Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI实现测试

Answer

以下是关于 AI 实现测试的相关内容:

AI 生成测试用例的方法和工具

  1. 基于规则的测试生成:
    • 测试用例生成工具:
      • Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。
      • Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。
    • 模式识别:
      • Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。
      • Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。
  2. 基于机器学习的测试生成:
    • 深度学习模型:
      • DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。
      • DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。
    • 强化学习:
      • RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。
      • A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。
  3. 基于自然语言处理(NLP)的测试生成:
    • 文档驱动测试生成:
      • Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。
      • Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。
    • 自动化测试脚本生成:
      • Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。
      • Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。

关于 AI 的一些分享: 通过具体例子让大家对 AI 有印象,介绍 AI 技术原理,解释“AI 能做什么”,介绍工具案例和资料,聊 AI 的未来发展及影响。从图灵说起,他在二战期间构建的机器破译德军密码,并提出“图灵测试”来判断机器是否具有智能。2024 年春 OpenAI 公司发布新一代 ChatGPT 聊天机器人(GPT4o),其交流体验接近正常人类交流,引发关于其是否能通过图灵测试及是否拥有自主意识等新问题的讨论。

在编程中利用 AI 进行测试的案例: 在卡密系统的开发中,为确保功能准确性,可请 AI 帮忙设计测试用例。Mac 用户可通过 Command + K 唤醒 AI 生成测试用例,然后逐个验证,检查功能是否遗漏、是否存在 Bug。同时要注意问题一个一个修复,先完成核心功能再追求完美。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI 做测试用例

AI生成测试用例是一项非常有价值的功能,可以显著提高测试覆盖率、减少人工编写测试用例的时间和成本。以下是一些具体方法和工具,展示AI如何生成测试用例:[heading3]1.基于规则的测试生成[heading4]a.测试用例生成工具[content]Randoop:基于代码路径和规则生成测试用例,适用于Java应用程序。Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET应用。[heading4]b.模式识别[content]Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。Infer:Facebook开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。[heading3]2.基于机器学习的测试生成[heading4]a.深度学习模型[content]DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。[heading4]b.强化学习[content]RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。[heading3]3.基于自然语言处理(NLP)的测试生成[heading4]a.文档驱动测试生成[content]Testim:AI驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。Test.ai:利用NLP技术从需求文档中提取测试用例,确保测试覆盖业务需求。[heading4]b.自动化测试脚本生成[content]Selenium IDE+NLP:结合NLP技术扩展Selenium IDE,从自然语言描述中生成自动化测试脚本。Cucumber:使用Gherkin语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。

一个希望有点意思的AI分享(一)

咱们会通过一些具体的例子,让大家对AI是什么有个印象;然后会尝试介绍一些AI的技术原理,希望你能体会到AI技术的美妙和深刻;接着我们会解释如何理解”AI能做什么“这个问题;再者我们会介绍一些具体的工具案例和资料;最后我们会简单聊一些AI的未来发展以及影响。首先来看AI是什么这个问题。我们从它的父亲说起。有一部电影叫做《模仿游戏》,它讲述的就是计算机科学和人工智能之父,图灵的故事。他在二战期间构建的机器,或者说计算机的原型,破译了德军的密码。他预见了计算机的发展,并开始考虑一个很深刻的问题:“如何判断一台机器具有智能?”在他的1950年的论文中,他提出了一种被称为“图灵测试”的方法。测试中,一位人类提问者通过文字通道向两个回应者(一个是计算机,另一个是人类)连续提问。在相当长的时间内,如果提问者无法可靠地区分哪个回应者是计算机,哪个是人类,那么可以认为这台计算机具备了智能。这是一个非常经典和深刻的方法,要实现这一点其实很困难。下面是2024年春OpenAI公司发布新一代ChatGPT聊天机器人(GPT4o)产品时的发布会视频,你可以选择从9分钟开始直接看用户和ChatGPT交流的现场展示部分。如果你之前对AI没有那么关注,相信你会感到震惊。这个体验已经非常接近和正常人类的交流。事实上如果考虑到知识丰富和情绪稳定,它应该比大多数人类更适合交流;p那么,请你想象一下,如果你是提问者,你觉得ChatGPT可以跨越图灵测试吗?虽然学术界依然存在着很多争议,但是确实有很多人认为目前的AI产品已经可以通过图灵测试。事实上,这可能比绝大多数人认为的到来得早得多。也有人说,我们需要新的标准来判定AI真正拥有智慧,比如,它是否拥有自主意识?那自主意识又是什么以及如何测定呢?这是人类面临的新问题。

熊猫 Jay:AI 编程 Cursor 来了,你没理由说不会写代码了

最后,为了确保功能的准确性,我们可以请AI帮忙设计一套测试用例。进入文档后,Mac用户可以通过Command+K唤醒AI,让它根据用户故事为我们生成测试用例。我们需要逐个验证每个测试用例,检查功能是否遗漏、是否存在Bug。最终,你拥有了自己的第一个卡密系统。是不是很有成就感~[heading3]五)注意事项[content]1.问题一个一个修复,贪多嚼不烂。2.先完成,再完美,最开始不用在线细节,先完成核心功能。

Others are asking
最近的ai新闻
以下是最近的一些 AI 新闻: 2024 年 7 月: 苹果发布了 AI 原生操作系统,加强了硬件和模型布局。 Claude Sonnet 3.5 发布,挑战 OpenAI。 视频生成领域 Runway Gen3 和快手可灵表现优秀。 AI 3D 技术逐渐崭露头角。 Google 和月之暗面推出长上下文缓存技术。 快手发布可灵网页版及大量模型更新。 阶跃星辰发布多款模型。 商汤打造类似 GPT4o 的实时语音演示。 GraphRAG:微软开源新型 RAG 架构。 2024 年 9 月: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B。 9 月 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 2024 年 1 月: 斯坦福大学 Mobile Aloha。 1 月 10 号 LumaAl Genie 文生 3D。 1 月 11 号 GPT store 上线。 1 月 MagnificAl 高清放大爆火。 1 月最后一天苹果 Vision Pro 宣布发售。 此外,红杉资本美国合伙人 Pat Grady 在最新访谈中表示,AI 技术将为服务行业带来变革机遇,而非取代软件公司。AI 的潜力在于赋能服务行业,但人际关系和实际执行仍需人工。对于基础模型公司,Grady 认为它们可能像数据库公司一样发展,提供开发者 API,有机会进入应用层。他认为现有模型已足够强大,关键在于工程化优化和认知架构设计。
2025-02-24
AI如何赋能售前售中售后等业务场景
AI 能够在以下售前售中售后等业务场景中发挥重要作用: 1. 医疗保健: 售前:通过分析患者数据,为潜在患者提供个性化的医疗建议和服务介绍。 售中:辅助医生进行诊断,如医学影像分析。 售后:为患者提供个性化的康复方案和护理建议。 2. 金融服务: 售前:利用信用评估为潜在客户提供贷款可能性的初步评估和相关产品介绍。 售中:进行风控和反欺诈,确保交易安全。 售后:提供投资分析和客户服务,解答客户疑问。 3. 零售和电子商务: 售前:通过产品推荐和个性化搜索,吸引潜在客户。 售中:提供动态定价和优化购物体验。 售后:利用聊天机器人解决客户售后问题。 4. 制造业: 售前:展示产品的制造优势和质量保障。 售中:确保生产过程的高效和质量控制。 售后:进行预测性维护,为客户提供优质的售后维护服务。 5. 交通运输: 售前:通过虚拟试驾等方式展示产品特点。 售中:提供智能导购服务,帮助客户选择合适的车型。 售后:持续监测车辆状态,提供维护建议。 6. 汽车行业: 售前:AI 辅助“市场营销”和“新媒体运营”,进行热点营销、用户画像预测等。 售中:提升“销售体验”,如智能“试驾”、“金牌销售”智能导购等。 售后:监测车辆使用情况,提供相关服务。 7. 企业运营: 售前:协助准备营销材料和市场分析。 售中:提供销售策略咨询。 售后:处理法律文书和人力资源相关事务。 8. 教育: 售前:为潜在学生提供学习规划建议。 售中:定制化学习内容。 售后:审核论文和提供后续学习支持。 9. 游戏/媒体: 售前:进行游戏定制化推广和出海文案宣传。 售中:提供动态生成的游戏体验和媒体内容。 售后:处理用户反馈和优化内容。 10. 金融/保险: 售前:提供个人金融理财顾问服务。 售中:处理贷款信息和风险评估。 售后:进行保险理赔处理和客户服务。 11. 生命科学: 售前:介绍研发成果和服务。 售中:协助医疗过程中的诊断和治疗。 售后:提供术后护理和康复辅助。
2025-02-24
那个AI擅长修改简历?
以下是一些擅长修改简历的 AI 工具: 1. 超级简历优化助手:这是一款 AI 简历优化工具,使用自然语言处理技术,能分析简历内容并提供优化建议,帮助用户提高求职成功率,市场规模达数亿美元。 2. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 3. Rezi:是一个受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 4. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。
2025-02-24
Google AI studio
以下是关于 Google AI Studio 的相关信息: 1. Gemini 2.0 Flash 现身 Google AI Studio: 多模态实时 API:支持实时视觉与音频流应用开发。 速度提升:首次令牌时间显著优化。 质量改进:超越 Gemini1.5 Pro 在基准测试中的表现。 代理能力增强:多模态理解、复杂指令处理、函数调用全面提升。 新增功能:图像生成与可控的文本转语音。链接: 2. Cognition 的 AI 工程师 Devin 正式推出: 定价 500 美金/月,专注于小型任务处理,而非代替程序员。 核心功能:可通过 Slack 指令分配任务、在 VSCode 中管理代码、通过 API 接入定制化工作流。 优势:提升开发效率,擅长修复 bug、优化代码、编写测试用例。链接: 3. OpenAI 回应 ChatGPT 宕机: 全球范围宕机,影响 iOS18.2 及 Siri 集成功能。 可能因苹果新系统大规模更新,Siri 与 ChatGPT 深度集成所致。链接:
2025-02-24
AI studio
以下是关于“AI studio”的相关信息: 生成式 AI Studio 简介: 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,其生成内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。它可以应用于广泛的场景,如文档摘要、信息提取、代码生成、营销活动创建、虚拟协助、呼叫中心机器人等。其工作方式包括训练阶段和应用阶段。在训练阶段,通过从大量现有内容中学习进行训练得到基础模型;在应用阶段,基础模型可用于生成内容并解决一般性问题,还可使用特定领域新数据集进一步训练以解决特定问题得到新模型。Google Cloud 提供了相关工具,如 Vertex AI(端到端机器学习开发平台)、Generative AI Studio(允许快速制作原型和自定义生成式 AI 模型)、Model Garden(提供 MLOps 工具)。 视频赛道获奖名单: |姓名|作品名|作品描述| |||| |元影智能工作室|AI 科技走秀|| |楼济铭|ai 在广财.mp4|| |陈少波|mmexport1719049478881.mp4|谨以此作品,迎接 AI 时代的来临,在这场狂欢中,我们尽情舞蹈,尽情歌唱,沉醉于一个崭新的智能时代!| |成安安|AI 宣传片成片.mp4|从创新性视频制作到智能文案生成,我们的每一步都在重塑内容创作的未来。我们相信,人工智能不仅是技术,更是一种创新力量,AI 未来,让创无所限。| |OneBrocade|阿维塔 07_apo8_prob4.mp4, 摩羯_apo8_prob4.mp4, 10 月 11 日.mp4|| |苏佳煜|天猫精灵变形记.mp4|| |Danny 造梦|白骨精前传.mp4|| |陈思孝|阿维塔.mp4|| |噼哩啪啦猴|AIGC 视频《Isolated》|| |二金|404.mp4|4 个镜头讲述一个故事| |Lumier|25 女性的力量.mp4|| |咖菲猫咪|治愈系清晨|| |对!|AI 梵高.mp4|| |蓝牙耍手机|最终!.mp4|如果地球上的生物同一时刻起跳会发生什么呢?| 翻译:A16Z TOP 100 生成式 AI 应用: 一些移动应用开发者成功打造了不止一款热门应用。比如,位于伊斯坦布尔的应用开发工作室 Codeway 开发了 AI 照片动画应用(在移动端应用榜单中排名第五)最近宣布完成了 1.55 亿美元的股权融资。
2025-02-24
我是一个ai零基础小白,你需要基于当前知识库内容,帮我规划学习该知识库的学习计划,请详细明确
以下是为您规划的学习 AI 的详细计划: 一、基础概念学习 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、正式学习 1. 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程,学习生成式 AI 等基础知识。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,包括图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。 2. 在知识库中查看大家实践后的作品、文章分享,并在自己实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,知识库中还提到了以下内容: 1. 博主会精美地解释六大策略,小七姐在社区带来共学课程并有直播分享及回放,像喂饭教程般帮助理解 prompt。每个板块下有共学快闪,社区老师会带着大家动手操作并讲解思路,还提到官方最佳 prompt 有 6 个实践办法,看熟任意一个即可。 2. 智能体由大语言模型衍生而来,因提示词不太可控才有此进阶。还讲述了智能体进阶案例拆解,推荐景淮老师的相关成果。然后阐述扣子、千帆百炼属于智能体范畴,扣子更偏 ToC 应用,所以有专门讲解扣子相关内容。 3. 学习 AI agent 可能较痛苦,建议先吃透 prompt 再看相关内容。官方文档内容很全面,包含市面上 cos 的教程等。社区小伙伴参加 cos 比赛常拿大奖,有共学活动,获奖小伙伴会分享经验。cos 平台可用于工作生产,有很多功能,感兴趣可体验其官网,能进行对话感受功能。 4. 关于 AI 知识库使用及 AIPO 活动的介绍:讨论了 AI 知识库的使用情况、AIPO 活动的发起背景、内容安排及相关资源等。 5. AIPO 线下活动及 AI 相关探讨:讨论了 AIPO 线下活动的规则和玩法,以及 AI 在科技发展中的重要地位和相关研究方向。 6. way to AGI 社区活动与知识库介绍:讨论了 way to AGI 社区活动的安排、材料准备以及知识库的使用和相关内容更新等情况。 7. AI 相关名词解释:包括 AGI、AIGC、agent、prompt 等,建议通过与 AI 对话或李继刚老师的课程来理解。 8. 知识库的信息来源:有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 9. 社区共创项目:如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 10. 学习路径:有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 11. 经典必读文章:如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 12. 初学者入门推荐:推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 13. 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。 您可以根据自己的需求和兴趣,有针对性地深入学习这些内容。
2025-02-24
AI测试工具
以下是一些常见的 AI 测试工具: 1. PlaywrightAI 自动化测试工具:这是一个 Hackathon 项目,通过 Antropic AI 的 Claude Computer Use 实现自然语言驱动的 UI 自动化测试。优点是降低编写自动化测试脚本成本,局限是稳定性不足、容易误报或遗漏,且成本较高。 2. 基于规则的测试生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 3. 基于机器学习的测试生成工具: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 4. 基于自然语言处理(NLP)的测试生成工具: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 此外,还有一些 AI Prompts 测试框架: 1. PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,作为集中化平台,便于管理提示,实现协作和优化工作流程。特点包括本地部署和云原生、简易设置、数据库支持、SDK 支持、提示跟踪与分析、协作工具。 2. ChainForge:开源的可视化编程环境,专门用于测试大型语言模型(LLMs)的提示。特点有多模型测试、响应质量比较、评估指标设置、多对话管理。 3. Promptknit:为 AI Prompts 测试提供服务的平台。
2025-02-24
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
移动端自动化测试框架
很抱歉,目前知识库中没有关于移动端自动化测试框架的相关内容。但一般来说,常见的移动端自动化测试框架有 Appium、Espresso、XCUITest 等。Appium 支持多种移动平台和编程语言;Espresso 是 Android 平台的专用框架,具有高效和稳定的特点;XCUITest 则是用于 iOS 平台的测试框架。您可以根据您的具体需求和项目情况选择适合的框架。
2025-02-15
AI 在生成单元测试代码方面有什么新的进展与方向?
AI 在生成单元测试代码方面有以下新的进展与方向: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop 可基于代码路径和规则为 Java 应用程序生成测试用例,Pex 是微软开发的能为.NET 应用自动生成高覆盖率单元测试的工具。 模式识别:Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷来生成测试用例,Infer 是 Facebook 开发的能自动生成测试用例以帮助发现和修复潜在错误的工具。 2. 基于机器学习的测试生成: 深度学习模型:DeepTest 利用深度学习模型为自动驾驶系统生成测试用例以模拟不同驾驶场景并评估系统性能,DiffTest 基于对抗生成网络(GAN)生成测试用例来检测系统的脆弱性。 强化学习:RLTest 利用强化学习生成测试用例,通过与环境交互学习最优测试策略以提高测试效率和覆盖率,A3C 是基于强化学习通过策略梯度方法生成高质量测试用例的工具。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:Testim 是 AI 驱动的测试平台,能通过分析文档和用户故事自动生成测试用例以减少人工编写时间,Test.ai 利用 NLP 技术从需求文档中提取测试用例以确保测试覆盖业务需求。 自动化测试脚本生成:Selenium IDE 结合 NLP 技术可从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架能通过解析自然语言描述生成测试用例。 此外,峰瑞资本投资的 AI Coding 创业公司 Babel 专注于 AI Agent 的研发,其核心产品 Test Gru 已在美国上线,能为客户自动生成单元测试,客户侧 PR 接受率约为 70%。还有如 Cursor 等工具,可借助其生成测试代码提升代码可靠性,但使用时也需注意方法,如使用 Git 管理代码版本、对 AI 代码进行 Review 等。
2025-02-14
AI 测试
以下是关于 AI 测试的相关内容: 如何让 AI 写出想要的代码: 把项目中影响 AI 输出方向的“规矩”写下来,按照项目需求优化内容和结构。关键部分包括:先说清楚自己是谁,告诉 AI 要干什么,定好项目的“规矩”,明确文件放哪,指定用什么“工具”,告诉 AI 怎么做测试,推荐参考资料,若项目涉及画页面补充 UI 要求。 AI 生成测试用例的方法和工具: 基于规则的测试生成: 测试用例生成工具:Randoop 适用于 Java 应用程序,Pex 适用于.NET 应用。 模式识别:Clang Static Analyzer 利用静态分析技术,Infer 帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型:DeepTest 模拟驾驶场景,DiffTest 检测系统脆弱性。 强化学习:RLTest 提高测试效率和覆盖率,A3C 生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:Testim 减少人工编写时间,Test.ai 确保测试覆盖业务需求。 自动化测试脚本生成:Selenium IDE+NLP 从自然语言描述生成自动化测试脚本,Cucumber 通过解析自然语言描述生成测试用例。 图灵测试游戏:游戏参与者有人类和 AI,通过互相提问和答题协助裁判判断身份,初始人类和 AI 各有 3 点生命值,被认为更像 AI 的一方扣 1 点生命值,生命值为 0 时游戏结束。加入辩论环节,可反驳裁判初步判断。游戏已在 coze 上开发,国内版和国外版的链接分别为: ,国外平台昨天开始收费,已从 32k 降级为 8k 。
2025-02-10
我想出一款自动采摘农业机器人的图 能实现吗
目前,AI 在农业领域已经有了一定的应用,例如提高农业生产效率的 AI 机器人。但要设计一款自动采摘农业机器人的图是可以实现的。AI 技术能够为机器人的设计提供很多帮助,比如通过计算机视觉模型来识别农作物的成熟度和位置,通过深度学习算法来规划机器人的采摘路径等。不过,要成功实现这样的设计,还需要考虑许多因素,如机器人的机械结构、动力系统、传感器精度、环境适应性等。同时,还需要相关的技术团队具备跨学科的知识和丰富的经验。
2025-02-23
如果我想给一份数学题目,把里面的数学题目进行知识点提炼分类,怎么利用AI实现?
要利用 AI 对数学题目进行知识点提炼分类,可以参考以下方法: 1. 题目内容识别:通过适当的方式将数学题目输入给 AI,让其理解题目内容。 2. 利用经过训练的 AI 模型:这些模型可能能够对题目中的数学概念、公式、定理等进行初步的分析和提取。 3. 人工校对与验证:AI 给出的结果需要人工进行校对,确保知识点提炼分类的准确性。 4. 清晰完整的指令输入:向 AI 提供清晰、准确且完整的指令,以提高其处理效果。 需要注意的是,AI 目前仍存在一定的局限性,不能完全替代人的思考和判断,在使用其结果时要谨慎验证。
2025-02-21
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
实现基于个人聊天记录的数字分身的最佳实践
实现基于个人聊天记录的数字分身的最佳实践包括以下方面: 虚拟数字人的类型和驱动方式: 虚拟数字人通过各种技术创造,具有外观、行为和思想等人类特征,呈现为虚拟形象。 从驱动层面可分为中之人驱动和 AI 驱动两类。中之人驱动运用动作捕捉和面部捕捉技术实现交互,有上限且缺乏高并发和量产化能力;AI 驱动使用 AI 技术创建、驱动和生成内容,赋予感知和表达等交互能力。 虚拟数字人的应用类型: 服务型:如虚拟主播、助手、教师、客服和医生等,为物理世界提供服务。 表演型:如虚拟偶像,用于娱乐、影视等场景。 身份型:是物理世界“真人”进入虚拟世界的数字分身,在元宇宙中有广泛应用场景。 相关开源项目: 熊猫大侠基于 COW 框架的 ChatBot 最新版本支持多端部署、基础对话、语音识别、图片生成、丰富插件、Tool 工具和知识库等功能。可接入个人微信、微信公众号、企业微信应用,支持多种模型和个性化插件扩展,通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用。项目地址包括 Github:https://github.com/zhayujie/chatgptonwechat ,Gitee:https://gitee.com/zhayujie/chatgptonwechat 。
2025-02-20
模型微调是怎么实现的
模型微调是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练的模型,已学会一些基本模式和结构,然后在特定任务数据上继续训练以适应新任务。 以下是关于模型微调的具体实现步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型: LoRA 微调: 脚本见:。 具体实现代码见。 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见:。 具体实现代码见。 3. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需修改其中的模型名称或保存路径。 微调的优点包括: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。 以下是两个帮助理解微调概念的例子: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义,再收集标注过的电影评论(积极或消极)继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理,再收集标注过的猫和狗的图片继续训练模型,使其学会区分猫和狗。
2025-02-19
在coze上实现notebookllm
以下是关于在 Coze 上实现 NotebookLLM 的相关信息: LLM 作为知识问答工具有缺陷,如无法实时获取最新信息、存在“幻觉”问题、无法给出准确引用来源等。搜索引擎虽体验不够简便直接,但加上 LLM 可能带来更优信息检索体验。 在生成标题、导语、大纲时,因为涉及文本理解与创作,这是 LLM 节点的工作,需要对其进行配置。为减少 token 消耗和节省模型调度费用,在满足预期情况下,应尽量减少大模型处理环节。经过实测,豆包·function call 32k 模型能在一轮对话中稳定生成相关内容。每个大模型节点配置项丰富,入门用户主要关注一些方面,如在“标题、导语、大纲”节点中,希望 LLM 接收原文信息后一次性生成所需内容,还需视实际情况调大模型的最大回复长度,并设计填入用户提示词。
2025-02-19