Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

在coze上实现notebookllm

Answer

以下是关于在 Coze 上实现 NotebookLLM 的相关信息:

  • LLM 作为知识问答工具有缺陷,如无法实时获取最新信息、存在“幻觉”问题、无法给出准确引用来源等。搜索引擎虽体验不够简便直接,但加上 LLM 可能带来更优信息检索体验。
  • 在生成标题、导语、大纲时,因为涉及文本理解与创作,这是 LLM 节点的工作,需要对其进行配置。为减少 token 消耗和节省模型调度费用,在满足预期情况下,应尽量减少大模型处理环节。经过实测,豆包·function call 32k 模型能在一轮对话中稳定生成相关内容。每个大模型节点配置项丰富,入门用户主要关注一些方面,如在“标题、导语、大纲”节点中,希望 LLM 接收原文信息后一次性生成所需内容,还需视实际情况调大模型的最大回复长度,并设计填入用户提示词。
Content generated by AI large model, please carefully verify (powered by aily)

References

艾木: 我用Coze手搓了一个极简版Perplexity(基本可以替代Google搜索)

1.首先,LLM的一个很大的缺陷是它无法实时获取最新的信息。它能获取的信息就是预训练时输入的信息,这些信息有一个截断日期,这个日期之后的信息它一概不知(至少无法从模型内部获取到)。而搜索引擎可以获取到更加实时的信息。2.LLM有“幻觉”问题。在缺少相关事实信息的情况下,它就会编造。更严重的是,它很擅长编造,经常编得跟真的一样。而搜索引擎可以检索出相关的信息,这些信息可以作为LLM“推理”的依据。3.LLM无法给出准确的引用来源。LLM吸收了整个互联网的信息,当它回答问题的时候,你会感觉它的回复好像是参考了互联网上的某个地方的内容,但是它无法告诉你它具体引用或者改编的是哪里的内容,因为LLM已经把整个互联网的信息作了词元(token)级别的融合。LLM无法给出引用来源间接带来一个严重问题是,你无法去到信息源,去自己做验证。而搜索引擎可以给予准确的信息源。以上种种问题,决定了LLM本身作为一个知识问答工具是完全不合格的。而搜索引擎的问题则是体验上不够简便、不够直接。搜索引擎返回的信息是一堆链接和文本片段(很多时候还有广告干扰),这种呈现形式是比较原始的,还需要人去做进一步处理。给搜索引擎加上LLM,或许可以带来更优的信息检索体验。Perplexity[4]就是基于这个思路搞出来的产品,目前其估值已经超过5亿美元了,它的目标是要取代Google搜索。这个思路本身没有什么新鲜的,OpenAI早在21年就研究过了[5],后来也有研究者作了进一步的验证[3]。这个思路的技术实现也不复杂,贾扬清大佬用了不到500行Python代码就实现了一个基础版[6]。

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在生成标题、导语、大纲时,因为只涉及文本理解与文本创作,很明显这是LLM节点的工作,所以我们需要对LLM节点进行配置。可能你在1.2分解子任务那个章节就想问:为什么不把“标题、导语、大纲”拆得更细,比如分成生成标题、生成导语和生成大纲3个子任务?——因为LLM是按输入/输出的字符数量来消耗token,在满足预期的情况下,更少的大模型处理环节,能有效减少token消耗,在实际投产时节省模型调度费用。经过实测,豆包·function call 32k模型,已经能在一轮对话中稳定地生成这三项内容了。每个大模型节点的配置项很丰富,对于入门用户来说,主要关注:在“标题、导语、大纲”节点中,我们希望LLM能够从开始节点,接收到原文信息,经过处理后,一次性把我们需要的中文标题、中文导语、英文标题、英文阅读大纲生成输出。所以设置如下:另外,为了保证大模型能够处理足够长的内容,需要视实际情况调大模型的最大回复长度:最后,根据1.3设计每个子任务的执行方法中的内容模块要求,设计并填入以下用户提示词(本文主要讨论工作流的设置,就不论述这个提示词具体是如何设计的了,感兴趣的可以单独和我聊):

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在生成标题、导语、大纲时,因为只涉及文本理解与文本创作,很明显这是LLM节点的工作,所以我们需要对LLM节点进行配置。可能你在1.2分解子任务那个章节就想问:为什么不把“标题、导语、大纲”拆得更细,比如分成生成标题、生成导语和生成大纲3个子任务?——因为LLM是按输入/输出的字符数量来消耗token,在满足预期的情况下,更少的大模型处理环节,能有效减少token消耗,在实际投产时节省模型调度费用。经过实测,豆包·function call 32k模型,已经能在一轮对话中稳定地生成这三项内容了。每个大模型节点的配置项很丰富,对于入门用户来说,主要关注:在“标题、导语、大纲”节点中,我们希望LLM能够从开始节点,接收到原文信息,经过处理后,一次性把我们需要的中文标题、中文导语、英文标题、英文阅读大纲生成输出。所以设置如下:另外,为了保证大模型能够处理足够长的内容,需要视实际情况调大模型的最大回复长度:最后,根据1.3设计每个子任务的执行方法中的内容模块要求,设计并填入以下用户提示词(本文主要讨论工作流的设置,就不论述这个提示词具体是如何设计的了,感兴趣的可以单独和我聊):

Others are asking
有没有关于使用coze制作在线客服的案例或教程
以下是关于使用 Coze 制作在线客服的案例和教程: 画小二:通过 Coze 定制开发插件案例,包括创建智能体、添加插件等,还可发布到微信成为专职客服技能,并有手把手的会员教程和 AIGC 商业案例实操课海报。 扣子案例合集:包含保姆级教程,如如何用扣子搭建一个免费好用的“图片转表格”AI 客服等。 Agent 相关比赛中的 Coze 相关教程:包括不同分享人的主题分享及流程安排,如大聪明、大圣、艾木、罗文、Itao 的分享,均有回放地址可供查看。
2025-02-21
coze
以下是关于 Coze 的相关信息: 重磅更新:Coze 可以接入抖音评论区,帮您自动回复用户的评论。若想快速上手,可参考视频。若还不了解 Coze 是什么,可参考文章。 安装 Coze Scraper: 通过应用商店安装: 1. 打开 Chrome 浏览器。 2. 点击在 Chrome 应用商店中打开 Coze Scrapper 扩展程序。 3. 单击添加至 Chrome。 4. 在弹出的页面,单击添加扩展程序。 本地安装: 1. 单击下载安装包,然后解压下载的文件。 2. 打开 Chrome 浏览器。 3. 在浏览器中输入 chrome://extensions 打开扩展程序页面,确认开发者模式处于打开状态。 4. 点击加载已解压的扩展程序,选择已解压的文件夹。 Coze 记账管家——数据库使用教程: COZE 是字节跳动旗下子公司推出的 AI Agent 构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建 Agent,目前可以白嫖海量大模型免费使用,有丰富的插件生态。 记账管家是基于 COZE 平台的能力搭建的一个记账应用,可以直接和 coze 说您今天的收入或者支出情况,coze 会自动记账,并计算账户余额,每一笔记账记录都不会丢失。点击以下卡片体验记账管家。
2025-02-20
coze工作流教程
以下是关于 Coze 工作流的教程信息: 可能是全网最好的 Coze 教程之一,能一次性带你入门 Coze 工作流,即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南:长文预警,请视情况收藏保存。 核心看点:通过实际案例逐步演示,用 Coze 工作流构建能稳定按模板要求生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群:任何玩过 AI 对话产品的一般用户(若没用过,可先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 扣子案例合集社区内容分享:
2025-02-20
coze触发器用法
Coze 触发器的用法如下: 您可以为 Bot 设置触发器,使 Bot 在特定时间或接收到特定事件时自动执行任务。 可配置的触发器类型包括定时触发和事件触发。定时触发能让 Bot 在指定时间执行任务,无需编写代码;事件触发会生成 Webhook URL,当服务端向该 URL 发送 HTTPS 请求时触发任务执行。 触发器触发时执行任务的方式有 Bot 提示词、调用插件和调用工作流。Bot 提示词需通过自然语言设置,触发时提示词自动发送给 Bot,Bot 依此向用户发送提醒消息;调用插件需为触发器添加插件,触发时 Bot 调用插件获取结果并发送给用户;调用工作流需为触发器添加工作流,若有输入参数需传入值,触发时 Bot 调用工作流获取结果并发送给用户。 Coze 支持用户在与 Bot 聊天时设置定时任务,当用户在会话内点击推荐任务后,Bot 会确认并创建定时任务。 使用限制:一个 Bot 内的触发器最多可添加 10 个,且触发器仅当 Bot 发布飞书时生效。
2025-02-20
Coze教程
以下是关于 Coze 教程的相关内容: 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南: 长文预警,请视情况收藏保存。 核心看点: 1. 通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent。 2. 开源 AI Agent 的设计到落地的全过程思路。 3. 10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群: 1. 任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍)。 2. 希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 另外,还有胎教级教程:万字长文带你使用 Coze 打造企业级知识库。 Coze 概述: 字节的官方解释:Coze 是新一代一站式 AI Bot 开发平台。无论是否有编程基础,都可在 Coze 平台上快速搭建基于 AI 模型的各类问答 Bot,从解决简单的问答到处理复杂逻辑的对话。并且,可以将搭建的 Bot 发布到各类社交平台和通讯软件上,与这些平台/软件上的用户互动。 个人认为:Coze 是字节针对 AI Agent 这一领域的初代产品,在 Coze 中将 AI Agent 称之为 Bot。字节针对 Coze 这个产品部署了两个站点,分别是国内版和海外版。 国内版: 网址:https://www.coze.cn 官方文档教程:https://www.coze.cn/docs/guides/welcome 大模型:使用的是字节自研的云雀大模型,国内网络即可正常访问。 海外版: 网址:https://www.coze.com 官方文档教程:https://www.coze.com/docs/guides/welcome 大模型:GPT4、GPT3.5 等大模型(可以在这里白嫖 ChatGPT4,具体参考文档:),访问需要突破网络限制的工具。 参考文档:https://www.coze.com/docs/zh_cn/welcome.html AI Agent 的开发流程: Bot 的开发和调试页面布局主要分为如下几个区块:提示词和人设的区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件、知识库、变量、数据库、长记忆、文件盒子、一些先进的配置、触发器(例如定时发送早报)、开场白(用户和 Bot 初次对话时,Bot 的招呼话语)、自动建议(每当和 Bot 一轮对话完成后,Bot 给出的问题建议)、声音(和 Bot 对话时,Bot 读对话内容的音色)。下面会逐一讲解每个组件的能力以及使用方式。
2025-02-20
coze的智能体都是单用户模式,如何适配区分不同用户?
Coze 的智能体在适配区分不同用户方面,主要通过以下方式: 1. 角色定义:分为超级管理员和普通用户。超级管理员拥有管理整个系统的最高权限,负责项目的正常运作和维护。普通用户没有项目配置的权限也无法进入管理后台页。 2. 配置模式: 模式 A:Zion 默认智能体。选择此模式将直接使用 Zion 在 Coze 平台预配置的官方智能体,适用于测试。系统会自动填充相关信息,预设头像与昵称。若后续想自定义修改智能体的各种收费模式、前端展示,可在“管理后台”进行修改。 模式 B:用户自己的 Coze 智能体。选择此模式需要在“管理后台”页自行配置在 Coze 平台上获取的 Bot ID、OAuth 应用 ID 以及一对公私钥。 3. 数据库方面:数据库是 Coze 用来长久存放用户自己生成的数据的功能,单用户模式是自己记录自己的数据,多用户模式则相当于大家一起维护一份数据。在记账管家的应用中,需要注意区分单用户和多用户模式,避免用户互相编辑对方的数据。
2025-02-20
notebookllm
NotebookLM 是谷歌推出的一款工具,具有以下特点和用途: 有人称它为笔记工具、AI 学习工具或播客生成器。 只要上传文档、音频或网页链接(如 YouTube 等),就能生成专业的播客,其中主持人对话生动自然,包含各种人类语气和行为。 可以将公众号文章等内容变成双人对谈播客。 是 Google AI Lab 开发的笔记应用,基于 Gemini 1.5 Pro 的长文本理解和多模态能力。 用户可通过上传文件或链接快速生成笔记和音频内容,适合教育和研究等场景。 支持协作,适合整理公众号文章、编写书稿等多种用途。 体验地址:https://notebooklm.google/
2025-02-19
如果我想给一份数学题目,把里面的数学题目进行知识点提炼分类,怎么利用AI实现?
要利用 AI 对数学题目进行知识点提炼分类,可以参考以下方法: 1. 题目内容识别:通过适当的方式将数学题目输入给 AI,让其理解题目内容。 2. 利用经过训练的 AI 模型:这些模型可能能够对题目中的数学概念、公式、定理等进行初步的分析和提取。 3. 人工校对与验证:AI 给出的结果需要人工进行校对,确保知识点提炼分类的准确性。 4. 清晰完整的指令输入:向 AI 提供清晰、准确且完整的指令,以提高其处理效果。 需要注意的是,AI 目前仍存在一定的局限性,不能完全替代人的思考和判断,在使用其结果时要谨慎验证。
2025-02-21
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
实现基于个人聊天记录的数字分身的最佳实践
实现基于个人聊天记录的数字分身的最佳实践包括以下方面: 虚拟数字人的类型和驱动方式: 虚拟数字人通过各种技术创造,具有外观、行为和思想等人类特征,呈现为虚拟形象。 从驱动层面可分为中之人驱动和 AI 驱动两类。中之人驱动运用动作捕捉和面部捕捉技术实现交互,有上限且缺乏高并发和量产化能力;AI 驱动使用 AI 技术创建、驱动和生成内容,赋予感知和表达等交互能力。 虚拟数字人的应用类型: 服务型:如虚拟主播、助手、教师、客服和医生等,为物理世界提供服务。 表演型:如虚拟偶像,用于娱乐、影视等场景。 身份型:是物理世界“真人”进入虚拟世界的数字分身,在元宇宙中有广泛应用场景。 相关开源项目: 熊猫大侠基于 COW 框架的 ChatBot 最新版本支持多端部署、基础对话、语音识别、图片生成、丰富插件、Tool 工具和知识库等功能。可接入个人微信、微信公众号、企业微信应用,支持多种模型和个性化插件扩展,通过上传知识库文件自定义专属机器人,可作为数字分身、领域知识库、智能客服使用。项目地址包括 Github:https://github.com/zhayujie/chatgptonwechat ,Gitee:https://gitee.com/zhayujie/chatgptonwechat 。
2025-02-20
模型微调是怎么实现的
模型微调是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练的模型,已学会一些基本模式和结构,然后在特定任务数据上继续训练以适应新任务。 以下是关于模型微调的具体实现步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型: LoRA 微调: 脚本见:。 具体实现代码见。 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见:。 具体实现代码见。 3. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需修改其中的模型名称或保存路径。 微调的优点包括: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。 以下是两个帮助理解微调概念的例子: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义,再收集标注过的电影评论(积极或消极)继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理,再收集标注过的猫和狗的图片继续训练模型,使其学会区分猫和狗。
2025-02-19
RAG和微调是什么,分别详细讲讲一下它是怎么实现的
RAG(RetrievalAugmented Generation,检索增强生成)是解决大语言模型在实际应用中存在的一些问题的有效方案。 大语言模型存在以下问题: 1. 知识的局限性:模型自身的知识完全源于训练数据,对于实时性、非公开或离线的数据无法获取。 2. 幻觉问题:基于数学概率的文字预测导致可能提供虚假、过时或通用的信息。 3. 数据安全性:企业担心私域数据上传第三方平台训练导致泄露。 RAG 可以让大语言模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解模型如何生成最终结果。它类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新的语言、格式或样式。 微调类似于让学生通过广泛学习内化知识。这种方法在模型需要复制特定结构、样式或格式时非常有用。微调可以提高非微调模型的性能,使交互更有效率,特别适合强调基础模型中的现有知识,修改或自定义模型的输出,并向模型提供复杂的指令。然而,微调不适合合并模型中的新知识或需要新用例的快速迭代。 参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2025-02-19
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18