Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么学习提示词 prompt

Answer

以下是关于如何学习提示词(prompt)的全面指导:

一、理解提示词的作用 提示词向模型提供上下文和指示,其质量直接影响模型输出的质量,能让模型更准确地理解并完成所需任务。

二、学习提示词的构建技巧

  1. 明确任务目标,用简洁准确的语言描述。
  2. 给予足够的背景信息和示例,帮助模型理解语境。
  3. 使用清晰的指令,如“解释”“总结”“创作”等。
  4. 对特殊要求应给予明确指示,如输出格式、字数限制等。

三、参考优秀案例 研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中找到大量案例。

四、实践、迭代、优化 多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。

五、活用提示工程工具 目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。

六、跟上前沿研究 提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。

七、具体学习步骤

  1. 拥有一个大模型帐号,并熟悉与之对话的方式。推荐 ChatGPT4 及国产平替:Kimi.ai-帮你看更大的世界智谱清言
  2. 阅读 OpenAI 的官方文档:目录:OpenAI 官方指南OpenAI 官方提示工程指南。也可参考中文精读版的官方 Cookbook:Cookbook:OpenAI 中文精读熊猫 Jay:万字解读 ChatGPT 提示词最佳实践

精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。请注意,内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:如何学习提示词运用?

提示词(Prompt)在现代大型语言模型中扮演着极其重要的角色,掌握提示词的运用技巧可以最大限度地发挥模型的潜能。以下是一些学习提示词运用的建议:1.理解提示词的作用提示词向模型提供了上下文和指示,使其能更准确地理解并完成所需的任务。提示词的质量直接影响了模型输出的质量。1.学习提示词的构建技巧明确任务目标,用简洁准确的语言描述给予足够的背景信息和示例,帮助模型理解语境使用清晰的指令,如"解释"、"总结"、"创作"等对特殊要求应给予明确指示,如输出格式、字数限制等2.参考优秀案例研究和学习已有的优秀提示词案例,了解行之有效的模式和技巧。你可以在领域社区、Github等资源中找到大量案例。1.实践、迭代、优化多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。1.活用提示工程工具目前已有一些提示工程工具可供使用,如Anthropic的Constitutional AI。这些工具可辅助构建和优化提示词。1.跟上前沿研究提示工程是当前最前沿的研究领域之一,持续关注最新的研究成果和方法论。精心设计的提示词能最大限度发挥语言模型的潜力,是高效使用大模型的关键技能。多实践、多学习、多总结,终可掌握窍门。内容由AI大模型生成,请仔细甄别。

小七姐:Prompt 喂饭级系列教程 小白学习指南(一)

可能对于学了很久prompt的包括小七姐在内的很多星友来说,下面这些内容真的已经是老生常谈了,总觉得没有必要反复提及,但今天认真搜索和翻阅了一下关于prompt新手教程的帖子,的确发现对新手不是很友好,比较零散,不成体系。这里做一个统一的收集和整理,小七姐也努力不断调起自己初学时的同理心,尽量写的再入门一点,希望能帮助更多刚入门学习提示词的朋友。第一步:你要有一个大模型帐号,至少已经熟悉和它们对话的方式。最强性能当属ChatGPT4,当然也推荐国产平替:[Kimi.ai-帮你看更大的世界](https://kimi.moonshot.cn)[智谱清言](https://chatglm.cn)第二步:看OpenAI的官方文档:[目录:OpenAI官方指南](https://waytoagi.feishu.cn/wiki/EGU4wV4q6i6vprk5A7dckaGTne0)[OpenAI官方提示工程指南](https://waytoagi.feishu.cn/wiki/HuClwX8wai1fD7kLhyBcdxzJnJf)这是每个学习prompt的人必须看的基础课,相当于人教版教材,建议阅读学习。我和熊猫Jay也在AGI分享了中文精度版的官方Cookbook:[Cookbook:OpenAI中文精读](https://waytoagi.feishu.cn/wiki/Pu2OwhTuni6H3jkiv3FcwCuLn7c)[熊猫Jay:万字解读ChatGPT提示词最佳实践](https://waytoagi.feishu.cn/wiki/FoJJwvwBNiEJYjkx1ygccO2CnVe)

小七姐:提示词思考总结

提示词(Prompt)是给大语言模型(以下简称模型)的输入文本,用于指定模型应该执行什么样的任务并生成什么样的输出。提示词发挥了“提示”模型应该做什么的作用。设计高质量的提示词需要根据目标任务和模型能力进行精心设计,良好的提示词可以让模型正确理解人类需求并给出符合预期的结果。我们来看一些示例,以便更准确的理解提示词的实际使用:[heading3]直接提问型:[content][heading3]策略建议型:[content][heading3]翻译型[content][heading3]算数型[content][heading3]概念解释型:[content][heading2]二、为什么提示词需要学习?[content]首先了解大模型的特性,了解它能做到什么,不擅长做什么,完全无法做什么。随后要求写好brief的能力,也就是清晰表述自己的需求和任务的能力。两者兼具,才能用好这个工具。

Others are asking
生成 ppt 内容的 prompt
以下是关于生成 PPT 内容的 prompt 相关信息: 角色方面包括专业推特新闻小编、好评生成器、PPT 生成器、周报生成器、文章打分器、英文日文翻译员、分享卡片生成器、邮件优化大师、专业书评人等。 周三【workshop】一起写 Prompts 成果展示小组 1 中,作者夙愿提到: 该 prompt 主要解决输入一个主题帮老师生成 PPT(场景不定)的问题。 使用该 prompt 的是教师(生成)和学生(阅读)。 目前的最好解决方案包括:提炼教学内容的核心概念确定主题;确定主题后增加提纲;对提纲进行关键词描述;根据关键词书写提纲下的摘要;生成的课件提纲、内容让用户确认是否需要修改。 成熟的案例参考: step 1(根据 PPT 大纲助手 GPTs 生成 PPT 大纲):https://chat.openai.com/g/gOKorMBxxUpptdagangzhushou step 2(根据输入文本生成 PPT 内容 GPTs 生成 PPT 内容):https://chat.openai.com/g/gYJs9jxVBHshuruwenbenshengchengpptneirong step 3(将生成的内容复制到 Marp Web 渲染简洁的 PPT):https://web.marp.app/
2025-02-25
职场求职 prompt
以下是关于职场求职的相关内容: 岗位职责生成器:由小七姐创作,版本 1.3。可根据标准模板及用户需求,为从事人力资源岗位的初级用户快速生成岗位职责。需注意与用户对话时,考虑其经验和技能水平,生成的岗位职责应包含通用模块和业务专业模块。生成岗位职责后,可基于此提供 15 个面试问题,分任职资格、职业发展、业务能力三个模块。 AI 提示词工程师岗位技能要求: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 职场新人求助攻的案例:刚转正的 HR 要组织新员工培训,制造业公司新人 HR 要给 20 名 95 后校招生做入职培训等。 常见翻车急救包:如应对 AI 开始瞎编、答案太笼统、越改越跑偏等状况的方法。
2025-02-25
我想了解现在有什么文生图的模型或者工具,可以精准的按照prompt给的位置大小把文字写在最终出来的图像上的,这个字不会是幻觉,是实打实的字,或者有没有通过训练lora来达到这个效果的
以下是一些关于文生图的模型和工具的信息: Tusiart: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 ControlNet:可控制图片中特定的图像。 设置 VAE:选择 840000 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据需求和喜好选择。 吐司网站: 文生图的操作方式:在首页的对话生图对话框输入文字描述即可生成图片,不满意可通过对话修改。 模型及生成效果:Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成效果受多种因素影响。 图生图及参数设置:可基于图片做延展,能调整尺寸、生成数量等参数,高清修复消耗算力多,建议先出小图。 特定风格的生成:国外模型对中式水墨风等特定风格的适配可能不足,可通过训练 Lora 模型改善。 Liblibai: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 设置 VAE:选择 840000 。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据需求和喜好选择。 生成批次:默认 1 批。
2025-02-25
prompt 管理工具
以下是一些常见的 prompt 管理工具和相关网站: PromptPal: 开发指向: 特点: 专为 AI 领域中的初创公司和个人开发者设计。 作为集中化平台,便于在 AI 项目中管理提示,实现无缝协作和工作流程优化。 支持本地部署和云原生,架构轻量级。 简易设置,可通过 Docker 快速部署。 集成多种数据库解决方案。 提供 SDK 支持,简化不同语言的集成过程。 具备提示跟踪与分析功能。 提供协作工具。 ChainForge: 开发指向: 特点: 开源的可视化编程环境,用于测试大型语言模型的提示。 支持多模型测试,可同时查询多个 LLMs。 能进行响应质量比较,在不同提示、模型和设置之间比较。 可设置评估指标,可视化结果。 支持多对话管理,测试模板参数。 Promptknit: 网站: 文本类 Prompt 网站: LangChain Hub:提示词管理工具,LangChain 推出的提示词上传、浏览、拉取和管理的工具, 微软 Prompt Flow:微软发布的开源 LLM 开发工具集,简化基于 LLM 的人工智能应用程序的端到端开发周期, 未来力场:对 OpenAI 官方文档清晰解读, 其他 Prompt 相关网站: FlowGPT:国外最大的 prompt 站,内容全面,更新快, PromptPort(支持中文):AI Prompt 百科辞典,聚合市场上大部分优质的 prompt 词库, Learning Prompt:详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney, ChatGPT Shortcut:提供众多 ChatGPT 提示词使用模板, ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与他人分享, Prompt Extend:让 AI 帮你自动拓展 Prompt,
2025-02-25
prompts 是什么?
Prompts 是指以下内容: 1. 简单来说,是一套与大模型交互的语言模板。通过它可以输出对大模型响应的指令,明确大模型应做的任务、处理方式,并最终获得期望的结果。在大模型时代,它可能成为人机交互的主要方式之一,能提升模型返回的准确性。 2. 从更专业的角度看,大模型本质是基于语言的概率模型,若直接询问大模型而不提供 prompts,相当于模型随机给出答案。有了 prompts 则相当于提供了一个包含对模型要求、输入和输出限制的模板,使模型在限制下得出概率最大的答案。 3. 是一段用于指挥 AI 生成所需内容的指令,每个单独的提示词叫 tag(关键词)。支持英语,emoji 也可用。语法规则包括用英文半角符号逗号分隔 tag,可改变 tag 权重,还能进行 tag 的步数控制。
2025-02-25
如何构建属于自己的prompt
构建属于自己的 prompt 可以参考以下思路: 1. 明确构建目的:如为了节省力气,根据初始问题自动生成优质 prompt。 2. 遵循一定的流程: 按照特定的方法论,如参考 。 以清晰的结构和灵活的表达方式进行,例如对于视频模型 MiniMax 海螺 AI,可参考其提供的两类 prompt 参考公式。 3. 针对不同模型和需求选择合适的方式: 对于 Claude,可用 Lisp 或 Markdown 格式构建 prompt,直接打开 Claude 首页发送提示词进行初始化后使用。 对于视频创作,若没有明确的镜头呈现需求或期待激发创作灵感,可使用 Prompt 基础公式,即“要创建的主要表现物+场景空间+运动/变化”。 例如:“一只小狗在公园中奔跑”“一个女人打着伞在雨中的街头行走”“山谷中的一条小溪静静流淌”。
2025-02-24
面试官的提示词
以下是关于模拟面试的 Prompt 的相关内容: 1. 设置面试情景 Prompt:给出具体的面试场景,如“你正在参加一家科技公司的产品经理面试”,让被面试者明确背景和角色定位。 2. 提供职位描述 Prompt:给出被面试职位的主要职责和要求,使被面试者了解所需展现的关键技能和经验。 3. 设置面试官 Prompt:扮演不同性格的面试官,如严厉、友善等,让被面试者体验不同风格。 4. 设置问题 Prompt:准备常见的面试问题,如自我介绍、工作经历、未来规划等,引导被面试者回答以展现能力。 5. 反馈 Prompt:在模拟面试中给予被面试者及时反馈和点评,帮助其了解表现并提出改进建议。 6. 情景变化 Prompt:设置意外情况,如被问到意外问题、遇到冲突等,考验被面试者的应变和临场反应。 此外,还为您提供了一些 Claude 官方提示词的示例,如批改大神、绕口令、面试题制造机、语法天才等。 以下是一些提示词目录的链接: 总的来说,设置丰富的 Prompt 可以让模拟面试更贴近真实情况,帮助被面试者更好地准备和练习,同时要注意 Prompt 的灵活性,增加互动性和挑战性。
2025-02-26
视频拍摄中如何用更准确的提示词
在视频拍摄中,以下是一些更准确的提示词使用技巧: 1. 清晰定义动作:如果想让视频中包含角色的动作,用具体的动词和副词来描述,如奔跑、飞翔、游泳或跳舞,并包含动作的速度,如缓慢、快速或逐渐。示例提示词:“一只狗欢快地在海滩上冲刺,跃起接住空中的球。” 2. 使用描述性形容词:准确传达视频的氛围至关重要,使用能唤起想要传达的感觉的形容词,如宁静、神秘或充满活力。示例提示词:“海滩上一个宁静、雾蒙蒙的早晨,柔和的阳光透过沙滩椅洒下。” 3. 提供背景故事或上下文:对于更复杂的视频项目,融入特定的情节元素或角色,提供背景或上下文有助于生成连贯且引人入胜的视频序列。 4. 使用相机角度和运动:Firefly 通常可以模拟真实世界的摄像工作,通过指定希望相机采用的角度或运动,如推镜头、拉镜头、平移、倾斜、固定镜头,为视频增添个性化的触感。 不同的视频模型和工具在提示词方面也有各自的特点: 1. Vidu 模型:其 Prompt 基本构成包括主体/场景、场景描述、环境描述、艺术风格/媒介。要调整句式和语序,避免主体物过多/复杂、主体物分散的句式描述,避免模糊的术语表达,使用更加流畅准确的口语化措辞,丰富、准确和完整的描述才能生成特定艺术风格、满足需求的视频。 2. 星流一站式 AI 设计工具:在其 prompt 输入框中可以输入提示词、使用图生图功能辅助创作。提示词用于描绘想要的画面,输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言,基础模型 1.5 使用单个词组,支持中英文输入。写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。还可以调整负面提示词,利用“加权重”功能让 AI 明白重点内容,使用辅助功能如翻译、删除所有提示词、会员加速等。
2025-02-26
图片的提示词的精准度
以下是关于图片提示词精准度的相关内容: 画面精度提示词: high detail(高细节) hyper quality(高品质) high resolution(高分辨率) FHD, 1080P, 2K, 4K, 8K 8k smooth(8K 流畅) 渲染效果提示词: Unreal Engine(虚幻引擎) octane render(渲染器) Maxon Cinema 4D 渲染器 architectural visualisation(建筑渲染) Corona Render(室内渲染) Quixel Megascans Render(真实感) VRay(V 射线) Behance C4D 3D blender surreal photography(超现实摄影) realistic 3D(真实 3D) zbrush 在描述图片提示词时,通常的逻辑包括:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。 对于新手而言,有以下辅助书写提示词的方法和网站: 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。 功能型辅助网站,如:http://www.atoolbox.net/,通过选项卡方式快速填写关键词信息。 https://ai.dawnmark.cn/,每种参数有缩略图参考,方便直观选择提示词。 去 C 站(https://civitai.com/)抄作业,每一张图都有详细参数,可点击复制数据按钮,粘贴到正向提示词栏,Stable Diffusion 会自动匹配参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可以只取其中较好的描述词,如人物描写、背景描述、小元素或画面质感等。 提示词所做的工作是缩小模型出图的解空间,即缩小生成内容时在模型数据里的检索范围,而非直接指定作画结果。提示词的效果受模型影响,不同模型对自然语言、单词标签等语言风格的反应不同。 提示词中可以填写以下内容: 自然语言:可以使用描述物体的句子作为提示词,大多数情况下英文有效,也可用中文,避免复杂语法。 单词标签:使用逗号隔开的单词作为提示词,一般使用普通常见单词,单词风格要和图像整体风格搭配,避免拼写错误,可参考 Emoji、颜文字:Emoji 表情符号准确且在语义准确度上表现良好,对构图有影响。关于 emoji 确切含义,可参考。对于使用 Danbooru 数据的模型,西式颜文字可在一定程度上控制出图的表情。
2025-02-26
如何让推理大模型回答的更准确,使用什么样的提示词
要让推理大模型回答得更准确,可以通过以下提示词相关的设置和方法: 1. 参数设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更多随机、多样化或具创造性的产出。对于质量保障等任务,设置更低值以促使模型基于事实返回真实简洁结果;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确和事实的答案时,调低参数值;想要更多样化答案时,调高参数值。一般建议改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,是控制响应长度和结构的方法之一。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少响应中单词的重复。 2. 提示词示例: 对于推理任务,目前已有一些涉及数学能力的改进。执行推理任务可能有难度,需要更高级的提示词工程技术,后续会介绍相关高级技术。 可以通过示例给模型说明,可能获得更准确结果,后面章节会介绍更多常见应用示例。 3. 调教方法: 像打字和写作一样,不断尝试和大模型交互是最佳方法,方法论不是关键。 可以在提示词里设定规则,也可临时更改,交互时无需遵循规则,重点是是否达成目的,未达成可重新尝试或更换模型。 用 Markdown 格式清晰表达问题,具有结构清晰、格式化强调、适用性广等优点,有助于模型更好地理解用户意图。
2025-02-26
文章风格提示词逆向工程
文章风格提示词逆向工程是指通过分析和检查现有文章,了解其设计和创作方式,从而生成更优提示词的过程。 利用 ChatGPT 进行逆向工程的步骤包括: 1. 利用 ChatGPT 对指定文章进行改写。 2. 对改写后的版本进行原创性检验。 3. 根据检验结果,指导 ChatGPT 进行进一步优化。 4. 重复上述过程,直至满足高度原创的标准。 5. 采用逆向工程的方法,梳理 ChatGPT 的改写策略。 6. 整合这些策略,形成一套提高文章原创性的高效提示词。 在进行逆向提示词工程时,需要注意以下几点: 1. 检测原创度的大多是机器,不能仅凭肉眼判断改写效果。 2. 对相同提示词多次改写或从元提示词中挑选部分深入改写,可有效提升文章质量。 3. 逆向提示词要提炼文章的语气、写作风格、用词、句式等各种写作要素,包括修辞手法、文章布局、论点和证据、段落长度和句子节奏等多个维度。 4. 不同领域的逆向分析需要相应的专业知识,如文学作品和编程领域。 这种逆向工程方法在营销、商业分析、心理学等领域均适用,能够在智能写作等领域持续产生可商用的提示词。但也需注意,掌握逆向分析技术可能导致一些 AI 创业公司被替代。
2025-02-25
如何更好的创建提示词
以下是关于如何更好创建提示词的相关内容: 创建提示词是一个关键步骤,决定了 AI 模型如何理解并生成文本。以下是一些建议: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格,在提示词中明确指出。 5. 使用示例:提供期望结果的示例,帮助 AI 模型理解需求。 6. 保持简洁:简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词,可能需多次迭代。 此外,不同的工具和场景中创建提示词还有一些特定要点: 在星流一站式 AI 设计工具中: 输入语言方面,通用大模型与部分基础模型使用自然语言,部分基础模型使用单个词组,支持中英文输入。 写好提示词要做到内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 可调整负面提示词,帮助 AI 理解不想生成的内容。 利用“加权重”功能让 AI 明白重点内容,还可使用预设词组、辅助功能如翻译、删除所有提示词、会员加速等。 在文本补全(Text completion)中: 遵循展示和告诉、提供高质量数据、检查设置这三个基本准则。 故障排除时,需明确生成的预期结果、提供足够示例、检查示例有无错误、正确使用温度和 top_p。 希望这些内容能帮助您更好地创建提示词。
2025-02-25
python程序员 学习AI
对于 Python 程序员学习 AI,以下是一些建议和基础内容: AI 背景知识: 基础理论:理解人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等基本概念。 概率论:了解基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:熟悉常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:了解聚类、降维等算法。 强化学习:知晓其基本概念。 评估和调优: 性能评估:掌握如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,还有相关的课程内容,如“和 Cursor AI 一起学 Python 编程”: 第一节:Python 是什么、Cursor 使用、notebook 远程编程。包括熟悉 Cursor 界面,安装和设置,指导下载安装 Cursor 编辑器,了解界面布局和基本功能,编写第一个程序,体验 AI 辅助功能,如代码自动补全和错误提示,使用 Bohrium 进行远程编程,注册和登录,在线编写和运行代码等。课程时间为 45 分钟,教学内容涵盖 Python 简介、发展历史和特点、在数据分析和人工智能领域的优势、在人文学科的应用、在语言教学和研究中的实际案例,以及对 Cursor 编程环境和 Bohrium 在线编程平台的介绍。
2025-02-26
如何利用ai提高学习能力
利用 AI 提高学习能力可以从以下方面入手: 英语学习: 1. 智能辅助工具:如 Grammarly 可进行英语写作和语法纠错,改进表达和写作能力。 2. 语音识别和发音练习:使用 Call Annie 进行口语练习和发音纠正,获取实时反馈和建议。 3. 自适应学习平台:Duolingo 能利用 AI 技术量身定制学习计划,提供个性化内容和练习。 4. 智能导师和对话机器人:ChatGPT 可用于英语会话练习和对话模拟,提高交流能力和语感。 数学学习: 1. 自适应学习系统:Khan Academy 结合 AI 技术提供个性化学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:Photomath 通过图像识别和数学推理技术提供问题解答和解题步骤。 3. 虚拟教学助手:Socratic 利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 交互式学习平台:参与 Wolfram Alpha 的学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 学习一门外语的通用方法: 1. 设定目标:明确学习目标和时间表,分阶段完成任务。 2. 多样化练习:结合听、说、读、写多种方式全面提升语言技能。 3. 模拟真实环境:多与母语者交流,或用 AI 对话助手模拟真实对话场景。 4. 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容巩固记忆。 在医疗保健领域,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并带着人类一同进步。AI 的特性使我们能将其一部分一部分地拆解研究,构建系统深入探索其内部工作机制,创造学习的飞轮,最终可能成为下一代专家(无论是人类还是 AI)的教师。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-26
我是一名AI工具使用小白,渴望快速掌握AI工具,在电子表格制作、ppt制作、公文写作、文案写作等方面提升应用能力,请问应该学习哪些入门课程。
以下是一些适合您入门学习的 AI 课程: 1. 工具入门篇(AI Tools): 数据工具多维表格小白之旅:适合 Excel 重度使用者、手动数据处理使用者、文件工作者。通过表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 文章链接: 视频链接: 2. 工具入门篇(AI Code): 编程工具Cursor 的小白试用反馈:适合 0 编程经验、觉得编程离我们很遥远的小白。通过 AI 工具对编程祛魅,降低技术壁垒。 文章链接: 3. 工具入门篇(AI Music): 音乐工具Suno 的小白探索笔记:适合 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 文章链接: 此外,还有以下相关内容供您参考: 1. 关于 AI 视频制作的交流与答疑: 视频流表格制作:在知识库的 AI 视频专栏中有相关教程和模板。 Copy UI 社区:微推有专门研究 Copy UI 的社区,相关内容有趣但本次未展开讲。 SD 类图片作用:国内大厂很卷,一般需求吉梦等产品可完成,特殊精细要求才用 SD,不了解可在微推加 AI 会话中找。 图片视角转移:使用 P 模型,上传图片并告知镜头移动方向和相关内容。 PNG 与背景融合:Recraft 产品目前不太擅长 PNG 与背景的特别好的融合,可通过合并方式处理。 保证文字不崩:使用吉梦的 2.1 模型效果较好。 新手 AI 视频制作:纯小白参与项目时,项目组会做好部分准备工作,上手难度不高,专注出图和出视频,用好相关技术。 关于利用 AI 工具创作北京宣传片相关问题的探讨。 AI 工具使用思路:对于如何利用 AI 工具创作,建议直接上手尝试,通过试错和与 AI 交流获取反馈,遇到具体问题再向社区请教。 素材处理方法:若有故宫相关照片素材,可采用导入参考图生图、让实拍素材动起来等方式,还可通过抠图、融图等操作将素材与虚拟背景融合。 创作需先构思:创作时不能仅考虑如何连接已有素材,而应先构思剧本和想要表达的内容,再合理运用素材。 2. 入门工具推荐: Kimi 智能助手:Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。不用科学🕸️、不用付费、支持实时联网。是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。能一次搜索几十个数据来源,无广告,能定向指定搜索源。 PC 端: 移动端 Android/ios: 您还可以通过「飞书」这款工具,浏览其社区的精选课程、先进客户实践。下载飞书:
2025-02-26
小白如何用ai开始学习图片设计
对于小白如何用 AI 开始学习图片设计,以下是一些建议: 1. 图像流搭建 创建第一个图像流:由于文本类型大语言模型无法直接生成图片,需要通过【技能】部分的图像流为文本大模型提供图像生成能力。为 bot 加入图像流时,要设定图像流名称以及描述(名称只能是英文)。 了解图像流节点的意义:图像流编辑界面左侧的工具栏集合了所有可能用到的功能,大致可分为智能处理工具(如“智能生成”“智能抠图”“画质提升”等)、基础编辑工具(如画板、裁剪、调整、添加文字等)和风格处理类工具(如风格迁移、背景替换等)。从基础编辑工具开始尝试,熟悉后再探索其他功能。右侧类似画布,可拖拽左侧工具或点击“+”拖放各种工具模块,工具之间可连接形成工作流程。 根据需求进行图像流设计:例如生成海报功能,在总结故事后,将完整的故事作为输入,对输入的故事进行一轮提示词优化,从自然语言转变为更符合文生图大模型的提示词,将优化后的提示词输入生图大模型,调整生图的基础风格和信息,输出最终的配图海报。 测试图像流。 2. 利用即梦 AI 生成海报 提示词:皮克斯风格,三宫格漫画:一只小狗,坐在办公桌前,文字“KPI 达标了吗?”。一只小狗,拿着一个写满计划的大本子,微微皱着眉头,文字“OKR 写好了吗?”。一只小狗坐在电脑前,文字“PPT 做好了吗?”。 实操教程: 打开即梦 AI:https://jimeng.jianying.com/aitool/home 。 点击 AI 作图中的图片生成。 填写绘图提示词,选择生图模型 2.1,点击立刻生成。 3. 进阶技巧和关键词 图片内容一般分为二维插画以及三维立体两种主要表现形式。 主题描述:可以描述场景、故事、元素、物体或人物细节、搭配等。描述场景中的人物时,最好独立描述,不要用一长串文字,否则 AI 可能识别不到。 设计风格:可找风格类关键词参考或垫图/喂图,让 AI 根据给出的图片风格结合主题描述生成图片。对于某些材质的描述,关键词的运用有很多门道,需要针对某一种风格单独进行“咒语测试”。
2025-02-26
我想学习制作机器人 机器狗等的原理及方法,给我一份理论指导和操作指南吧。
以下是关于制作机器人和机器狗的理论指导和操作指南: 具身智能是将机器学习算法适配至物理实体,与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过网页端、手机 APP 与用户交互,能接受多种模态指令实现复杂任务。具身智能体则将大模型嵌入物理实体,通过传感器与人类交流,强调与物理环境交互。人形机器人是具身智能的代表产品。 具身智能有三要素: 1. 本体:即硬件载体,不同环境有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人(机器狗)。 2. 智能:包括大模型、语音、图像、控制、导航等算法。 3. 环境:本体所交互的物理世界,本体、智能、环境高度耦合是高级智能基础。 具身智能还有四个模块:感知决策行动反馈。一个具身智能体的行动分为这四个步骤,分别由四个模块完成并形成闭环。在具身智能体与环境的交互中,智能算法通过本体传感器感知环境,做出决策操控本体执行动作任务影响环境,还可通过“交互学习”和拟人化思维学习适应环境实现智能增长。
2025-02-26
那普通人要研发机器狗从哪方面开始学习?
对于普通人想要研发机器狗,以下这些 AI 相关的基础知识是很有帮助的: 1. 了解 AI 的概念:AI 即人工智能,是让计算机模拟人类智能的技术。 2. 掌握机器学习:这是电脑找规律学习的方式,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:处理没有标签的数据,让算法自主发现规律,例如聚类任务,像将一堆新闻文章按主题或内容特征分组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:这是一种参照人脑构建神经网络和神经元的方法,由于有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 4. 熟悉生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. 了解 LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解,像上下文理解、情感分析、文本分类等,但不太擅长文本生成。 6. 关注技术里程碑:例如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 这些基础知识能为您研发机器狗提供理论支持和技术思路。
2025-02-26