Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

compy ui 工作流是什么意思

Answer

ComfyUI 的工作流包括以下方面:

  1. 一般的 Workflow 概念:Workflow 是 ComfyUI 的节点结构及数据流运转过程。
  2. 推荐的工作流网站:
    • Openart.ai:流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元的套餐后每月有 5000 积分。
    • ComfyWorkflows 网站:支持在线运行工作流,实际下载量和访问量略少于 openart。
    • Flowt.ai:https://flowt.ai/community
  3. FLUX 低显存运行工作流:
    • 目的是让 FLUX 模型能在较低显存情况下运行。
    • 分阶段处理思路:
      • 初始生成在较低分辨率下进行以提高效率。
      • 采用两阶段处理,先用 Flux 生成,后用 SDXL 放大,有效控制显存使用。
      • 使用 SD 放大提升图片质量。
    • 工作流流程:
      • 初始图像生成(Flux):包括 UNETLoader 加载 flux1-dev.sft 模型、DualCLIPLoader 加载 t5xxl 和 clip_l 模型等步骤。
      • 初始图像预览。
      • 图像放大和细化(SDXL):包括 CheckpointLoaderSimple 加载 SDXL 模型、UpscaleModelLoader 加载 RealESRGAN_x4.pth 用于放大等步骤。
      • 最终图像预览。
  4. 换装服饰一致性工作流:
    • 应用场景:电商服饰行业、换装、虚拟试穿等。
    • 整体思路:
      • 首先生成适合服装的模特,很多时候换装效果不好是因为服装和人物不匹配,可抽卡抽到满意模特后进入第二步。
      • 第二步进行高精度换装,先预处理拼出 mask,然后重绘 mask 区域。
      • 模特生成:加入 Redux 模型,强度不用太高,让提示词生效。
      • 服装高精度处理:包括 mask 的处理,使用 Flux 的 fill 模型,提示词书写格式有特定要求,Redux 权重需调整为最大。
Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUI工作流网站

Workflow是ComfyUI的精髓。所谓Workflow工作流,在ComfyUI这里就是它的节点结构及数据流运转过程。[heading2]推荐工作流网站[heading3]“老牌”workflow网站Openart.ai[content]https://openart.ai/workflows/流量比较高,支持上传、下载、在线生成,免费账户总共有50个积分,加入Discord可以再加100积分,开通最低的每个月6美元的套餐后,每个月会有5000积分。[heading3]ComfyWorkflows网站[content]https://comfyworkflows.com/cloud支持在线运行工作流,从workflow的实际下载量和访问量来看,略少于openart。[heading3]Flowt.ai[content]https://flowt.ai/community

ComfyUI FLUX低显存运行

这个方法的目的是让FLUX模型能在较低的显存情况下也能运行.分阶段处理的思路:1.使用Flux模型进行初始生成,在较低分辨率下工作以提高效率2.采用两阶段处理:先用Flux生成,后用SDXL放大,效控制显存的使用3.使用SD放大提升图片质量工作流的流程:初始图像生成(Flux):UNETLoader:加载flux1-dev.sft模型DualCLIPLoader:加载t5xxl和clip_l模型VAELoader:加载flux-ae.sftCLIPTextEncode:处理输入提示词BasicGuider和RandomNoise:生成初始噪声和引导SamplerCustomAdvanced:使用Flux模型生成初始图像VAEDecode:解码生成的潜在图像初始图像预览:PreviewImage:显示Flux生成的初始图像图像放大和细化(SDXL):CheckpointLoaderSimple:加载SDXL模型(fenrisxl_SDXLLightning.safetensors)UpscaleModelLoader:加载RealESRGAN_x4.pth用于放大VAELoader:加载sdxl_vae.safetensorsImageSharpen:对初始图像进行锐化处理UltimateSDUpscale:使用SDXL模型和放大模型进行最终的放大和细化最终图像预览:PreviewImage:显示最终放大和细化后的图像

ComfyUI 换装服饰一致性

这个工作流,可以用在电商服饰行业,换装,虚拟试穿等场景。在提升效果的同时,简化了工作流。没有繁琐的依赖,环境,更多的使用了原生的节点。工作流的整体思路是:首先,生成适合服装的模特。为什么做这一步?这是因为,很多时候,换装的效果不好,有违和感,是因为服装和人物匹配。这一步,我们可以抽卡,抽到满意的模特后进入第二步。第二步,开始进行高精度的换装。先进行预处理的工作,拼出来mask然后重绘mask区域。[heading3]工作流解释[content][heading4]模特生成[content]接下来一起来过一下工作流先生成与衣服匹配的模特这里可以先不关注衣服的相似度,先抽出满意的模特。这里加入Redux模型,强度不用太高。让提示词生效,Redux-prompt节点风格细节等级(1=27×27最强,14=1×1最弱))。[heading4]服装高精度处理[content][heading5]mask的处理[content]高精度换装前的准备:这里做两个工作1.将模特身上的衣服分割出来2.拼接出来对应模特与衣服合并后图片的遮罩[heading5]提示词格式与Redux权重[content]这里使用的是Flux的fill模型,提示词书写的格式:这是一组图片,左边是衣服,右边的模特穿着左边的衣服需要注意的是,Redux这里,把权重的调整为最大。这样我们就可以对mask位置,对服装进行了进一步的处理原来的服装细节得到了还原,并且也有了需要的模特。

Others are asking
coze上的工作流是怎么运行的
Coze 上的工作流运行主要包括以下步骤: 1. 梳理工作流:明确工作流的核心,如对于类似秘塔搜索的 Bot,要清楚其主要能力,包括使用搜索引擎进行搜索、对搜索内容整理成答案、给出答案中的引用等,从而形成创建 Bot 的思路。 2. 创建工作流: 任务处理阶段:将开始节点输入的用户指令配置给模型,保证指令顺利进入大模型组件中处理。 最终阶段:将任务处理的输出内容配置到结束节点,结束节点将处理完的回复反馈给用户,完成工作流闭环。 输出节点:注意回答模式有两种选择,一是返回变量由 Bot 生成回答,适用于复杂任务;二是直接根据设定内容进行回答,适用于一般性任务。 3. 试运行工作流:目的是确保工作流中的所有节点按预期协同工作,输出结果准确无误。可能需要多次调整和优化工作流,包括检查数据流动、条件判断和最终输出是否符合预期。 4. 评估并优化 Agent 效果: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 具体操作包括试运行整个工作流,验证整体运行效果(包括响应速度、生成质量);迭代优化工作流,提升性能;在外层 bot 中封装工作流;进行外层 bot 调试;最后发布 bot。
2025-02-07
你现在是一个工作流方面的专家 我需要你用最简单的方法让我这个小白理解工作流是怎么工作的
工作流是一种通过可视化方式对插件、大语言模型、代码块等功能进行组合,以实现复杂、稳定业务流程编排的方法。 工作流由多个节点构成,节点是基本单元,包括大语言模型 LLM、自定义代码、判断逻辑等。默认包含 Start 节点(工作起始,可包含用户输入信息)和 End 节点(工作末尾,返回运行结果)。 不同节点可能需要不同输入参数,分为引用前面节点的参数值和自定义的参数值。扣子提供了基础节点,还可添加插件节点或其他工作流。 例如,在角色设计变体生成工作流中,在不改变角色某些特定样式的基础上仅改变设计,能防止提示词外流,还可使用图片引导特定部分的风格和样式。 在智能体“竖起耳朵听”的编排中,插件像工具箱,工作流像可视化拼图游戏,将各种功能组合,满足多步骤、高要求的任务。
2025-01-16
智能体与工作流是同一个概念吗
智能体和工作流不是同一个概念。 智能体是一个能够执行特定任务、具有一定自主性和智能的实体。例如,在扣子平台上,可以通过添加插件和设置工作流等方式让智能体变得更强大,以完成各种复杂的任务。 工作流则像是一个可视化的拼图游戏,由多个小块块(节点)组成,如插件、大语言模型、代码块等,这些小块块可以像拼图一样组合在一起,从而创造出复杂但稳定的业务流程。当面对多步骤、对结果要求严格的任务时,工作流最为适用。工作流有开始和结束的小块块,不同小块块可能需要不同的信息才能工作。 在构建稳定可用的 AI 智能体时,通常会先测试单条 Prompt 或 Prompt Chain 的执行质量和稳定性,然后根据实际情况逐步拆解子任务,对于场景多样、结构复杂、对输出格式要求严格的任务,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,也必然需要通过工作流来调用相应的插件。
2024-12-26
AI中的工作流是什么?
AI 工作流是在一般工作流的基础上引入了 AI 工具。 一般工作流指的是将一项工作拆分成多个明确步骤,每个步骤都有特定的输入和产出,且步骤之间环环相扣。比如写公众号文章,要经过选题、列大纲写初稿、改稿、写标题、排版、发布等固定步骤。 而 AI 工作流则是将 AI 工具融入到这些工作环节中以提高效率。例如在写作的各个环节使用相应的 AI 工具。搭建 AI 工作流需要具备三层能力: 1. 了解各种 AI 工具的特点和用途。 2. 学会写提示词,以便向 AI 清晰地描述任务。 3. 搭建 AI 智能体,使多个 AI 工具协同工作,自动完成任务。 同时,AI 工作流还在信息获取、处理和表达等方面带来了变革。如重塑了获取信息的方式,颠覆了传统搜索引擎;辅助高效处理信息,如智能摘要能帮助快速筛选;让信息表达更简便。
2024-09-29
ComfyUI中的放大插件
ComfyUI 中的放大插件相关知识如下: 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码,此方法比传统方式快很多且质量损失小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。其流程包括生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 UNet 中进行低噪声扩散处理)。UNet 是一种常用于图像处理的特别神经网络结构,包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像并重新组合)和跳跃连接(保留细节信息),能在放大图像时保持细节和准确性。 8 月 13 日的 ComfyUI 共学中,讨论了图像生成中分辨率和放大方式。不同模型有适合的分辨率,如 SD1.5 通用尺寸为 512×512 或 512×768,SDXL 基础尺寸为 1024×1024,生成图像前要选对尺寸。通过浅空间缩放放大图像时,直接对浅空间图片编辑放大,然后进行第二次采样和高清处理,直接放大不解码会模糊,需用较低采样系数增加细节。也可使用外置放大模型放大图像,默认放大 4 倍,可通过 resize image 节点调整尺寸,放大后要送回编码器进行采样处理。还提到图像对比节点、算力和资源获取、AI 绘图相关技术与工具、CLIP 和 CFG 的区别、搭建带 Lora 的图生图工作流等内容。 Comfyui PuLID 人物一致节点相关:节点插件 PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUI 。包括 model(使用预训练的基础文本到图像扩散模型)、pulid(加载的 PuLID 模型权重)、eva_clip(用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型)、face_analysis(使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部)、image(提供的参考图像用于插入特定 ID)、method(选择 ID 插入方法)、weight(控制 ID 插入强度)、start_at 和 end_at(控制在去噪步骤的应用阶段)、attn_mask(可选的灰度掩码图像),还有高级节点可进行更精细的生成调优。
2025-02-20
compy ui 是什么意思
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势:对显存要求相对较低,启动和出图速度快;具有更高的生成自由度;可以和 webui 共享环境和模型;可以搭建自己的工作流程,能导出流程并分享,报错时能清晰发现错误所在;生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 生图原理: Pixel Space 和 Latent Space:像素空间对应输入图像的像素空间,潜在空间中许多操作都在进行,图像被映射到潜在空间后,扩散过程在这个空间中进行。 扩散过程:噪声的生成和逐步还原,通过调度器控制,可选择不同的调度器控制如何在潜在空间中处理噪声和逐步去噪回归到最终图像,时间步数会影响图像生成的精细度和质量。 基础教程: 应用场景和不可替代性:ComfyUI 的 UI 界面复杂,连线方式类似搭建自动化工作流。从功能角度看,与 SD WebUI 提供的功能相同,只是呈现方式不同。这种连线方式的好处是可以根据需求搭建适合自己的工作流,无需依赖开发者,也能根据需求开发并改造某个节点。选择 ComfyUI 最核心的原因在于其自由和拓展。 案例:生成四格故事漫画。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-17
我要配置一台跑ComfyUI的电脑,请给我最具性价比的推荐
以下是为您推荐的跑 ComfyUI 最具性价比的电脑配置: 系统:Windows 7 以上。 显卡:建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),最低要求 NVDIA 独立显卡且显存至少 4G 起步。SDXL 出来后,最低需要 8GB 显存+32GB 运行内存,12GB 可流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配可能会经常爆显存。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。最好把软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 CPU:无特别要求,但如果您的电脑能顺畅清晰地玩 3A 游戏,那运行 ComfyUI 通常也没问题。 需要注意的是,ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。配置上不封顶,您可以根据自己的需求和预算来选择。
2025-02-15
comfyui的本地部署安装,GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G*2
以下是关于 ComfyUI 本地部署安装的相关信息: ComfyUI 相比 WebUI,配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 安装地址:https://github.com/comfyanonymous/ComfyUI 。可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComFYUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 您的电脑配置为 GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G2,可能需要注意内存方面可能不太满足推荐配置,可能会影响运行效果。
2025-02-13
我是一个UI界面设计师,现在我需要找一个UI界面设计的AI软件,能根据我的文字方案生成高大上的可视化界面UI图,或者能根据我设计的基本的UI界面图能进行优化
以下为您推荐几款可用于 UI 界面设计的 AI 软件: 1. Midjourney: 能生成数据图标、B 端图标设计、音乐软件 UI 设计等。 生成的图片在某些方面质感不错,但 UI 设计可能不规范、文字较乱,目前只能作为风格参考。 对于完全不懂 AI 绘图的新手来说容易上手。 设计指令:如果没想好输入哪些指令,可以先用指令模板「ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble」,把里面的“类型”替换成想设计的产品的关键词描述(英文),就能生成想要的 UI 设计图。 2. 星流一站式 AI 设计工具: 具有无限画布区域,包括浏览视图、操作快捷键查询、图像快捷修改。 浏览视图包括视图百分比调节、聚焦、画布清理等功能。 图像快捷操作有细节微调、整体微调、增强模型、提示词、用作图生图、用作图片参考等。 支持图像分享与信息查看,包括图像信息查看、生成分享链接与发送到 LiblibAI 等。
2025-02-13
RuntimeError: Couldn't clone Stable Diffusion. Command: "git" clone --config core.filemode=false "https://github.com/Stability-AI/stablediffusion.git" "/Users/lichenhui/stable-diffusion-webui/repositories/stable-diffusion-stability-ai" Error code: 12
以下是关于您遇到的“RuntimeError: Couldn't clone Stable Diffusion”错误的分析和解决建议: 这个错误通常表示在克隆 Stable Diffusion 时出现问题。可能的原因包括: 1. 库的某些文件或依赖项已更改或已移除,导致无法找到所需的提交。 2. Git 存储库的状态不正确。 3. 网络连接存在问题。 解决方法如下: 1. 尝试清除本地库并重新克隆 Stable Diffusion,然后再次运行代码。 2. 运行以下命令来检查网络连接:ping files.pythonhosted.org
2025-02-12
API是什么意思
API(Application Programming Interface,应用程序编程接口)就像是一个信差。它接受一端的请求,将您想要做的事情告知对应的系统,然后把返回的信息传递回给您。 例如在 GPT 中,通过预先配置的 Action 里的 TMDB API 可以获取电影相关的专有信息。当您询问某部电影的相关内容时,GPT 会识别您的意图,按照 Prompt 进行任务,使用 Action 去相应的数据库寻找相关数据,如取出 backdrop_path 作为主视觉图,然后处理剧情数据、生成背景知识,最后使用 webpilot 搜索评价并返回整理后的数据。 配置一个 Action 时,需要考虑 Schema(相当于操作手册,告诉 GPT 可以去哪、干什么、需要准备什么)、Available actions(可用行动,对应 operationId、get、path)、Authentication(认证,类似于身份证)、Privacy policy(隐私政策)。 Action 的工作流大致为:首先思考想要做什么样的 GPT 以及是否需要外部数据;然后去寻找所需的外部数据的 API 文档,或者自行开发 API,寻找可用的 Action;最后基于 API 文档编写 Action 里的 Schema 和 Prompt(处理取回信息的方式)。 如果对 Action 感兴趣,可以从系统学习 API 知识、在网上寻找可用的 API 练习、发掘 GPT Action 更多潜力等方向继续深入。
2025-02-20
AGI是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。OpenAI 致力于 AGI 的研发,其开发的 ChatGPT 就是相关成果之一。我们的使命是确保 AGI 造福全人类,它可以被视为人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-02-19
提示词框架是什么意思
提示词框架是为构建有效提示词提供的一种高度概括和结构化的方法,可看作是构建提示词的方法论或“元结构”。 目前,提示词工程师已发展出多种提示词框架,例如: ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)四个部分。 BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)五个方面。 CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)六个部分。 此外,还有一些标识符和属性词用于标识标题、变量、控制内容层级和标识语义结构。结构化提示词框架在行业内应用广泛且成熟度较高,您可以在很多平台看到优秀的案例。如果您对结构化提示词的理论感兴趣,还可以阅读李继刚和云中江树的相关详细理论原文。
2025-02-19
AGI是什么意思
AGI 指通用人工智能。在公众传播层面,部分人觉得大语言模型(LLM)具有 AGI 潜力,LeCun 反对。通用人工智能被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。 例如,OpenAI 原计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI,但由于埃隆·马斯克的诉讼而被推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不具备这样的能力。
2025-02-19
AGI是什么意思
AGI 指通用人工智能。在公众传播层面,它是一种能够完成任何聪明人类所能完成的智力任务的人工智能。部分人觉得大语言模型(LLM)具有 AGI 潜力,但也有人反对,比如 LeCun。OpenAI 原计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI,但由于埃隆·马斯克的诉讼而被推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不具备这样的能力。
2025-02-15