Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我要做表格数据分析,哪个AI工具最好?

Answer

以下是一些适用于表格数据分析的 AI 工具:

  1. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。
  2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,通过聊天形式,用户告知需求后,Copilot 会自动完成任务,包括数据分析和格式创建等。
  3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。
  4. Numerous:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。

此外,还有一些专门的数据分析工具,如:

  1. Kalodata:专注于数据分析。网址:kalodata.com
  2. Text2SQL:将英文转换为 SQL 查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthat
  3. ai2sql:高效且无错误的 SQL 构建器。链接:https://www.ai2sql.io/
  4. EverSQL:从 SQL 查询翻译英文文本。链接:https://www.eversql.com/sql-to-text/
  5. SupaSQL:从 NLP 生成 SQL 查询。链接:https://supasql.com/
  6. SQLgenius:使用自然语言的 SQL 查询生成器。链接:https://sqlgenius.app/
  7. SQL Chat:与数据库进行自然语言聊天的 SQL 客户端。链接:https://www.sqlchat.ai/
  8. SQL Ease:从自然语言输入生成 SQL 查询。链接:https://sqlease.buildnship.in/
  9. Talktotables:翻译和查询数据库。链接:https://talktotables.com/

随着技术的不断发展,未来可能会有更多更好的工具出现,您可以根据自己的需求和使用习惯进行选择。请注意,内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:关于Excel的AI有哪些?

关于Excel的AI功能,目前有几种不同的工具和插件可以增强Excel的数据处理和分析能力,以下是一些可用的AI工具:1.Excel Labs:这是一个Excel插件,它新增了生成式AI功能,基于OpenAI技术,允许用户直接在Excel中利用AI进行数据分析和决策支持。2.Microsoft 365 Copilot:微软推出的AI工具,整合了Word、Excel、PowerPoint、Outlook、Teams等办公软件,通过聊天的形式,用户可以告知Copilot他们的需求,如数据分析或格式创建,Copilot将自动完成这些任务。3.Formula Bot:Formula Bot提供了数据分析聊天机器人和公式生成器两大功能,用户可以通过自然语言交互式地进行数据分析和生成Excel公式。4.Numerous AI:这是一款支持Excel和Google Sheets的AI插件,除了公式生成外,还可以根据提示生成相关文本内容、执行情感分析、语言翻译等任务。这些工具通过AI技术提升了Excel的数据处理能力,使得用户可以更加高效地进行数据分析和决策。随着技术的不断发展,未来可能会有更多AI功能被集成到Excel中,进一步提高工作效率和数据处理的智能化水平。内容由AI大模型生成,请仔细甄别。

AI智库|月度榜单🏆(2025-01)

|排名|产品|分类|网址|MRR(万美金)|环比变化|ARR(万美金)|返回导航||-|-|-|-|-|-|-|-||A79+1|Kittl|平面设计|kittl.com|17|0.1088|202|||A80+1|Tactiq|文章摘要|tactiq.io|10|0.104|123|||A81+1|Artguru AI|图片编辑|artguru.ai|17|0.1019|200|||A82+1|Gencraft|图片生成|gencraft.com|10|0.0991|124|||A83+1|aiApply||aiapply.co|20|0.0905|242|||A84+1|numerous|表格工具|numerous.ai|15|0.0869|182|||A85+1|Kalodata|数据分析|kalodata.com|28|0.0865|333|||A86+1|Parrot||tryparrotai.com|20|0.0856|241|||A87+1|Runwayml|视频生成|runwayml.com|1051|0.0854|12612|||A88+1|RemNote||remnote.com|13|0.0848|153|||A89+1|Glarity|文章摘要|glarity.app|15|0.079|183||

数据分析工具集

以下是一些推荐的text2sql相关的AI工具及其链接:Text2SQL-将英文转换为SQL查询。链接:https://toolske.com/text2sql/?ref=theresanaiforthatai2sql-高效且无错误的SQL构建器。链接:https://www.ai2sql.io/EverSQL-从SQL查询翻译英文文本。链接:https://www.eversql.com/sql-to-text/SupaSQL-从NLP生成SQL查询。链接:https://supasql.com/SQLgenius-使用自然语言的SQL查询生成器。链接:https://sqlgenius.app/SQL Chat-与数据库进行自然语言聊天的SQL客户端。链接:https://www.sqlchat.ai/SQL Ease-从自然语言输入生成SQL查询。链接:https://sqlease.buildnship.in/Talktotables-翻译和查询数据库。链接:https://talktotables.com/我建议查看以下几个知名的text2sql项目:SQLNet-一个使用深度学习方法解决text2sql任务的项目。Seq2SQL-一个将自然语言转换为SQL查询的序列到序列模型。Spider-一个大规模的text2sql数据集及其相关的挑战

Others are asking
我要学习AI 写作
以下是关于学习 AI 写作的相关内容: 一、陈财猫的观点 1. AI+内容创作是现阶段最好的赛道 基于对大模型发展现状的观察和对“开车”“写作”两类任务的对比,该赛道有完美的产品模型匹配和产品市场匹配,且天花板高。 2. AI 写作的实践成果 业务包含营销和小说、短剧创作,开发了智能营销矩阵平台,参与喜马拉雅短故事和短剧写作课程,捣鼓出小财鼠程序版 agent。 3. 定义好文字 好文字能引起人的生理共鸣与情绪,AI 因预训练数据量大能学会引发共鸣,从而写出好文字。 4. 用 AI 写出好文字的方法 选好模型,评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力。 克服平庸,平衡“控制”与“松绑”。 显式归纳想要的文本特征,通过 prompt 中的描述与词语映射到预训练数据中的特定类型文本,往 prompt 里塞例子。 5. 对 AI 创作的看法 AI 创作的内容有灵魂,只要读者有灵魂,文本就有灵魂。 有人讨厌 AI 是因其未改变多数人生活,或自身是受害者。作者期望 AI 能力进一步提升,改变每个人的生活。 二、AI 写作变现指南 1. 项目启动 确定目标客户群体,如大学生、职场人士、自媒体从业者等。 选择合适的 AI 写作工具,以满足不同客户的需求。 2. 准备阶段 学习并实践 AI 写作技术,通过书籍、在线课程等资源提升写作技能。 构建团队,培养和扩充团队成员,以提高运营效率。 3. 商业模式构建 确定服务内容,如提供论文、报告、文案等直接写作服务。 制定质量控制标准,确保写作内容满足客户要求。 4. 运营与推广 在淘宝等电商平台上开设店铺,展示并销售写作服务。 建立写作培训社群,分享写作技巧和 AI 应用经验,提升品牌影响力。 通过社交媒体和线下活动进行品牌和社群建设。 与绘画团队、其他写作工作室等合作,共同开发新项目。 5. 项目优化与发展 持续关注 AI 技术进展,提升服务质量和效率。 根据市场需求,拓展新的服务和产品。 收集客户反馈,不断优化和改进服务。 三、利用 AI 写课题的步骤和建议 1. 确定课题主题 明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料 使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息 利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲 使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述 利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论 根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析 若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑 利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献 使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改 利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查 最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2025-02-28
我要做动画短片 ,从剧本到成片,需要用到哪些AI软件(国内可用的)?
2025-02-25
我要找AI配音视频,类似dreamface
以下为一些可以获取 AI 配音视频的网站及相关信息: Runway:网址为 https://runwayml.com ,有网页和 app ,使用方便。工具教程: 即梦:网址为 https://dreamina.jianying.com/ ,是剪映旗下产品,生成 3 秒,动作幅度有很大升级,有最新 S 模型和 P 模型。工具教程: Minimax 海螺 AI:网址为 https://hailuoai.video/ ,非常听话,语义理解能力非常强。视频模型: Kling:网址为 kling.kuaishou.com ,支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。视频模型: Vidu:网址为 https://www.vidu.studio/ haiper:网址为 https://app.haiper.ai/ Pika:网址为 https://pika.art/ ,可控性强,可以对嘴型,可配音。工具教程: 智谱清影:网址为 https://chatglm.cn/video ,开源了,可以自己部署 cogvideo 。工具教程: PixVerse:网址为 https://pixverse.ai/ ,人少不怎么排队,还有换脸功能。工具教程: 通义万相:网址为 https://tongyi.aliyun.com/wanxiang/ ,大幅度运动很强。 luma:网址为 https://lumalabs.ai/ 。视频模型: 此外,在制作 AI 视频短片《梦镜》时,经过讨论决定采用真人配音而非 AI 配音。在制作过程中,先通过图片配合配音确定每个镜头所需时长,完成初步成片后再让配音老师根据剧情和人物情绪重新配音,并加入气氛音。 另外,桂大羊的 AI 视频短片制作教程中,选择了多种工具,包括大语言模型 chatgpt、kimi 进行剧本分镜设定,文生图 midjourney 生成视觉画面,图生视频选择即梦 dreamina 制作动态画面,suno 音乐编曲,ondoku 主角台词配音,视频剪辑使用剪映。
2025-02-25
在办公领域,Deepseek如何进行效率提升,请详细进行原理及操作阐述,我要做成培训课程
以下是关于 DeepSeek 在办公领域提升效率的原理及操作阐述: 原理方面: 1. 强化学习和联网搜索能力改变信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。 2. 利用“专家混合”和“多头潜在注意力”技术,展现了高效的算力利用。 3. 其开源策略打破了技术垄断,让国内大模型能力迅速提升。 操作方面: 1. 飞书多维表格与 DeepSeek R1 结合,实现批量处理信息,如批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单、便捷,普通人无需编程知识也能轻松使用。 2. 有手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 此外,DeepSeek R1 赏析分享会专为非技术人群设计,通俗易懂地介绍了 R1 和 V3 的技术亮点,深入探讨了业界的困惑与 DeepSeek 的解决方案。同时,也有相关文章通过虚构故事结合真实案例,讲述 AI 在日常工作中的效率提升作用,如分析意图、生成任务说明,并拆分复杂任务成结构化内容,强调最终成果需人工审核、拼接,并以人类主导全流程。
2025-02-25
我要学习AIGC ,零基础,刚接触,请给我制定一个系统的学习清单
以下是为您制定的零基础学习 AIGC 的系统学习清单: 1. 阅读彭博社对谷歌 CEO Sundar Pichai 的访谈,了解关于搜索未来、Gemini 构建、与微软和 OpenAI 竞争、美中在 AI 方面的竞争以及谷歌文化挑战等内容,同时关注 Google 对 AI 技术未来包括 AGI 的承诺和看法。 2. 查看 Elicit 发布的机器学习必读清单,系统学习机器学习基础、Transformer 与基础模型、训练与微调、推理与运行策略等方面,从基础概念入门到深度强化学习和反向传播等进阶内容,深入了解 Transformer 架构以及训练和精调语言模型的方法与策略,分析大语言模型如何处理复杂推理和解决问题的任务。 3. 学习提示工程基础,掌握三种高级提示工程技巧,包括思维链(CoT)提示、思维树(ToT)提示和思维图(GoT)提示。 4. 观看【AI 学习笔记】小白如何理解技术原理与建立框架的相关内容,了解什么是 AI 大模型及其原理,包括生成式 AI 生成的内容(AIGC)、相关技术名词(如 AI、机器学习、监督学习、无监督学习、强化学习、深度学习、生成式 AI、LLM 等)以及技术里程碑(如谷歌团队发表的《Attention is All You Need》论文提出的 Transformer 模型)。
2025-02-24
如果我想让AI帮我写一篇楼盘推广软文,我要如何输入指令
如果您想让 AI 帮您写一篇楼盘推广软文,以下是一些输入指令的建议: 1. 明确指令:使用清晰、直接的语言告诉 AI 您的需求,例如“为我写一篇楼盘推广软文”。 2. 提供背景信息:包括楼盘的位置、特色、目标受众等,比如“这是位于市中心的高端楼盘,目标受众是追求高品质生活的成功人士”。 3. 描述输入数据:如果有相关的楼盘资料、图片、周边环境介绍等,可以提供给 AI,例如“楼盘拥有独特的园林设计,周边配套有大型商场和优质学校”。 4. 给出输出引导:明确软文的格式、语气、长度等要求,比如“以生动活泼的语言,写成一篇 800 字左右的软文,采用故事性的叙述方式”。 同时,您还需要注意以下几点: 1. 指令要简洁明了,避免歧义。 2. 尽量提供详细和准确的信息,以便 AI 更好地理解您的需求。 3. 可以参考一些结构化的提示词设计方法,如 ICIO 框架,即 Instruction(指令)、Context(背景信息)、Input Data(输入数据)和 Output Indicator(输出引导)。
2025-02-24
你是AI专家,如何更好地使用AI工具?
以下是关于如何更好地使用 AI 工具的一些建议: 理解工具: AI Agent 有效使用工具的前提是全面了解其应用场景和调用方法。利用 LLM 的 zeroshot learning 和 fewshot learning 能力,AI Agent 可以通过描述工具功能和参数的 zeroshot demonstration 或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。这与人类通过查阅工具手册或观察他人使用工具进行学习的方法类似。在面对复杂任务时,应先将其分解为子任务,然后有效地组织和协调,这依赖于 LLM 的推理和规划能力以及对工具的理解。 使用工具: AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习(清华有一篇从训练数据中学习的文章)。这包括模仿人类专家的行为,了解其行为后果,并根据从环境和人类获得的反馈做出调整。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。 具身智能: 在追求人工通用智能(AGI)的过程中,具身 Agent 正成为核心的研究范式,强调将智能系统与物理世界紧密结合。其设计灵感来自人类智能的发展,认为智能更多地来自与周遭环境的持续互动和反馈。与传统的深度学习模型相比,LLMbased Agent 能够主动感知和理解所在的物理环境并与之互动,利用内部丰富的知识库进行决策并产生行动改变环境,这被称为“具身行动”。 此外,在生成 PPT 方面,市面上有多种受欢迎的 AI 工具,如 MindShow、爱设计、闪击、Process ON、WPS AI 等。每款工具都有独特优势,能帮助您快速、高效地完成 PPT 设计。
2025-02-28
我是一个AI新手小白,在这个网站里怎么学习AI知识和技能
对于 AI 新手小白,在本网站学习 AI 知识和技能可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于不会代码的您,可以尝试了解以下作为基础的内容: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,参加 WaytoAGI 有以下好处: 1. 了解最新的 AI 技术:它像一个免费的“技术期刊”,不仅能让您了解最新动态,还能教您各种实用技能,并且开源免费。 2. 线上共学,手把手教您:WaytoAGI 不仅提供知识,还会通过线上共学的方式,手把手教您如何应用 AI 技术。无论您是小白还是有一定基础,都能在这里找到适合自己的学习路径。 3. 找到志同道合的队友:如果您想创业、做副业,或者只是想找一群对 AI 感兴趣的小伙伴一起搞事情,WaytoAGI 是一个很好的平台。在这里,您能找到和您目标一致的合作伙伴。 在 WaytoAGI 的线下活动中,您可能会有以下收获: 1. AI 自动化,牛 X 到炸:只要有个想法,用 DeepSeek 加飞书多维表格,分分钟实现自动化。 2. 找到副业和创业的伙伴:在活动中,您可能会遇到很多对创业和副业感兴趣的人。 3. 遇见高手和大佬面对面:在线下经常会出现各路大佬带着自己遇到的实际操作中具体的一些问题和卡点,去当面请教他们是让自己避免走很多弯路和浪费时间的有效途径。 WaytoAGI 的线下活动不仅让您了解到了最新的 AI 落地应用现状,还结识了一群有趣、有想法的人。更重要的是,它让您意识到:人一定要走出去,多和人碰撞,多去体验真实的生活,才能真正成长。如果您也对 AI 感兴趣,或者想找到一群志同道合的伙伴,来 WaytoAGI 一起玩!
2025-02-28
AI入门途径
以下是为新手提供的 AI 入门途径: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于通过 AI 开发应用的同学,必读 OpenAI API 文档()。 对于使用 AI 应用的同学,以下是一些入门文章: 《ChatGPT 中,G、P、T 分别是什么意思?》:GPT 分别代表生成式、预训练和转换器。 《大白话聊 ChatGPT》:逐字稿: 《AI 的时代已经到来》:中文译稿: 《万物摩尔定律》:
2025-02-28
AI类需求产品经理应该如何写需求文档
以下是为您提供的关于 AI 类需求产品经理如何写需求文档的相关内容: 工具推荐: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(hypertype.co) 会议信息:AskFred(fireflies.ai/apps) 团队知识库:Sense(senseapp.ai) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(ellie.ai) 企业自动化:Moveworks(moveworks.com) 开发流程: 1. 基础小任务: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 对于特定技术学习(如 chrome 插件开发),让 AI 按照最佳实践生成示范项目,包含典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成相关脚本的要求。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,包含影响技术方案选择的细节,方便后续开发时与 AI 交流。 银海相关: 可以通过 Prompt 提示词来复现产品的轻量化版本。 Prompt 提示词是给 AI 的指令,可以是文字或按一定格式的参数描述。 学习 Prompt 提示词可参考:https://www.promptingguide.ai/zh 提供了 10 个场景及相应的 Prompt 提示词和实现效果,包括行业洞察分析、方法论专家、头脑风暴、需求文档设计、功能价值分析、竞品分析报告、流程图/图表设计、思维导图设计、解决方案专家、周报生成器。
2025-02-28
如何把ai作为培训技术手段,建立和制作港口企业管理人员、职能技术专业人员、技能人员以及理货、驾驶、起重人员培训课程
以下是为您提供的关于将 AI 作为培训技术手段建立和制作港口企业各类人员培训课程的一些建议: 首先,参考相关法律法规,如《2020 年国家人工智能倡议法案》,其中提到要为人工智能研究和发展提供持续、一致和协调的支持,包括通过拨款、合作协议、测试平台以及获取数据和计算资源等方式。 对于港口企业管理人员、职能技术专业人员、技能人员以及理货、驾驶、起重人员的培训课程制作,可以利用以下方法: 1. 支持开发自愿性的标准、最佳实践和基准,以确保培训课程的质量和有效性。 2. 为各级教育项目提供支持,在正式和非正式的学习环境中,让员工能够使用和与人工智能系统互动,并适应其对社会和经济的潜在变革性影响。 3. 支持跨学科的研究、教育和培训项目,促进学生和研究人员学习人工智能的方法和系统,培养跨学科的视角和合作,涵盖计算机科学、数学、统计学、工程、社会科学、心理学、行为科学、伦理学、安全、法律学术等相关领域的专家。 需要注意的是,在实际操作中,应根据港口企业的具体需求和人员特点,有针对性地设计和优化培训课程。
2025-02-28
ai和保险行业
以下是关于 AI 和保险行业的相关内容: 人工智能和机器学习在金融服务行业的应用已有十多年,促成了从更好的信贷评估到更精确的基础欺诈评分等一系列改进。大型语言模型通过生成式人工智能代表着重大飞跃,正在改变多个领域。金融服务公司拥有大量历史金融数据,若用其微调大型语言模型或从零开始训练模型,能迅速回答几乎任何金融问题。金融服务行业已准备好使用生成式人工智能来实现五个目标:个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告。 在保险行业,文章探讨了人工智能如何提升保险服务的价值链。AI 的医疗大模型与真人医生的治疗方案达到了 96%的一致性。保险销售基于信任交易,用户体验和满意度是信任累积关键,未来 GPT 可视为业务人员的个人助理。优化保险服务链需考虑在线与远程服务体验、独特的用户分类方法、数字化服务体系、用户心理状态、路径设计以及保险营销员的实际需求等,以实现用户财务需求与保险商品的双赢。
2025-02-28
一键生成数据分析报告
以下是关于一键生成数据分析报告的相关内容: 舆情管理大师汽车 bot 小队: 专业版采集:最低成本获取专业级数据,不改变搜索习惯,适配任何业务,约束大模型采集范围,节省人工判断和处理数据时间,用于 Bot 调取数据、员工跟进数据源,功能设计可一劳永逸采集大量数据,适用于主体需要长期监控的业务(车型),主、副关键词组合搜索提高采集全面性,适合表格导入批量采集等场景。 一键报告:包括车型维度报告、事件维度报告,深度融合 coze 与飞书,构建高效数据流转体系,采集结果实时更新,数据入表,智能总结链接内容、打分辅助判断,关键信息一目了然,确保信息时效性,快速响应与跟进提升效率,视频直转文字,提炼关键内容用于复审,简化人工筛选过程,大模型对每条舆情打分,实现自动化打标签。 Claude 官方提示词(中文版含 API Prompt): 公司内情员:从冗长报告中提炼关键信息,识别风险,总结成备忘录。 网站大师:根据用户需求一键生成单页网站,以 HTML 文件形式交付,嵌入 JavaScript 和 CSS,设计应具有视觉吸引力、响应性和用户友好性。 Excel 公式大神:根据用户描述的计算或数据操作创建 Excel 公式,收集编写公式所需信息,提供详细解释和分解公式组成部分。 营销:定制营销报告: 提问模板: 根据不同来源数据生成详细报告分别汇报给下属、跨部门平级和领导。 根据数据回答特定问题并给出结论与图表,如最近一个季度销售趋势及影响因素、客户反馈与营销策略效果、营销活动投资回报率及优化方向。 根据数据报表提炼 3 个重要结论汇报给领导。 步骤: 明确数据分析目标,如理解业务、优化业务或预测未来。 收集整理与清洗相关数据,包括销售数据、客户反馈、财务报告等,通过多种方式收集并做简单清洗。 让 ChatGPT 学习相关数据含义和用法,输入不同来源数据让其理解。 进行数据分析给出重要结论,包括提高销售额和市场份额的策略和活动、影响客户满意度和忠诚度的因素、影响财务报告的因素等。 根据汇报对象身份进行可视化调整,报告可包括销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面信息,针对不同身份的人报告有所不同。
2025-02-26
数据分析领域的AI产品
以下是关于数据分析领域的 AI 产品的相关信息: ChatGPT 在数据分析中的应用: 个性化分析示例:包括单维度数据、多维度数据(折线图、柱状图)等。有时 AI 会误将数据项作为维度分析,可通过输入提示告诉它用哪个字段作为维度,或描述其他数据信息使分析更准确。 总结和展望:ChatGPT 在数据分析领域有广泛应用前景,能提高效率、降低技能门槛、支持决策。但案例分析结果可能简单,实际业务中需处理大量数据,要指定允许查询或解析的字段,对结果数据进行校验,还可定制分析模板增加多样性。需结合实际需求和场景审慎评估其适用性。随着技术进步,将为数据分析带来更多创新和突破。 Rockset: 公司名片:成立于 2016 年,由前 Facebook 工程师创立,专注于提供实时搜索和分析数据库服务,能将数据转化为“可操作智能”。 产品特点:实时分析,支持快速数据查询和分析,提供低延迟的数据处理能力;无服务器架构,简化运维,降低企业 IT 成本;自动索引,支持对半结构化数据的高效查询。 使用场景:适用于金融、科技和互联网等需要实时数据分析的企业,帮助企业做出快速业务决策,优化运营效率。 技术优势:实时分析和多维索引,擅长处理和分析大规模半结构化数据,能自动构建多维索引;向量搜索,增强快速访问和分析大量信息的能力;低延迟操作,提供低延迟的搜索、过滤、聚合和连接操作。 融资与收购:刚被 OpenAI 收购。 AIPM 技能树: 随着 AI 技术发展和应用场景拓展,市场对能将 AI 技术转化为实际产品和服务的人才需求增加,AI PM 作为更专业化角色逐渐形成。 AI 产品涉及复杂算法和大数据处理,同时要考虑用户体验和商业模式,要求 PM 具备跨学科知识背景,能在技术和业务间有效沟通和决策。 掌握算法知识的必要性:理解产品核心技术,与技术团队有效沟通,评估技术可行性,把握产品发展方向,提升产品竞争力,提升数据分析能力。
2025-02-26
如何快速学习AI进行数据分析
以下是快速学习 AI 进行数据分析的方法: 1. 了解数据分析流程: 逻辑流程图包括 SQL 分析和个性化分析。 SQL 分析:用户描述分析内容,后台连接数据库,让 AI 输出并校验 SQL 语句,执行后将数据传给 GPT 分析,最后返回分析结论和建议并在前端展示。 个性化分析:用户上传文件并描述,前端解析后传给 GPT 分析,后续步骤与 SQL 分析一致。 2. 掌握提示词技巧: 提供大模型可访问的数据源或上传数据表格。 用清晰的提示词说明分析维度和结果输出格式。 观察生成结果,迭代优化提示词,满意后导出结果。 3. 分环节处理: 将数据清洗、提取、模型选择、训练和结果解释等环节分开处理,便于优化性能和发现问题。 4. 逐步深化和细化提问: 先提出宽泛问题,再根据回答进一步细化。 5. 提供学习内容: 为 AI 系统提供大量数据、示例、高质量参考材料和详细流程、知识(knowhow)。 6. 利用专业术语引导: 在 Prompt 中使用专业领域术语引导 AI 回答方向。 7. 进行验证与反馈: 大模型语料有滞后性,使用 AI 回答后要交叉验证,结合自身专业知识筛选判断,确保符合法律伦理等要求。
2025-02-25
有没有帮助数据分析的agi
ChatGPT 可以助力数据分析,主要有以下两种方式: 1. SQL 分析:用户描述想分析的内容,后台连接数据库,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型的 SQL 后执行,返回结果数据给 GPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可简单描述数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与 SQL 分析一致。 个性化分析示例中,上传的数据均为假数据,包括游戏 A 流水数据、游戏产品数据、页面事件统计和用户行为数据等。有时 AI 会误将数据项作为维度分析,可输入提示告诉它用哪个字段作为维度,或描述其他数据信息使分析更准确。 总结和展望:ChatGPT 在数据分析领域具有广泛应用前景,能提高效率、降低技能门槛和支持决策过程。但本案例分析结果可能简单,真正接入业务可定制多种分析模板,增加分析多样性。实际业务中处理大量数据时,除文中提到长类型字段限制,还需指定允许查询或解析的字段给 ChatGPT,对结果数据进行两次校验。随着人工智能技术进步,相信 ChatGPT 及其他类似工具将为数据分析带来更多创新和突破,助力实现更高效、更智能的决策。 原文地址:https://mp.weixin.qq.com/s/Fld25MxyoFEnUbnDmGJNXg 本文作者:krryguo,腾讯 IEG 前端开发工程师。
2025-02-24
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
数据分析产品的智能体有哪些
以下是一些常见的数据分析产品的智能体类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器,根据温度传感器的输入直接控制加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能推理未来的状态变化并据此行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:具有明确的目标,能根据目标评估不同的行动方案并选择最优行动。像机器人导航系统,有明确目的地并规划路线以避开障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣并权衡利弊。例如金融交易智能体,根据市场条件选择最优交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。比如强化学习智能体,通过与环境互动不断学习最优策略。 此外,还有一些具体的数据分析产品智能体,如颖子团队的“市场分析报告”生成智能体,它能根据输入的行业/类目关键词自动检索关联信息并生成报告,数据化呈现且附带信息来源网址便于校正,适用于企业管理层、投资者、创业者、营销人员等,可减少信息收集时间,聚焦决策判断。 在智谱 BigModel 开放平台工作流搭建中,也有相关的智能体节点,如具有自主规划任务、使用工具、记忆的 Agent 节点。
2025-02-17
飞书多维表格xDeepSeek R1实用提示词
以下是关于飞书多维表格 x DeepSeek R1 实用提示词的相关信息: 《雪梅 May 的 AI 学习日记》中,在专题“飞书多维表格 + deepseek R1”的 DAY107 练习中,提到可在相关链接中找到与短视频相关的模板,使用如【视频脚本生成】【企业家 IP 视频脚本生成】等提示词制作多维表格,还可模仿,感受是制作体验丝滑流畅,仅用提示词就能编排多维表格实现强大功能。 同样在该专题的 DAY108 练习中,针对直播场景,可参考的直播相关多维表格,作者将小红书、短视频制作、直播等场景都做了一套放入同一个飞书多维表格,形成媒体内容生产与管理系统。 此外,还有 deepseek 论文解读的相关内容,包括直播视频回放、相关论文下载以及万能提示词的技巧分享等。若官网搜索不能用一直崩溃,可使用火山的满血版,其在视频最后 10 分钟左右有手把手教程。
2025-02-28
多维表格入门
以下是关于多维表格入门的相关内容: 智浦清流工作流与多维表格:元子将介绍多维表格的使用,CT 会介绍如何将 code 连进多维表格。 多维表格创建问卷:在飞书云文档中通过点击加号新建问卷,可用于收集信息。 多维表格与 Excel 对比:Excel 处理数据有一定门槛,而多维表格有丰富插件,可与 AI 协作处理数据,更方便易用。 多维表格的应用场景:可提取网页和电话等信息,留存透视所有信息,还能实现微信收集信息自动存入多维表格等功能。 智普工作流接入:逻辑上智普工作流可接入多维表格,但目前没有直接可用插件,可能需要自行开发。 多维表格的主要构成:包括输入(框子里能装的数据类型)、数据处理(重点,有插件、AI、自动写公式等)、视图(透视功能)、看板(可视化)、工作流(自动化)、和飞书联动。 飞书多维表格字段捷径中接入 COS 的 agent 能力及相关话题分享:ct 分享了如何将 cos 中的 bot 导入飞书多维表格的字段捷径,包括发布 bot 到飞书多维表格、配置相关内容、注意发布范围等操作,还展示了多个案例。
2025-02-28
如何搭建一个自动把录音文件转文字的agent,然后发布到飞书多维表格字段捷径
搭建一个自动把录音文件转文字的 agent 并发布到飞书多维表格字段捷径的步骤如下: 1. 工作流调试完成后,加入到智能体中。可以选择工作流绑定卡片数据,智能体通过卡片回复。绑定卡片数据可自行研究,如有疑问可留言。 2. 发布:选择需要的发布渠道,重点是飞书多维表格。记得智能体提示词的 4 个变量,填写上架信息(为快速审核,选择仅自己可用),确认发布并等待审核。审核通过后即可在多维表格中使用。 3. 创建飞书多维表格,添加相关字段。配置选择“自动更新”,输入 4 个字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 4. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 5. 点击多维表格右上角的“自动化”,创建想要的自动化流程。 此外,关于 Coze 应用与多维表格的结合还有以下相关内容: 1. Coze 智能体(字段捷径)获取笔记+评论信息:创建智能体,使用单 Agent 对话流模式,编排对话流,配置相关节点和插件,进行数据处理和测试,最后发布。 2. Coze 应用:完成后端准备工作后,创建应用,设计界面和工作流,包括读取博主笔记列表的工作流,进行相关配置和参数设置。
2025-02-27
企业建立私有大模型时候,采用什么工具进行RAG,高效实习企业知识文档、表格和pdf图纸的向量化
企业建立私有大模型进行 RAG 并实现企业知识文档、表格和 PDF 图纸向量化时,可参考以下工具和方法: 1. 本地部署资讯问答机器人: 导入依赖库,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,可使用文本向量模型 bgem3,从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 2. 开发:LangChain 应用开发指南 大模型的知识外挂 RAG 加载数据,根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader。 将文档对象分割成较小的对象,根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 将文档对象转换为嵌入并存储到向量存储器中,根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 创建检索器,使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数创建检索器对象。 创建聊天模型,根据性能和成本选择合适的聊天模型,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-02-27
你好,我想用ai将一张图片形式的数字表格转换成excel,应该使用哪款模型?
很抱歉,上述提供的内容中没有直接提及将图片形式的数字表格转换成 Excel 可用的具体模型。但您可以尝试以下几种常见的方法和工具: 1. 一些 OCR(光学字符识别)软件,如 ABBYY FineReader、Adobe Acrobat Pro 等,它们通常具有将图片中的表格转换为可编辑文本的功能,然后您可以将其粘贴到 Excel 中进行整理。 2. 在线 OCR 服务,例如百度 OCR、腾讯 OCR 等,操作相对便捷。 3. 某些专门用于表格处理的 AI 工具,您可以通过在相关的技术论坛、社区或专业的软件评价网站上进一步搜索和了解。
2025-02-26
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学🕸️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26