大模型的发展历史如下:
2023 年是大模型澎湃发展的一年,从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,到 23 年末多模态大模型的全面爆发,再到刚刚面世的 Sora 再次震惊世界。随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。
这一切的起源是2017年发布的Attention Is All You Need([4])论文,之后基于大量语料的预训练模型百花齐放,比如:BERT(Bidirectional Encoder Representations from Transformers):Google在2018年提出,创新性的双向预训练并行获取上下文语义信息,以及掩码语言建模(MLM)让模型更好地推断语义信息。它开创了预训练语言表示范式,对自然语言处理产生了深远影响。参数规模:110M到340MGPT(Generative Pre-trained Transformer):OpenAI在2018年提出,开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号。它展示了通过无监督大规模预训练获得的语言生成能力,对研究与应用都带来重大影响。参数规模:1750亿Large LAnguage Model Approach(LLAMA):Meta在2021年提出,首个开源模型。为构建更大规模、更通用的语言模型提供了系统化的方法与工具。参数规模:十亿到千亿
2023年是大模型澎湃发展的一年:从22年11月ChatGPT的惊艳面世,到23年3月GPT4作为“与AGI(通用人工智能)的第一次接触”,到23年末多模态大模型的全面爆发,再到刚刚面世的Sora再次震惊世界。大模型给了世界太多的惊喜、惊讶、迷茫、甚至恐惧。有人问我:“AGI的出现可以和人类哪次发现/发明相比?”“大概是人类开始使用‘火’的时刻。万有引力、iPhone什么的都不值一提。”就像我在去年4月份文章中写的——在AGI和任何新事物的出现的时候:我们总是倾向于高估它的短期,但却低估它的长期。(前文[《AGI|高估的短期与低估的长期》](http://mp.weixin.qq.com/s?__biz=MzIwMTE0MDIwMA==&mid=2247484405&idx=1&sn=5e5c3104511adedad247d23149b14a80&chksm=96f33172a184b8647e786bf57685eb8e085e0f3f1e91aa3be797b49708b82135f41088959e2b&scene=21#wechat_redirect))目前正是这个大趋势的真实写照:
大家下午好!很荣幸能够作为本次活动的分享嘉宾,我是甲木,LangGPT团队成员,很高兴给大家带来《大模型商业化落地现状与思考》的分享。本次分享的内容主要分为五个模块,从大模型的背景入手、深入探讨其在商业领域的现状和应用。接着,我们将分析在商业化过程中所遇到的挑战,并分享一些实战经验,最后将展望AI作为通用技术能够发挥生产力效能所要经历的几个阶段。[heading2]一、大模型的背景和趋势[content]首先,我们先来看大模型的背景和发展趋势。关于AI的演进历程,很多媒体包括各类研究资料都已经做过详细的介绍,相信今天在座的各位对AI的基本情况都已有所了解,因此我不会过多赘述AI的演进历程。(有兴趣的小伙伴可以多从公开资料中查找一下~)我们的重点将放在大模型当前的应用能力上,随着大模型技术的愈发成熟,规模增大,大模型为AI Agent()提供强大能力。Agent+大模型将有望构建具备自主思考、决策和执行能力的智能体,进一步提升大模型的应用能力,广泛应用于多个行业和领域。