以下是快速学习 AI 进行数据分析的方法:
逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。SQL分析:用户描述想分析的内容,后台连接DB,附带表结构信息让AI输出SQL语句,校验是SELECT类型的SQL,其他操作如UPDATE/DELETE绝不能通过!!校验通过后执行SQL返回结果数据。再将数据传给GPT(附带上下文),让AI学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给GPT分析数据,后续步骤与上面一致。流程描述得比较详细,就不具体讲解开发过程和代码了,而是会更多讲述开发时的一些问题、重点和技巧。相关重点:
问题不清晰,想问充值渠道还是想问自己设备性能呢,显卡和iPhone不是一个类别的问题吧。以下回答来自群友zy xing:只学prompt不需要考虑显卡,绘画需要本地部署模型出图才需要,手机问题,iPhone确实高质量的应用更多一些,但一般通用的app安卓和苹果基本都覆盖,比如文心一言、智普清言这些,gpt付费问题如果想用它的模型也可以考虑一些“套壳”应用,比如poe、opencat等app1.晚点_Ken如何用AI来做数据分析,用哪个工具?是否有成功案例大概思路是这样:提供大模型可以访问的数据源或者上传数据表格通过提示词说清楚需要以哪些维度分析数据,分析完成的结果要以什么格式输出观察生成结果,迭代和优化提示词,最终满意后导出结果1.无上在看公众号文章时,有提到“大模型幻觉”的,请问有什么好方法或小技巧能够识别并尽可能消除“幻觉”?幻觉问题有相关帖子和论文可以看,但目前没有办法消除,这本身就是大模型特性。可以通过其他第三方信息源和知识来检验生成是不是在胡说八道。1.AI小詹大模型的对话能力,如何用结构化思维去提高,举个栗子:上下文的token长度,如何去延长,是否能用专门的输入模版去提升?栗子和问题不是一个问题。结构化思维提高对话能力,在AGI搜索结构化三个字,有相关文章。上下文token长度如果指的是大模型的记忆窗口的话,没法延长,是设定好的。1.豆本豆在用chatgpt写剧本的时候如果想让他学习现有数据好的成功剧本从中总结规律并应用于后续的创作应该怎么更好的提问
例如,如果你正在使用AI进行数据分析,你可能需要将数据清洗、数据提取、模型选择、模型训练和结果解释等环节分开处理。这样做的好处是,你可以针对每个环节优化AI的性能,同时也便于发现和修正问题。还有一种是针对复杂的问题,律师可以采用逐步深化和细化的方式提问。先提出一个较为宽泛的问题,然后根据AI的回答进一步细化或深化问题。这种方法有助于律师逐步深入了解问题的各个方面。例如,在处理一起知识产权侵权案件时,律师可以先问:“这起案件中,被告是否构成侵权?”然后根据AI的回答进一步提问:“如果构成侵权,那么侵权的类型和程度是怎样?”给AI参考和学习的内容让他理解结构和学习,写出流程,写出knowhowAI系统通常需要大量的数据和示例来学习和理解任务的结构。提供高质量的参考材料和学习内容是提高AI性能的关键。这可能包括详细的操作指南、行业最佳实践、案例研究等。同时,编写详细的流程和知识(knowhow)也很重要,这不仅能帮助AI更好地理解任务,也能为人类用户提供指导。例如,在自动化文档处理中,你可以编写一个详细的指南,说明如何处理不同类型的文档,以及如何使用AI工具来提高效率。利用专业领域的术语引导在Prompt中使用法律术语来引导AI的回答方向。比如,在处理合同纠纷时,律师可以提示:“从合同签订条件、排他性合作和违约责任三个方面分析该合同的履行情况。”这样的引导有助于AI更精准地提供所需信息。验证与反馈大模型的语料存在一定滞后性,在使用AI的回答后,律师一定要对内容进行交叉验证,确保信息的准确性。同时,律师在使用AI时,还应结合自身的专业知识进行引导。通过专业知识对AI的回答进行筛选和判断,确保其符合我国法律伦理、立法目的和实务。