Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

compy ui 是什么意思

Answer

ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,具有以下特点:

  • 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。
  • 优劣势:
    • 优势:对显存要求相对较低,启动和出图速度快;具有更高的生成自由度;可以和 webui 共享环境和模型;可以搭建自己的工作流程,能导出流程并分享,报错时能清晰发现错误所在;生成的图片拖进后会还原整个工作流程,模型也会选择好。
    • 劣势:操作门槛高,需要有清晰的逻辑;生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。
  • 生图原理:
    • Pixel Space 和 Latent Space:像素空间对应输入图像的像素空间,潜在空间中许多操作都在进行,图像被映射到潜在空间后,扩散过程在这个空间中进行。
    • 扩散过程:噪声的生成和逐步还原,通过调度器控制,可选择不同的调度器控制如何在潜在空间中处理噪声和逐步去噪回归到最终图像,时间步数会影响图像生成的精细度和质量。
  • 基础教程:
    • 应用场景和不可替代性:ComfyUI 的 UI 界面复杂,连线方式类似搭建自动化工作流。从功能角度看,与 SD WebUI 提供的功能相同,只是呈现方式不同。这种连线方式的好处是可以根据需求搭建适合自己的工作流,无需依赖开发者,也能根据需求开发并改造某个节点。选择 ComfyUI 最核心的原因在于其自由和拓展。
    • 案例:生成四格故事漫画。

官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 。

请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:ComfyUI 是什么?

ComfyUI是一个基于节点流程式的stable diffusion AI绘图工具WebUI,你可以把它想象成集成了stable diffusion功能的substance designer,通过将stable diffusion的流程拆分成节点,实现了更加精准的工作流定制和完善的可复现性。[heading2]优劣势[content]优势:1.对显存要求相对较低,启动速度快,出图速度快;2.具有更高的生成自由度;3.可以和webui共享环境和模型;4.可以搭建自己的工作流程,可以导出流程并分享给别人,报错的时候也能清晰的发现错误出在哪一步;5.生成的图片拖进后会还原整个工作流程,模型也会选择好。劣势:1.操作门槛高,需要有清晰的逻辑;2.生态没有webui多(常用的都有),也有一些针对Comfyui开发的有趣插件。[heading2]官方链接[content]从github上下载作者部署好环境和依赖的整合包,按照官方文档按照即可:https://github.com/comfyanonymous/ComfyUI[heading2]截图示例[content][heading2]延伸阅读:[content]内容由AI大模型生成,请仔细甄别。

ComfyUI的生图原理 副本

ComfyUI是一个开源的图形用户界面,用于生成AI图像,主要基于Stable Diffusion等扩散模型。想要达到精准控制图像生成就要了解他的底层原理,这样才能做到什么时间什么节点用什么办法对其精准控制,以下是其工作原理的详细解释:[heading3]Pixel Space和Latent Space[content]Pixel Space(像素空间):图的左边表示输入图像的像素空间,在ComfyUI中,这个对应于你可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。在生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。Latent Space(潜在空间):ComfyUI中的应用:ComfyUI的许多操作都在潜在空间中进行,如KSampler节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在ComfyUI中,你可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。这部分通常由潜在空间操作模块来实现。[heading3]2.扩散过程(Diffusion Process)[content]噪声的生成和逐步还原:扩散过程表示的是从噪声生成图像的过程。在ComfyUI中,这通常通过调度器(Schedulers)控制,典型的调度器有Normal、Karras等,它们会根据不同的采样策略逐步将噪声还原为图像。你可以通过ComfyUI中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数TTT:在生成图像时,扩散模型会进行多个去噪步。图中展示的zTz_TzT代表不同时间步长下的潜在表示。在ComfyUI中,你可以通过控制步数来影响图像生成的精细度和质量。

ComfyUI基础教程—小谈

应用场景为什么使用(为什么要使用)不可替代性了解ComfyUI的概念和重要性首先SD WebUI的UI更像是我们传统使用的产品,有很多输入框,还有多个按钮。而ComfyUI的UI界面则非常复杂,除了输入框,还有很多一块块的东西,并且还有很多复杂的连线。的确,从学习成本来看,ComfyUI的学习成本会比SD WebUI高。但是这种连线其实并不复杂,你可以这么理解:这些小的方块跟SD WebUI的输入框和按钮是一样的,都是对参数进行配置。连线有点像在搭建一个自动化的工作流,从左到右依次运行。从功能的角度看,其实两个产品截图所提供的功能是一样的,只是ComfyUI变成了这种连线的方式。这种方式有很什么好处了?我们一起来看看这两个用ComfyUI搭建的工作流:对比两个工作流,你会发现它只是有一个节点不一样,一个是直接加载图片,一个是通过画板绘制图片。这样就实现了两个不同的功能(一个是导入图片生图,一个是绘图生图)。这就意味着,你可以通过改变节点的方式来改变工作流,从而实现不同的功能。这样做有两个好处:你可以根据自己的需求搭建适合自己的工作流,而不需要依赖开发者。你也可以根据自己的需求,去开发并改造某个节点。所以,选择ComfyUI最核心的原因就在于它的自由和拓展。那这就意味着你可以自己调整ComfyUI从而让它切合你的工作流,甚至改造你的工作流。在现在这种AI发展如此迅猛的时代,我认为保持灵活才是最重要的。说了这么多,我们来看一下ComfyUI的相关案例生成四格故事漫画

Others are asking
compy ui 工作流是什么意思
ComfyUI 的工作流包括以下方面: 1. 一般的 Workflow 概念:Workflow 是 ComfyUI 的节点结构及数据流运转过程。 2. 推荐的工作流网站: Openart.ai:流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元的套餐后每月有 5000 积分。 ComfyWorkflows 网站:支持在线运行工作流,实际下载量和访问量略少于 openart。 Flowt.ai:https://flowt.ai/community 3. FLUX 低显存运行工作流: 目的是让 FLUX 模型能在较低显存情况下运行。 分阶段处理思路: 初始生成在较低分辨率下进行以提高效率。 采用两阶段处理,先用 Flux 生成,后用 SDXL 放大,有效控制显存使用。 使用 SD 放大提升图片质量。 工作流流程: 初始图像生成(Flux):包括 UNETLoader 加载 flux1dev.sft 模型、DualCLIPLoader 加载 t5xxl 和 clip_l 模型等步骤。 初始图像预览。 图像放大和细化(SDXL):包括 CheckpointLoaderSimple 加载 SDXL 模型、UpscaleModelLoader 加载 RealESRGAN_x4.pth 用于放大等步骤。 最终图像预览。 4. 换装服饰一致性工作流: 应用场景:电商服饰行业、换装、虚拟试穿等。 整体思路: 首先生成适合服装的模特,很多时候换装效果不好是因为服装和人物不匹配,可抽卡抽到满意模特后进入第二步。 第二步进行高精度换装,先预处理拼出 mask,然后重绘 mask 区域。 模特生成:加入 Redux 模型,强度不用太高,让提示词生效。 服装高精度处理:包括 mask 的处理,使用 Flux 的 fill 模型,提示词书写格式有特定要求,Redux 权重需调整为最大。
2025-02-17
ComfyUI中的放大插件
ComfyUI 中的放大插件相关知识如下: 通过使用神经网络对潜在空间进行放大,无需使用 VAE 进行解码和编码,此方法比传统方式快很多且质量损失小。插件项目地址:https://github.com/Ttl/ComfyUi_NNLatentUpscale?tab=readmeovfile 。潜在表示是神经网络处理图像时生成的压缩版本,包含图像主要特征信息,处理潜在表示更快且资源消耗更少。其流程包括生成潜在表示(生成低分辨率图像)、放大潜在表示、生成高分辨率图像(将放大的潜在图像反馈到稳定扩散 UNet 中进行低噪声扩散处理)。UNet 是一种常用于图像处理的特别神经网络结构,包括编码部分(逐步缩小图像提取重要特征)、解码部分(逐步放大图像并重新组合)和跳跃连接(保留细节信息),能在放大图像时保持细节和准确性。 8 月 13 日的 ComfyUI 共学中,讨论了图像生成中分辨率和放大方式。不同模型有适合的分辨率,如 SD1.5 通用尺寸为 512×512 或 512×768,SDXL 基础尺寸为 1024×1024,生成图像前要选对尺寸。通过浅空间缩放放大图像时,直接对浅空间图片编辑放大,然后进行第二次采样和高清处理,直接放大不解码会模糊,需用较低采样系数增加细节。也可使用外置放大模型放大图像,默认放大 4 倍,可通过 resize image 节点调整尺寸,放大后要送回编码器进行采样处理。还提到图像对比节点、算力和资源获取、AI 绘图相关技术与工具、CLIP 和 CFG 的区别、搭建带 Lora 的图生图工作流等内容。 Comfyui PuLID 人物一致节点相关:节点插件 PuLID ComfyUI https://github.com/cubiq/PuLID_ComfyUI 。包括 model(使用预训练的基础文本到图像扩散模型)、pulid(加载的 PuLID 模型权重)、eva_clip(用于从 ID 参考图像中编码面部特征的 EvaCLIP 模型)、face_analysis(使用 InsightFace 模型识别和裁剪 ID 参考图像中的面部)、image(提供的参考图像用于插入特定 ID)、method(选择 ID 插入方法)、weight(控制 ID 插入强度)、start_at 和 end_at(控制在去噪步骤的应用阶段)、attn_mask(可选的灰度掩码图像),还有高级节点可进行更精细的生成调优。
2025-02-20
我要配置一台跑ComfyUI的电脑,请给我最具性价比的推荐
以下是为您推荐的跑 ComfyUI 最具性价比的电脑配置: 系统:Windows 7 以上。 显卡:建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),最低要求 NVDIA 独立显卡且显存至少 4G 起步。SDXL 出来后,最低需要 8GB 显存+32GB 运行内存,12GB 可流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配可能会经常爆显存。 硬盘:留有足够的空间,最低 100G 起步(包括模型)。最好把软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 CPU:无特别要求,但如果您的电脑能顺畅清晰地玩 3A 游戏,那运行 ComfyUI 通常也没问题。 需要注意的是,ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。配置上不封顶,您可以根据自己的需求和预算来选择。
2025-02-15
comfyui的本地部署安装,GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G*2
以下是关于 ComfyUI 本地部署安装的相关信息: ComfyUI 相比 WebUI,配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 安装地址:https://github.com/comfyanonymous/ComfyUI 。可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComFYUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 您的电脑配置为 GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G2,可能需要注意内存方面可能不太满足推荐配置,可能会影响运行效果。
2025-02-13
我是一个UI界面设计师,现在我需要找一个UI界面设计的AI软件,能根据我的文字方案生成高大上的可视化界面UI图,或者能根据我设计的基本的UI界面图能进行优化
以下为您推荐几款可用于 UI 界面设计的 AI 软件: 1. Midjourney: 能生成数据图标、B 端图标设计、音乐软件 UI 设计等。 生成的图片在某些方面质感不错,但 UI 设计可能不规范、文字较乱,目前只能作为风格参考。 对于完全不懂 AI 绘图的新手来说容易上手。 设计指令:如果没想好输入哪些指令,可以先用指令模板「ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble」,把里面的“类型”替换成想设计的产品的关键词描述(英文),就能生成想要的 UI 设计图。 2. 星流一站式 AI 设计工具: 具有无限画布区域,包括浏览视图、操作快捷键查询、图像快捷修改。 浏览视图包括视图百分比调节、聚焦、画布清理等功能。 图像快捷操作有细节微调、整体微调、增强模型、提示词、用作图生图、用作图片参考等。 支持图像分享与信息查看,包括图像信息查看、生成分享链接与发送到 LiblibAI 等。
2025-02-13
RuntimeError: Couldn't clone Stable Diffusion. Command: "git" clone --config core.filemode=false "https://github.com/Stability-AI/stablediffusion.git" "/Users/lichenhui/stable-diffusion-webui/repositories/stable-diffusion-stability-ai" Error code: 12
以下是关于您遇到的“RuntimeError: Couldn't clone Stable Diffusion”错误的分析和解决建议: 这个错误通常表示在克隆 Stable Diffusion 时出现问题。可能的原因包括: 1. 库的某些文件或依赖项已更改或已移除,导致无法找到所需的提交。 2. Git 存储库的状态不正确。 3. 网络连接存在问题。 解决方法如下: 1. 尝试清除本地库并重新克隆 Stable Diffusion,然后再次运行代码。 2. 运行以下命令来检查网络连接:ping files.pythonhosted.org
2025-02-12
AGI是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。OpenAI 致力于 AGI 的研发,其开发的 ChatGPT 就是相关成果之一。我们的使命是确保 AGI 造福全人类,它可以被视为人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-02-19
提示词框架是什么意思
提示词框架是为构建有效提示词提供的一种高度概括和结构化的方法,可看作是构建提示词的方法论或“元结构”。 目前,提示词工程师已发展出多种提示词框架,例如: ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)四个部分。 BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)五个方面。 CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)六个部分。 此外,还有一些标识符和属性词用于标识标题、变量、控制内容层级和标识语义结构。结构化提示词框架在行业内应用广泛且成熟度较高,您可以在很多平台看到优秀的案例。如果您对结构化提示词的理论感兴趣,还可以阅读李继刚和云中江树的相关详细理论原文。
2025-02-19
AGI是什么意思
AGI 指通用人工智能。在公众传播层面,部分人觉得大语言模型(LLM)具有 AGI 潜力,LeCun 反对。通用人工智能被定义为一种能够完成任何聪明人类所能完成的智力任务的人工智能。 例如,OpenAI 原计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI,但由于埃隆·马斯克的诉讼而被推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不具备这样的能力。
2025-02-19
AGI是什么意思
AGI 指通用人工智能。在公众传播层面,它是一种能够完成任何聪明人类所能完成的智力任务的人工智能。部分人觉得大语言模型(LLM)具有 AGI 潜力,但也有人反对,比如 LeCun。OpenAI 原计划在 2027 年发布的 Q2025(GPT8)将实现完全的 AGI,但由于埃隆·马斯克的诉讼而被推迟。GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步,而早期的模型则不具备这样的能力。
2025-02-15
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),通常指一种能够完成任何聪明人类所能完成的智力任务的人工智能系统,能够在许多领域内以人类水平应对日益复杂的问题。例如,像 GPT3 及其半步后继者 GPT3.5 在某种程度上是朝着 AGI 迈出的巨大一步。OpenAI 致力于 AGI 的研发,其开发的 ChatGPT 就是相关成果之一。我们的使命是确保 AGI 造福全人类,从某种意义上说,AGI 是人类进步脚手架上的另一个工具。
2025-02-14