Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

文生图历史

Answer

文生图技术的发展历史如下:

  1. 早期发展(2014 年以前):最初的文生图尝试集中在将简单文本描述转化为图像。这些早期方法依赖于基本的图像处理技术和简单的模型,效果有限,生成的图像质量通常不高。
  2. 深度学习的崛起(2014 年 - 2018 年):随着深度学习的发展,尤其是卷积神经网络(CNN)的成功应用,文生图模型开始采用神经网络来改进图像生成的质量和多样性。在这一时期,如生成对抗网络(GAN)及其变体层出不穷,开始被用于文生图任务,展示了生成更逼真图像的潜力。
  3. 引入 Transformer(2019 年 - 2021 年):Transformer 架构原本在自然语言处理(NLP)领域取得巨大成功,开始被应用于文生图模型,提高模型处理复杂文本和生成高质量图像的能力。如 OpenAI 的 DALL-E 模型,采用了 Transformer 结构来生成与文本描述匹配的图像,成为这一时期的标志性进展。与此同时,以 DDPM 为代表的工作,为 Diffusion Model 奠定了理论基础,众多基于 Transformer 和 Diffusion Model 的研究成果从 2021 下半年开始如雨后春笋般涌现。
  4. LLM 与文生图模型的结合(2022 年 - 2023 年):大型语言模型(LLM)如 GPT-3 开始与文生图模型结合,利用 LLM 强大的语言理解能力来提升图像生成的相关性和创造性。

文生图模型的演进历史整体上反映了计算机视觉(CV)和自然语言处理(NLP)的融合与发展。从早期的基础尝试到结合了深度学习、Transformer 和大型语言模型的先进方法,文生图模型在技术上实现了巨大的飞跃,不断延伸 AI 在艺术和创造力方面的边界。我们预计,未来的文生图模型将进一步提升在复杂文本理解和高质量图像生成方面的能力,为多模态交互和创意表达提供更加强大的工具。

此外,在星流一站式 AI 设计工具中,生图历史按照每日进行记录。点击日期对应的区域可以查看当日生成的图像,可通过输入提示词搜索相关的图像。点击单个图像可以查看具体的生图信息与参数一键导入使用。在生图历史中收藏的图像,会收集在特定区域。拖动图像可以直接导入无限画布。

Content generated by AI large model, please carefully verify (powered by aily)

References

质朴发言:一文纵览文生图/文生视频技术发展路径与应用场景|Z 研究第 1 期

主流文生图技术的演进路径1、早期发展(2014年以前)最初的文生图尝试集中在将简单文本描述转化为图像。这些早期方法依赖于基本的图像处理技术和简单的模型,效果有限,生成的图像质量通常不高。2、深度学习的崛起(2014年-2018年)随着深度学习的发展,尤其是卷积神经网络(CNN)的成功应用,文生图模型开始采用神经网络来改进图像生成的质量和多样性。在这一时期,如GAN(生成对抗网络)及其变体层出不穷,开始被用于文生图任务,展示了生成更逼真图像的潜力。3、引入Transformer(2019年-2021年)Transformer架构,原本在NLP领域取得巨大成功,开始被应用于文生图模型,提高模型处理复杂文本和生成高质量图像的能力。如OpenAI的DALL-E模型,采用了Transformer结构来生成与文本描述匹配的图像,成为这一时期的标志性进展。与此同时,以DDPM为代表的工作,为Diffusion Model奠定了理论基础,众多基于Transformer和Diffusion Model的研究成果从2021下半年开始如雨后春笋般涌现。4、LLM与文生图模型的结合(2022年-2023年)大型语言模型(LLM)如GPT-3开始与文生图模型结合,利用LLM强大的语言理解能力来提升图像生成的相关性和创造性。

质朴发言:一文纵览文生图/文生视频技术发展路径与应用场景|Z 研究第 1 期

文生图模型的演进历史整体上反映了CV和NLP的融合与发展。从早期的基础尝试到结合了深度学习、Transformer和大型语言模型的先进方法,文生图模型在技术上实现了巨大的飞跃,不断延伸AI在艺术和创造力方面的边界。我们预计,未来的文生图模型将进一步提升在复杂文本理解和高质量图像生成方面的能力,为多模态交互和创意表达提供更加强大的工具。

星流一站式 AI 设计工具

1.生图历史:按照每日进行记录1.1.点击日期对应的区域可以查看当日生成的图像,可通过输入提示词搜索相关的图像1.1.点击单个图像可以查看具体的生图信息与参数一键导入使用2.收藏:在生图历史中收藏的图像,会收集在这1.拖动图像可以直接导入无限画布

Others are asking
推荐几个文生图的工具
以下是一些文生图的工具推荐: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和用户友好的界面设计而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。
2025-02-23
文生视频
以下是关于文生视频的相关信息: 文字生成视频的 AI 产品有: 1. Pika:擅长动画制作,支持视频编辑。 2. SVD:可作为 Stable Diffusion 的插件,在图片基础上生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多的文生视频网站可查看:https://www.waytoagi.com/category/38 (内容由 AI 大模型生成,请仔细甄别) PixVerse V2 的使用教程: 单个视频生成(8s):8s 的视频生成需要花费 30 Credits,5s 的视频生成需要花费 15 Credits,且只能使用 PixVerse V2 模型,生成时请注意模型选择,目前仅支持 16:9 画面比例的视频生成。 文生视频:点击“Text to Video”,在“Model”选择“PixVerse V2”,视频时长。PixVerse V2 支持多风格的视频生成,可在提示词中加入“Anime”“Realistic”等词语。 图生视频:点击“Image to Video”,在“Model”选择“PixVerse V2”,图生视频暂不支持“Magic Brush”“Camera Motion”“Motion Strength”等功能,如需使用上述功能,请将模型切换至“PixVerse V1”。 Sora 的模型推理策略: 官方展示 Sora 的应用包括文生视频、图生视频、视频反推、视频编辑、视频融合等。一些有意思的做法如: 1. 文生视频:喂入 DiT 的是文本 embedding+全噪声 patch。 2. 视频编辑:类似 SDEdit 的做法,在视频上加点噪声(不要搞成全是噪声),然后拿去逐步去噪。 3. 图生视频、视频反推、视频融合:喂入 DiT 的是文本 embedding(可选)+特定帧用给定图片的 embedding+其他帧用全噪声 patch。
2025-02-22
文生图
以下是关于文生图的详细教程: 定主题:明确您需要生成的图片的主题、风格和要表达的信息。 选择基础模型 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型,如麦橘写实、麦橘男团、墨幽人造人等。 选择 lora:基于生成内容寻找重叠的 lora,以控制图片效果和质量,可参考广场上优秀帖子中使用的 lora。 ControlNet:用于控制图片中的特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能。 局部重绘:下篇再教。 设置 VAE:无脑选择 840000 即可。 Prompt 提示词:用英文书写想要 AI 生成的内容,使用单词和短语组合,用英文半角逗号隔开,无需考虑语法和长句。 负向提示词 Negative Prompt:同样用英文书写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开,无需考虑语法。 采样算法:一般选择 DPM++2M Karras 较多,也可参考 checkpoint 详情页中模型作者推荐的采样器。 采样次数:选择 DPM++2M Karras 后,采样次数通常在 30 40 之间,过多意义不大且慢,过少出图效果差。 尺寸:根据个人喜好和需求选择。 在不同的工具中,如 Tusiart 和 Liblibai,操作流程大致相同,但也有一些细微差别: Tusiart: 无 CLIP 跳过层设置。 Liblibai: CLIP 跳过层设为 2。 生成批次默认 1 批。
2025-02-20
推荐文生图的工具,我需要生成一个logo
以下为您推荐一些文生图的工具及相关操作流程: Tusiart 1. 定主题:明确您需要生成的图片的主题、风格和要表达的信息。 2. 选择基础模型 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,以控制图片效果和质量。 4. ControlNet:可用于控制图片中特定的图像,如人物姿态、生成特定文字、艺术化二维码等,属于高阶技能。 5. 局部重绘:下篇再教。 6. 设置 VAE:选择 840000 即可。 7. Prompt 提示词:用英文写想要 AI 生成的内容,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 8. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开,不用管语法。 9. 采样算法:一般选择 DPM++2M Karras,也可参考模型作者推荐的采样器。 10. 采样次数:选择 DPM++2M Karras 时,采样次数在 30 40 之间。 11. 尺寸:根据个人喜好和需求选择。 SD(Stable Diffusion) 1. 制作思路 将中文字做成白底黑字,存成图片样式。 使用文生图的方式,使用大模型真实系,如 realisticVisionV20_v20.safetensorsControlNet 预设置。 输入关键词,如奶油的英文单词“Cream+Cake”(加强质感),反关键词“Easynegative”(负能量),反复刷机,得到满意的效果。 同理可输出 C4D 模型,可自由贴图材质效果,如 3d,blender,oc rendering。 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 打开高清修复,分辨率联系 1024 以上,步数:29 60。 Liblibai 1. 定主题:明确生成图片的主题、风格和信息。 2. 选择 Checkpoint:根据主题选择贴近的模型,如麦橘、墨幽的系列模型。 3. 选择 lora:寻找与生成内容重叠的 lora,控制图片效果和质量。 4. 设置 VAE:选择 840000 那一串。 5. CLIP 跳过层:设成 2。 6. Prompt 提示词:用英文写想要 AI 生成的内容,单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 7. 负向提示词 Negative Prompt:用英文写想要 AI 避免产生的内容,单词和短语组合,用英文半角逗号隔开,不用管语法。 8. 采样方法:一般选择 DPM++2M Karras,参考模型作者推荐的采样器更有保障。 9. 迭代步数:选择 DPM++2M Karras 时,迭代步数在 30 40 之间。 10. 尺寸:根据个人喜好和需求选择。 11. 生成批次:默认 1 批。 希望这些信息对您有所帮助,祝您生成满意的 logo!
2025-02-20
免费好用的文生视频软件 做小说漫画推文
以下是一些免费好用的文生视频软件,可用于将小说做成漫画推文视频: 1. Stable Diffusion(SD):这是一种 AI 图像生成模型,能够基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个适用于创建小说中场景和角色图像的 AI 图像生成工具。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可以生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 将小说转换成 AI 视频通常包括文本分析、角色与场景生成、视频编辑与合成等多个步骤。您可以根据具体需求选择合适的工具来完成您的小说漫画推文视频制作。
2025-02-20
免费的文生视频软件 做小说推文
以下是一些免费的可用于将小说做成视频的文生视频软件及相关网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):另一个 AI 图像生成工具,适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 将小说转换成 AI 视频通常包括文本分析、角色与场景生成、视频编辑与合成等多个步骤。您可以根据自己的需求选择合适的工具来进行操作。
2025-02-20
大模型的发展历史
大模型的发展历史如下: 2017 年,发布了 Attention Is All You Need 论文,开启了大模型发展的序幕。 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),通过双向预训练并行获取上下文语义信息和掩码语言建模,开创了预训练语言表示范式,参数规模在 110M 到 340M 之间。 2018 年,OpenAI 提出 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号的方式,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了系统化的方法与工具,参数规模在十亿到千亿之间。 2023 年是大模型澎湃发展的一年,从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,到 23 年末多模态大模型的全面爆发,再到刚刚面世的 Sora 再次震惊世界。随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。
2025-02-24
AI是什么,AI的历史
人工智能(Artificial Intelligence)是一门研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情的科学。 其历史始于二十世纪中叶,最初符号推理流行,带来了专家系统等重要进展,但因从专家提取知识并表现和保持知识库准确性复杂且成本高,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中,“人工智能”常被用作“神经网络”的同义词。 例如在创建国际象棋计算机对弈程序时,方法不断变化。最初,查尔斯·巴贝奇发明了计算机,用于按照明确程序运算,现代计算机虽先进但仍遵循相同受控计算理念。但像“根据照片判断一个人的年龄”这类任务无法明确编程,因为我们不知大脑完成此任务的具体步骤,而这类任务正是人工智能感兴趣的。
2025-02-24
我是高中历史老师,我想知道用什么AI模型可以“将自己的PPT变成一篇论文”
目前在将 PPT 转换为论文方面,GPT 模型可能会有所帮助。例如,在“教育:一个历史老师用 GPT 给学生讲课”的案例中,学生利用 GPT 相关功能进行模拟体验,并根据要求撰写论文,包括分析模拟的准确性、进行事实核查等。 另外,Claude 模型也能在相关工作中发挥作用。比如可以帮助快速寻找符合条件的论文、提取精炼论文中的信息,甚至找到适合的 PPT 制作工具并指导使用。 此外,一些神经网络大模型通过预测下一个字的方式生成文字,这种方式具有一定的创意性,且可拓展到图像、声音等领域。但需要注意的是,AI 的预测不一定保证完全正确。
2025-02-22
人工智能发展历史
人工智能的发展历史如下: 起源于二十世纪中叶,最初符号推理流行,带来了专家系统等重要进展,但因方法局限性和成本问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源变便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。 1956 年,在达特茅斯学院召开的会议上,人工智能一词被正式提出并确立为一门学科。此后近 70 年,AI 发展起起落落。 AI 技术发展历程包括:早期阶段(1950s 1960s)的专家系统、博弈论、机器学习初步理论;知识驱动时期(1970s 1980s)的专家系统、知识表示、自动推理;统计学习时期(1990s 2000s)的机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期(2010s 至今)的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括:大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2025-02-13
用AI处理销售订单历史数据需要什么前提条件
用 AI 处理销售订单历史数据通常需要以下前提条件: 1. 数据质量:销售订单历史数据应准确、完整、一致,且格式规范,便于 AI 系统进行处理和分析。 2. 数据规模:需要有足够数量的销售订单数据,以确保 AI 模型能够从中学习到有效的模式和规律。 3. 数据标准化:数据应遵循一定的标准和规范,例如统一的字段定义、编码方式等。 4. 明确的业务目标:清楚地定义使用 AI 处理数据想要达到的具体目标,例如预测销售趋势、优化库存管理等。 5. 技术基础设施:具备支持 AI 处理的硬件和软件环境,包括足够的计算资源、合适的数据库和数据存储系统。 6. 数据安全和合规:确保数据的处理和使用符合相关法律法规,保护客户隐私和企业数据安全。 7. 专业的技术团队:包括数据科学家、工程师等,能够进行数据预处理、模型训练和优化、系统部署和维护。 8. 对业务的深入理解:了解销售业务流程和特点,以便将 AI 技术与实际业务需求相结合。
2025-02-11
我想做短视频,用英语讲历史,场景全部用AI完成,帮我推荐一下工具
以下是为您推荐的用 AI 完成英语讲历史短视频的工具和制作流程: 制作流程: 1. 内容分析:使用 AI 工具(如 ChatGPT)分析历史内容,提取关键场景、角色和情节。 2. 生成描述:根据历史内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将英语讲解文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 工具推荐: 1. 图像生成工具:Stable Diffusion、Midjourney。 2. 视频编辑软件:Clipfly、VEED.IO。 3. AI 配音工具:Adobe Firefly。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-09