适合绘制多种图。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建多种图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具集成。 官网:https://miro.com/ 使用步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 利用这些 AI 工具,您可以快速、高效地创建专业的项目流程图,满足工作和项目需求。
2025-02-21
有什么可以通过文字生成流程图或其他图片的AI网址
以下是一些可以通过文字生成流程图或其他图片的 AI 网址: DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 MidJourney:因高质量的图像生成效果和用户友好的界面设计而受欢迎,在创意设计人群中流行。 您可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104 )查看更多文生图工具。 此外,还有一些文字生成视频的 AI 产品,如: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频网站可查看:https://www.waytoagi.com/category/38 。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
我该怎么学习ai?帮我组织一个流程,能很好的利用你的资源。
以下是为您组织的学习 AI 的流程: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等方面。您可以根据自己的兴趣选择特定的模块进行深入学习,同时一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库中也有很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 另外,费曼学习法也是一种有效的学习方式。它强调通过教授他人来深化个人理解和知识的掌握,基本步骤包括选择一个概念、教给他人、回顾和简化、组织和比较。其应用场景包括个人学习、教学和培训、知识分享等。 WaytoAGI(通往 AGI 之路)是一个致力于人工智能学习的中文知识库和社区平台,汇集了上千个人工智能网站和工具,提供最新的 AI 工具、AI 应用、AI 智能体和行业资讯,还有丰富的学习资源、实践活动,并倡导开放共享的知识体系。在没有任何推广的情况下,WaytoAGI 一年时间已有超过 100 万用户和超千万次的访问量,目前合作过众多公司和产品。
2025-02-17
wps怎么接入deepseek 流程
以下是 WPS 接入 DeepSeek 的流程: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点:点击在线推理创建推理接入点 3. 为接入点命名为 DeepSeekR1。然后可能会提示:“该模型未开通,开通后可创建推理接入点”。如果有提示,就点击“立即开通”,开通一下就可以了。如果无提示则直接到第 5 步,点击确认接入。 4. 点击“立即开通”跳转到此页面,勾选全部模型和协议,一路点击开通即可。(这里是免费的) 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到您的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】 8. 如果您已经有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】 9. 把这个复制好之后,也放到您自己微信里,保存好。到这一步,我们已经完成拿到了模型的密钥。接着,就可以去把它配置到网页聊天里使用。
2025-02-17
你好,我想用ai将一张图片形式的数字表格转换成excel,应该使用哪款模型?
很抱歉,上述提供的内容中没有直接提及将图片形式的数字表格转换成 Excel 可用的具体模型。但您可以尝试以下几种常见的方法和工具: 1. 一些 OCR(光学字符识别)软件,如 ABBYY FineReader、Adobe Acrobat Pro 等,它们通常具有将图片中的表格转换为可编辑文本的功能,然后您可以将其粘贴到 Excel 中进行整理。 2. 在线 OCR 服务,例如百度 OCR、腾讯 OCR 等,操作相对便捷。 3. 某些专门用于表格处理的 AI 工具,您可以通过在相关的技术论坛、社区或专业的软件评价网站上进一步搜索和了解。
2025-02-26
大模型输出和节点输出配置不匹配怎么解决
当大模型输出和节点输出配置不匹配时,您可以参考以下要点来解决: 1. 输入与输出的变量名称可自定义,按照自身习惯设定,以便识别字段含义。 2. 输入方面,因为取得的是开始节点中用户输入的{{BOT_USER_INPUT}},所以可直接选择引用。 3. 在提示词区域,由于需要 LLM 根据输入信息处理,所以需要两个双花括号,写明使用的输入项参数名,如{{input}}。 4. 输出方面,有几项子内容需要生成,就设置几项: 为了让大模型理解最终输出的形式要求,需要在用户提示词最后,添加输出格式段落,描述每个变量名称、输出内容、输出格式。 务必注意,变量名称、对应的输出内容、输出格式一定要前后完全一致,否则会输出失败,这一点很容易踩坑。 另外,虽然可以用大模型来实现变量类型的转换,比如选择“豆包·工具调用”,在大模型的高级设置中尽量把随机性调到最低,使其更严格遵循提示词。匹配好输入输出的名称与类型,提示词中注意用{{}}引用输入变量。但大模型节点效果不稳定,运行速度相对较慢,还可能带来额外花费。尤其当输出类型为 String 时,大模型容易画蛇添足地加上一些说明性文字,即使优化提示词去限制,也不一定每次都能限制住。一旦出现偏差,哪怕只是多一个字符,下游节点就可能无法正常运行,且对此调整手段有限。所以如果没有“代码恐惧症”,建议使用代码节点来实现。
2025-02-26
帮我总结现在主流的AI大模型,以及各自优劣
以下是对主流 AI 大模型的总结及各自优劣的相关内容: 主流 AI 大模型: 1. 谷歌的 BERT 模型:可用于语义理解,如上下文理解、情感分析、文本分类等,但不太擅长文本生成。 相关技术概念: 1. AI:即人工智能。 2. 机器学习:电脑通过找规律进行学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:参照人脑,具有神经网络和神经元,因层数多被称为深度。神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,其完全基于自注意力机制处理序列数据,无需依赖循环神经网络或卷积神经网络。
2025-02-26
通义千问最新模型
通义千问最新模型情况如下: 发布了一个模型并开源了两个模型。 Qwen2.5Max:全新升级发布,比肩 Claude3.5Sonnet,几乎全面超越 GPT4o、DeepSeekV3 及 Llama3.1405B。是阿里云通义团队对 MoE 模型的最新探索成果,预训练数据超过 20 万亿 tokens。在多项公开主流模型评测基准上录得高分,开发者可在 Qwen Chat(https://chat.qwenlm.ai/)平台免费体验模型,企业和机构也可通过阿里云百炼平台直接调用新模型 API 服务。 Qwen2.5VL:全新视觉模型实现重大突破,增强物体识别与场景理解,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,7B 模型出现少量错误。在更复杂的长上下文理解任务中,Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini。
2025-02-26
AI模型是什么意思?请用文字、数据、比喻等形式进行教学
AI 模型是指通过一系列技术和算法构建的能够处理和生成信息的系统。 以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 为了让您更好地理解,我们可以把 AI 模型想象成一个非常聪明的学生。它通过大量的学习资料(训练数据)来掌握知识和规律,就像学生通过课本和练习题来提高自己的能力一样。监督学习就像是有老师指导的学习,老师会告诉它答案是对是错;无监督学习则像是自己探索,没有老师的直接指导;强化学习就像通过奖励和惩罚来激励它找到更好的方法。而深度学习就像是这个学生有了非常复杂和深入的思考方式,能够更好地理解和处理复杂的问题。
2025-02-26
AI模型私有化部署
AI 模型私有化部署具有以下特点和情况: 挑战方面: 在许多中小型行业,如金融、医疗和法律行业,由于对数据私密性要求极高,客户隐私敏感度高,往往需要私有化部署场景,这大大增加了企业培训的难度。 访问 GPT 有门槛,国企类、体制类的合作伙伴可能受限,需要寻找更易于接入的国产模型作为替代方案,如智谱等。 工程化落地难,企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。例如某金融企业希望使用大模型构建 AI 智能问答机器人并私有化部署,但因自身规模不大且无数字化系统,实际落地成本可能不比传统人力成本节省更多。 经验分享方面: 构建企业知识库是常见需求,一种普遍解决方案是结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可进行模型的 Finetuning(微调)以优化性能。 基础模型提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。通过 Finetuning 可增强基础模型的知识库、调整输出和教授更复杂指令,提高模型整体性能和效率。 360 愿意为有能力的企业赠送免费的私有化部署通用大模型,其可解决隐私泄露和数据流失问题,满足科普和一些通用需求,如办公等。同时提供 360AI 办公的会员服务,围绕办公营销需求做了很多工具,并将其场景化。
2025-02-26
目前市面上有哪些ai可以实现免费创建并训练大模型,以满足个人需求
目前市面上有以下一些可以免费创建并训练大模型以满足个人需求的途径: 1. 免费云服务器: 阿里、腾讯对新用户提供免费试用服务器,如腾讯云的。服务器系统配置可选择【宝塔】系统。 2. 免费大模型接口: 阿里的接口,创建 API key 即可。 也有免费接口,但国内大模型通常限制一定免费额度的 Token。 谷歌的来学习如何给服务器科学上网及使用海外版 Coze。 此外,关于大模型的相关知识: 1. 架构方面: encoderonly 模型通常适用于自然语言理解任务,如分类和情感分析,最知名的代表模型是 BERT。 encoderdecoder 模型同时结合了 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是谷歌的 T5。 decoderonly 模型更擅长自然语言生成任务,目前熟知的众多 AI 助手基本都来自此类架构。 2. 大模型的特点: 预训练数据非常大,往往来自于互联网上,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 参数非常多,Open 在 2020 年发布的 GPT3 就已经达到 170B 的参数。 在技术原理方面: 1. 生成式 AI 生成的内容叫做 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习从反馈里学习,最大化奖励或最小化损失。深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-02-26
我想了解现在有什么文生图的模型或者工具,可以精准的按照prompt给的位置大小把文字写在最终出来的图像上的,这个字不会是幻觉,是实打实的字,或者有没有通过训练lora来达到这个效果的
以下是一些关于文生图的模型和工具的信息: Tusiart: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 ControlNet:可控制图片中特定的图像。 设置 VAE:选择 840000 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据需求和喜好选择。 吐司网站: 文生图的操作方式:在首页的对话生图对话框输入文字描述即可生成图片,不满意可通过对话修改。 模型及生成效果:Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成效果受多种因素影响。 图生图及参数设置:可基于图片做延展,能调整尺寸、生成数量等参数,高清修复消耗算力多,建议先出小图。 特定风格的生成:国外模型对中式水墨风等特定风格的适配可能不足,可通过训练 Lora 模型改善。 Liblibai: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 设置 VAE:选择 840000 。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据需求和喜好选择。 生成批次:默认 1 批。
2025-02-25
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
agent训练
在人工智能领域中,AI Agent 的训练具有以下特点: 传统强化学习中,Agent 训练往往需大量样本和时间,且泛化能力不足。 为突破瓶颈,引入了迁移学习:通过促进不同任务间知识和经验迁移,减轻新任务学习负担,提升学习效率和性能,增强泛化能力,但当源任务与目标任务差异大时,可能无法发挥效果甚至出现负面迁移。 探索了元学习:核心是让 Agent 学会从少量样本中迅速掌握新任务最优策略,能利用已有知识和策略调整学习路径适应新任务,减少对大规模样本集依赖,但需要大量预训练和样本构建学习能力,使开发通用高效学习策略复杂艰巨。 时间:21 世纪初至今 特点:迁移学习是将一个任务学到的知识迁移到其他任务;元学习是学习如何学习,快速适应新任务。 技术:迁移学习如领域自适应;元学习如 MAML、MetaLearner LSTM。 优点:提高学习效率,适应新任务。 缺点:对源任务和目标任务的相似性有一定要求。 此外,智谱 AI 开源的语言模型中与 Agent 相关的有: AgentLM7B:提出了 AgentTuning 方法,开源了包含 1866 个高质量交互、6 个多样化真实场景任务的 Agent 数据集 AgentInstruct,基于上述利用 Llama2 微调而成,上下文 token 数为 4K。 AgentLM13B:上下文 token 数为 4K。 AgentLM70B:上下文 token 数为 8K。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18