Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

rag 模型微调

Answer

RAG(检索增强生成)模型微调相关知识如下:

  • 通用语言模型通过微调可完成常见任务,如分析情绪和识别命名实体。对于更复杂和知识密集型任务,可基于语言模型构建系统并访问外部知识源。Meta AI 引入的 RAG 方法把信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。
  • RAG 接受输入并检索相关支撑文档,给出来源,与输入原始提示词组合后送给文本生成器得到输出,能适应事实变化,获取最新信息并生成可靠输出。
  • 通用的 RAG 微调方法如 Lewis 等人(2021)提出的,使用预训练的 seq2seq 作为参数记忆,用维基百科的密集向量索引作为非参数记忆。
  • 在微调阶段:
    • 检索器微调的常用方法包括直接微调、添加可训练的 Adapter 模块、LSR、LLM Reward RL。
    • 生成器微调的主要方法包括直接微调、GPT-4 蒸馏、基于反馈的强化学习。
    • 协同微调是在 RAG 系统中同时对检索器和生成器进行微调,如 RA-DIT 分别对 LLM 和检索器进行微调。

同时,RAG 提高了嵌入模型质量,传统 RAG 解决方案中的问题也得到解决。

Content generated by AI large model, please carefully verify (powered by aily)

References

检索增强生成 (RAG)

通用语言模型通过微调就可以完成几类常见任务,比如分析情绪和识别命名实体。这些任务不需要额外的背景知识就可以完成。要完成更复杂和知识密集型的任务,可以基于语言模型构建一个系统,访问外部知识源来做到。这样的实现与事实更加一性,生成的答案更可靠,还有助于缓解“幻觉”问题。Meta AI的研究人员引入了一种叫做[检索增强生成(Retrieval Augmented Generation,RAG)(opens in a new tab)](https://ai.facebook.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/)的方法来完成这类知识密集型的任务。RAG把一个信息检索组件和文本生成模型结合在一起。RAG可以微调,其内部知识的修改方式很高效,不需要对整个模型进行重新训练。RAG会接受输入并检索出一组相关/支撑的文档,并给出文档的来源(例如维基百科)。这些文档作为上下文和输入的原始提示词组合,送给文本生成器得到最终的输出。这样RAG更加适应事实会随时间变化的情况。这非常有用,因为LLM的参数化知识是静态的。RAG让语言模型不用重新训练就能够获取最新的信息,基于检索生成产生可靠的输出。Lewis等人(2021)提出一个通用的RAG微调方法。这种方法使用预训练的seq2seq作为参数记忆,用维基百科的密集向量索引作为非参数记忆(使通过神经网络预训练的检索器访问)。这种方法工作原理概况如下:图片援引自:[Lewis et el.(2021)(opens in a new tab)](https://arxiv.org/pdf/2005.11401.pdf)

2024人工智能报告|一文迅速了解今年的AI界都发生了什么?

合成数据是Phi family的主要训练数据来源,Anthropic在培训Claude 3时使用合成数据,来代表可能在训练数据中缺失的场景。Hugging Face使用Mixtral-8x7B Instruct生成超过3000万份文件和250亿个合成教科书、博客文章和故事,以重新创建Phi-1.5训练数据集,他们将其称为Cosmopedia。为了使合成数据更容易,NVIDIA发布了Nemotron-4-340B家族,这是一个专为合成数据生成设计的模型套件,可通过许可协议获得。另外Meta的Llama也可以用于合成数据生成。通过直接从对齐的LLM中提取它,也有可能创建合成高质量指令数据。使用像Magpie这样的技术,有时可以将模型进行微调,以达到与Llama-3-8B-Instruct相当的表现。RAG提高嵌入模型质量虽然检索和嵌入不是新的,但对增强生成检索(RAG)的兴趣增长促使了嵌入模型质量的提高。在常规的LLMs中,证明有效的剧本是大规模性能改进的关键(GritLM有约47亿个参数,而之前的嵌入模型只有1.1亿个)。同样,大规模语料库的使用和改进过滤方法导致了小型模型的巨大改善。同时,ColPali是一种利用文档的视觉结构而不是文本嵌入来改进检索的视图-语言嵌入模型。检索模型是少数几个开放模型通常优于大型实验室专有模型的子领域之一。在MTEB检索排行榜上,OpenAI的嵌入模型排名第29位,而NVIDIA的开放NV-Embed-v2排名第一。传统RAG解决方案中的问题得到解决

大模型RAG问答行业最佳案例及微调、推理双阶段实现模式:基于模块化(Modular)RAG自定义RAG Flow

在RAG流程中,对检索器的微调,常用方法包括:直接微调。根据自有的领域数据或开源的检索数据,对稠密检索器进行微调添加可训练的Adapter模块。API-base的编码模型,无法直接微调。添加Adapter模块,可以让Embedding更好的表示私有的数据。另一方面通过Adapter模块,可以更好地对齐下游任务LSR(LM-supervised Retrieval)根据LLM最后生成的结果去微调检索器LLM Reward RL。仍然是以LLM输出结果作为监督信号。通过强化学习让Retriever去对齐生成器。[heading3]2、生成器微调[content]对生成器的微调,主要的方法包括:直接微调。通过外部数据集微调可以为生成器补充额外的知识。定制化模型输入和输出GPT-4蒸馏。使用开源模型时,一个简单且有效的方法就是从利用GPT-4批量构建微调数据,来提高开源模型的能力基于反馈的强化学习(RLHF)。根据最终的生成回答的反馈进行强化学习,除了使用人类评价,也可以使用GPT-4作为评判法官。[heading3]3、协同微调[content]在RAG系统中同时对检索器和生成器进行微调,这也是Modular RAG的特点之一。需要注意是,系统微调强调的是让检索器和生成器之间的配合。分别对检索器和生成器微调严格上属于前两者的组合,并不是属于协同。一个典型的实现如RA-DIT。分别对LLM和检索器进行微调。LM-ft组件通过更新LLM来最大化给定检索增强指令情况下正确答案的可能性。R-ft组件通过更新检索器来最小化检索器分数分布与LLM偏好之间的KL散度。

Others are asking
RAG
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来实现。Meta AI 研究人员引入 RAG 来完成这类任务,它将信息检索组件和文本生成模型结合,可微调且内部知识修改高效,无需重新训练整个模型。 RAG 接受输入后会检索相关支撑文档并给出来源,与原始提示词组合后送给文本生成器得到最终输出,能适应事实随时间变化的情况,让语言模型获取最新信息并生成可靠输出。 LLM 存在一些缺点,如无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有数据库存储和更新稳定、数据更新敏捷且可解释、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等优点。 在 RAG 系统开发中存在 12 大痛点及相应的解决方案。
2025-02-24
siliconflow可以搭建rag知识库吗
SiliconFlow 本身并不能直接搭建 RAG 知识库。但一般搭建 RAG 知识库的步骤通常包括以下方面: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建知识库: 访问相关平台的知识库索引,如阿里云百炼,单击创建知识库。在创建知识库界面填入知识库名称与描述。 选择文件,类目位置单击默认类目,文件名称选择准备好的数据文件。 进行数据处理,使用默认的智能切分或根据需求选择合适的处理方式。 3. 配置相关设置:如在 Dify 中提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式,可根据实际需求选择合适的索引方式。 4. 集成至应用:将创建好的数据集集成到相应的应用中,作为应用的上下文知识库使用,并在应用设置中配置数据集的使用方式。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新的内容以保持时效性。 需要注意的是,不同的平台和工具在具体操作上可能会有所差异。
2025-02-24
搭建rag
搭建 RAG 主要包括以下步骤: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 url 提取内容,若需接收多个 url 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终合并成列表返回用于后续处理。 3. 为文档内容生成向量:使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。 4. 了解 RAG 概念:大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,通过检索增强生成 RAG。RAG 应用可抽象为 5 个过程,包括文档加载(从多种来源加载)、文本分割(切成指定大小的块)、存储(嵌入转换为向量形式并存入向量数据库)、检索(通过检索算法找到相似嵌入片)、输出(问题和检索出的嵌入片提交给 LLM 生成答案)。 5. LangChain 和 RAG 的结合:LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具构建 RAG 应用。包括数据加载器(将数据转换为文档对象)、文本分割器(分割文档)、文本嵌入器(将文本转换为嵌入)、向量存储器(存储和查询嵌入)、检索器(根据文本查询返回相关文档对象)、聊天模型(生成输出消息)。使用 LangChain 构建 RAG 应用的一般流程如下。
2025-02-24
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化,是因为大模型存在一些缺点,如: 1. 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 便于管控用户隐私数据,且可控、稳定、准确。 5. 可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把文档切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。
2025-02-24
关于RAG和知识库的应用
RAG(检索增强生成,Retrieval Augmented Generation)是一种利用大模型能力搭建知识库的技术应用。当需要依靠不包含在大模型训练集中的数据时,可通过该技术实现。 RAG 的应用可抽象为以下 5 个过程: 1. 文档加载(Document Loading):从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储(Storage):涉及两个环节,一是将切分好的文档块进行嵌入(Embedding)转换成向量的形式,二是将 Embedding 后的向量数据存储到向量数据库。 4. 检索(Retrieval):数据进入向量数据库后,通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更加合理的答案。 离线数据处理的目的是构建知识库这本“活字典”,知识会按照某种格式及排列方式存储在其中等待使用。在线检索则是利用知识库和大模型进行查询的过程。以构建智能问答客服为例,可了解 RAG 所有流程中的 What 与 Why。 相关资源: 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-02-24
ragflow
RAGflow 能力拆解: 文档拆分方式: 通用模式:主要参考每个块的 token 数量,同时考虑语意完整性,切分段落点通常在句号或叹号等完整句子结束处。拆分结果和 langchain 的拆分大同小异。 Q&A 问答对:将左边内容加上“问题:”,右边内容加上“回答:”,数据清洗工作量大。 简历:解析容易失败,需要匹配关键词才能解析,建议官方给出简历模板。 手册:一整段文字提取,分割处在页面分页、段落分段处,块大小通常较大。 表格:拆分后每一行被当成一个块,第一行的表头插入到每一块头部。对没有特殊字符的表格信息处理较好,对图片内的公式做了 OCR 检测。 数据清洗:RAGflow 提供分段后的数据处理,可自行添加、修改数据或为数据加标签。测试发现,RAGflow 召回会同时使用向量相似度和关键词相似度并加权得到混合相似度,关键词相似度不仅匹配文本段内容还匹配关键词标签内容,单个实体在关键词中出现即为 100%。需要在检索获得的内容块中同时包含“问题信息”和“答案信息”,大模型才能解答。RAGflow 没提供对外接口,做聊天或其他应用时不方便。 大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式:基于模块化RAG 自定义 RAG Flow: 原创刘焕勇老刘说 NLP 于 2024 年 1 月 29 日 18:31 发表于北京。在上一篇文章中介绍了模块化RAG 的相关工作,重点论述了每个模块中的构成细节。本文将从三个方面深入探讨 RAG Flow 的设计思路,分别是典型的 RAG Flow 模式、特定的 RAG 流实现以及最佳的行业案例。在典型的 RAG Flow 模式方面,将介绍 3 种微调阶段模式和 4 种推理阶段模式供大家参考思考。
2025-02-22
模型微调
以下是关于模型微调的相关信息: 微调步骤: 1. 微调脚本: LoRA 微调: 脚本见: 具体实现代码见: 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见: 具体实现代码见: 2. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需要和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需要修改其中的模型名称或者保存路径即可。 微调介绍: 微调可让您从 API 提供的模型中获得更多收益,包括比即时设计更高质量的结果、能够训练比提示中更多的例子、由于更短的提示而节省了 Token、更低的延迟请求。GPT3 已经在来自开放互联网的大量文本上进行了预训练。微调通过训练比提示中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示中提供示例。这样可以节省成本并实现更低延迟的请求。在高层次上,微调涉及准备和上传训练数据、训练新的微调模型、使用您的微调模型等步骤。 可微调的模型: 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。 OpenAI 的模型概述: OpenAI API 由具有不同功能和价位的多种模型提供支持。您还可以通过微调针对您的特定用例对我们的原始基本模型进行有限的定制。包括 GPT4 Beta、GPT3.5、DALL·E Beta、Whisper Beta、Embeddings、Codex Limited Beta、Moderation、GPT3 等模型。
2025-02-24
本地部署Deepseek如何微调呢
对于本地部署 DeepSeek 的微调,以下是一些相关信息: 对于企业级部署,首先要根据实际业务场景评估所需部署的模型规格以及所需的服务器资源,预估完服务器资源后,还需评估业务场景是否需要二次开发模型。如果只是简单微调模型就能符合业务需求,使用 Ollama、LM Studio、GTP4All 或许可以满足诉求;若需要定制化开发模型,则要考虑进行模型的原生部署。 关于微调的方法,LoRA/QLoRA 论文指出其是对模型进行廉价微调的可行方法,如 。 另外,DeepSeek 模型如 JanusPro 有特别的训练法,先进行预训练,然后老师手把手教(监督微调),最后用“精华浓缩法”保存最好的学习成果。
2025-02-23
如何在本地服务器上微调LLM
在本地服务器上微调 LLM 可以参考以下内容: 1. 提示词工程: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,其中 INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例。tools_instructions 可通过输入不同工具动态调整,让 LLM 得知可用工具及使用方法。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,提高成功率。通过识别 LLM 返回的调用工具字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受相关角色的 LLM 接口,可改为回传给 user 角色。 2. 微调方法: 传统微调:采用在通用数据集上预训练的模型,复制模型后在新的特定领域数据集上重新训练,但大型语言模型微调面临训练时间长、计算成本高等挑战。 参数有效调优:这是一种创新的调优方法,旨在通过仅训练一部分参数来减少微调 LLM 的挑战,参数可以是现有模型参数的子集或全新的参数。 为使微调达到最佳效果,应从明确目标和高质量数据集开始,使用体现所需输出类型的数据,进行迭代测试,从小的渐进变化开始并评估结果。 对于 OpenAI 的模型,微调包括使用其提供的 API 在数据集上进一步训练,需调整超参数并监控性能。对于开源 LLM,微调可能需要更多实践工作,包括设置训练环境、管理数据流及调整模型架构。 对于需要快速迭代新用例的场景,微调作用较小。要实现微调功能,需创建大型训练数据集,整理成适当格式,启动训练任务并评估性能。建立模型改进工作流程,监控性能变化,依据反馈改进模型,记录生成的模型及评分指标,许多 LLMOps 平台能自动收集和显示最佳数据,方便微调。
2025-02-21
模型微调是怎么实现的
模型微调是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练的模型,已学会一些基本模式和结构,然后在特定任务数据上继续训练以适应新任务。 以下是关于模型微调的具体实现步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型: LoRA 微调: 脚本见:。 具体实现代码见。 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见:。 具体实现代码见。 3. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需修改其中的模型名称或保存路径。 微调的优点包括: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。 以下是两个帮助理解微调概念的例子: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义,再收集标注过的电影评论(积极或消极)继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理,再收集标注过的猫和狗的图片继续训练模型,使其学会区分猫和狗。
2025-02-19
RAG和微调是什么,分别详细讲讲一下它是怎么实现的
RAG(RetrievalAugmented Generation,检索增强生成)是解决大语言模型在实际应用中存在的一些问题的有效方案。 大语言模型存在以下问题: 1. 知识的局限性:模型自身的知识完全源于训练数据,对于实时性、非公开或离线的数据无法获取。 2. 幻觉问题:基于数学概率的文字预测导致可能提供虚假、过时或通用的信息。 3. 数据安全性:企业担心私域数据上传第三方平台训练导致泄露。 RAG 可以让大语言模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解模型如何生成最终结果。它类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新的语言、格式或样式。 微调类似于让学生通过广泛学习内化知识。这种方法在模型需要复制特定结构、样式或格式时非常有用。微调可以提高非微调模型的性能,使交互更有效率,特别适合强调基础模型中的现有知识,修改或自定义模型的输出,并向模型提供复杂的指令。然而,微调不适合合并模型中的新知识或需要新用例的快速迭代。 参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2025-02-19
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
AI编程大模型排行榜
以下是一些关于 AI 编程大模型的相关信息: 1. ShowMeAI 周刊 No.13 中提到的相关内容: Learn About:继 NotebookLM 之后又一个 AI Native 产品,谷歌真正的 AI Native Education 尝试。 ima.copilot V.S. 秘塔 V.S. 天工:国区 Perplexity 青出于蓝而胜于蓝,秘塔一骑绝尘。 Markdown:技术圈(最)常用的文本编辑语言,一种「四通八达」的中转格式,并附上好用的转换工具。 把 17 岁高中生涂津豪的 Thinking Claude 提示词,设置在 Cursor 里。 两篇优秀的 AI 编程教程:跟着资深工程师&全栈开发者,挖掘 LLM 编程能力的极限。 恭喜阶跃星辰!step2 在 LiveBench 榜单杀进前 5,斩获国产大模型第 1 名,并顺带聊聊榜单和测评的「内幕」。 举个栗子:当把大模型「开源」用「做饭吃饭」来解释,一起都豁然开朗起来,甚至还玩起了谐音梗。 很有共鸣:为什么大部分人用不起来 AI?可能还没体验到效率飞升的 Aha Moment。 集体讨论:大家都是怎么快速处理长视频、长音频、长文本材料的?都有哪些工作流和工具的配合应用? 2. Trae:字节开发的一款和 AI 深度集成的 AI 编程工具,可让用户限时免费无限量使用地球上最强大的编程大模型 Claude Sonnet,全自动化进行 AI 编程。包含完整的 IDE 功能,如代码编写、项目管理、插件管理、源代码管理等,提供智能问答、实时代码建议、代码片段生成、从 0 到 1 开发项目。 3. 8 月正式上线的国内大模型: 北京的五家企业机构:百度(文心一言)https://wenxin.baidu.com ;抖音(云雀大模型)https://www.doubao.com ;智谱 AI(GLM 大模型)https://chatglm.cn ;中科院(紫东太初大模型)https://xihe.mindspore.cn ;百川智能(百川大模型)https://www.baichuanai.com/ 。 上海的三家企业机构:商汤(日日新大模型)https://www.sensetime.com/ ;MiniMax(ABAB 大模型)https://api.minimax.chat ;上海人工智能实验室(书生通用大模型)https://internai.org.cn 。 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。
2025-02-24
如何正确的向AI大模型提问
向 AI 大模型正确提问可以参考以下方法: 1. 对于利用 Embedding 技术增强 GPT 能力的过程,OpenAI 发布的相关文档指出,可通过两步搜索来实现。具体步骤包括: 准备搜索数据(仅一次): 搜集数据:获取需要的数据,包括公开数据或者私有的数据。 切块:将文档切分成短小的部分。 嵌入:通过 OpenAI API 对切块的数据进行 Embedding 结果。 存储:存储 Embedding 结果,对于大型数据集的 Embedding 结果,可以使用向量数据库进行保存。 搜索(每次查询一次):给定用户问题,从 OpenAI API 生成查询的 embeddings,使用 embeddings 按照与查询相关性对文本部分进行排序,推荐使用余弦相似性作为距离函数。 提问(每次查询一次):将问题和最相关的部分插入到发送给 GPT 的消息中返回 GPT 的答案。 2. Embedding 具有多种作用,如搜索(其中结果按与查询字符串的相关性进行排名)、聚类(其中文本字符串按相似性分组)、建议(建议包含相关文本字符串的项目)、异常检测(识别出相关性很小的离群值)、多样性测量(分析相似性分布)、分类(其中文本字符串按其最相似的标签分类)。 3. 关于 RAG(检索增强生成),它是一种结合了检索和生成的技术,可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。其基本流程如下: 首先,给定一个用户的输入,例如一个问题或一个话题,RAG 会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录,这些文本片段称为上下文。 然后,RAG 会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如 GPT。这个输入通常会包含一些提示,指导模型如何生成期望的输出,例如一个答案或一个摘要。 最后,RAG 会从大模型的输出中提取或格式化所需的信息,返回给用户。如果您想构建能够利用私有数据或实时数据进行推理的 AI 应用,需要用特定的信息来增强模型的知识,将相关信息检索并插入到模型的输入中。
2025-02-24
表格内填充的内容如何批量循环调用大模型生成内容
以下是关于表格内填充内容如何批量循环调用大模型生成内容的相关信息: 大模型生成文字并非一次性输出整段,而是通过反复调用神经网络模型,一个字一个字地续写,直到输出结束符号。其输出不是确定的一个字,而是所有字的概率,可选择概率高的字或随机挑选。 在生成标题、导语、大纲等涉及文本理解与创作的任务时,可通过配置 LLM 节点来实现。为节省 token 消耗和模型调度费用,在满足预期的情况下,应减少大模型处理环节。例如,豆包·function call 32k 模型能在一轮对话中稳定生成这些内容。配置时要关注节点的各项设置,如根据实际情况调大模型的最大回复长度,并设计填入用户提示词。
2025-02-24
目前市面上有多少不同的大模型,请枚举出来
目前市面上的大模型列举如下: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 大型模型主要分为两类: 1. 大型语言模型,专注于处理和生成文本信息。 2. 大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 大模型的整体架构从整体分层的角度来看,大致分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm(大语言模型)或多模态模型。LLm 如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 另外,阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。
2025-02-24
大模型的发展历史
大模型的发展历史如下: 2017 年,发布了 Attention Is All You Need 论文,开启了大模型发展的序幕。 2018 年,Google 提出 BERT(Bidirectional Encoder Representations from Transformers),通过双向预训练并行获取上下文语义信息和掩码语言建模,开创了预训练语言表示范式,参数规模在 110M 到 340M 之间。 2018 年,OpenAI 提出 GPT(Generative Pretrained Transformer),开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号的方式,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了系统化的方法与工具,参数规模在十亿到千亿之间。 2023 年是大模型澎湃发展的一年,从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,到 23 年末多模态大模型的全面爆发,再到刚刚面世的 Sora 再次震惊世界。随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。
2025-02-24