Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI智能体在企业应用案例

Answer

以下是一些 AI 智能体在企业中的应用案例:

  • 决策智能体:
    • 以 Anterior 为例,它是一家健康计划自动化公司,开发了用于自动化理赔提交审核的临床决策引擎。将付款方规则转换为有向无环图,智能体遍历决策树,利用 LLM 评估相关临床文件是否符合规则,在复杂任务中选择最佳方法并更新状态,直至最终确定。
    • Norm AI 正在为监管合规打造 AI 智能体,Parcha 正在为 KYC 建立智能体。
  • 检索增强生成(RAG):
    • 以 Sana 的企业搜索用例为例,应用程序加载和转换无结构文件,将其分块并作为向量嵌入存储在数据库中。当用户提问时,系统检索相关上下文块,折叠到“元提示”中与检索信息一起喂给 LLM,合成答复返回给用户。
    • Eve 法律研究的共同驾驭员会将研究查询分解为独立提示链,运行每个提示链生成中间输出,并综合编写最终备忘录。
  • 生成式 AI 应用:
    • 具有搜索、合成和生成三个核心用例,Menlo Ventures 投资组合公司如 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)是早期突破性的代表。
    • 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,拓展 AI 能力边界,实现端到端流程自动化。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 智能体:企业自动化的新架构 - Menlo Ventures

我们将探讨的第一类智能体是决策智能体,它们使用智能体决策制定在复杂、多步骤的推理流程中导航并做出业务决策。与RAG或工具使用方法不同,这种架构首次将一定的控制逻辑交给LLMs,而不是预先设定所有步骤-但仍位于智能体自由度范围的较低端,因为智能体主要作为路由器导航一组预先确定的决策树。让我们以[Anterior](https://www.anterior.com/)(前称Co:Helm)为例。该健康计划自动化公司开发了一个临床决策引擎,用于自动化理赔提交审核。护士们如今凭借装满条件知识(就像世界上最无聊的"自选冒险")的付款人规则手册,人工完成这些审核。Anterior简化了这个过程。该公司首先将付款方规则转换为有向无环图(DAG),使用基于规则的脚本和语言模型。然后,他们的智能体遍历这个决策树,在每个节点利用LLMs来评估相关的临床文件是否符合特定的规则。对于较简单的节点,这可能涉及基本的检索增强型生成(RAG)步骤。但是,Anterior经常遇到需要子链的更复杂的任务,在这种情况下,智能体必须选择最佳方法,然后才能进入下一个节点。它会在每次决策时更新自己的状态(在内存中管理这些中间输出),并一直进行到最终确定。前者并非独一无二的采取这种方法。其他领域也在利用决策智能体,包括[Norm AI](https://norm.ai/)正在为监管合规打造AI智能体,以及[Parcha](https://www.parcha.com/)正在为KYC建立智能体。

AI 智能体:企业自动化的新架构 - Menlo Ventures

设置基线:RAG是当今大多数现代人工智能应用程序的标准架构。让我们以Sana的企业搜索用例为例,了解它在幕后的工作原理。该过程始于应用程序加载和转换无结构文件(如PDF、幻灯片、文本文件)跨越企业数据孤岛,如Google Drive和Notion,转换为LLM可查询格式,通常通过像[Unstructured](https://menlovc.com/portfolio/unstructured/)*这样的数据预处理引擎进行。这些文件现在被"分块"成更小的文本块,以实现更精确的检索,并作为向量嵌入和存储在像[Pinecone](https://menlovc.com/portfolio/pinecone/)*这样的数据库中。当用户向AI应用程序提出问题时(例如,"总结我与公司X会议的所有笔记"),系统会检索语义上最相关的上下文块,并将其折叠到"元提示"中,与检索到的信息一起馈送给LLM。然后,LLM会从检索到的上下文中合成一个整洁的带有项目符号的答复返回给用户。当然,该图仅说明了一个带有一个LLM调用的单一检索步骤。在生产中,AI应用程序具有更复杂的应用程序流程,包含数十甚至数百个检索步骤。这些应用程序通常具有"提示链",其中一个检索步骤的输入馈送到下一步,并且不同类型的任务并行执行多个"提示链"。然后将结果综合在一起,以生成最终输出。[Eve](https://menlovc.com/portfolio/eve/)*法律研究的共同驾驭员,例如,可能会将针对《第七篇》的研究查询分解为专注于预定子主题的独立提示链,如雇主背景、就业历史、《第七篇》、相关案例法和原告案件支持证据。LLMs然后运行每个提示链,为每个生成中间输出,并综合各输出编写最终备忘录。

AI 智能体:企业自动化的新架构 - Menlo Ventures

生成式AI应用当前有三个核心用例与强大的产品市场契合度:搜索、合成和生成。Menlo Ventures投资组合公司如[Sana](https://menlovc.com/portfolio/sana-labs/)*(企业搜索)、[Eve](https://menlovc.com/portfolio/eve/)*(法律研究副驾驶)和[Typeface](https://menlovc.com/portfolio/typeface/)*(内容生成AI)在这些类别中都是早期突破性的代表,其中心是LLMs的少样本推理能力。但是生成式人工智能的承诺远远超越了这第一波核心使用案例。能为您阅读和写作的人工智能很棒,但更令人兴奋的是能够代表您思考和行动的人工智能。为此,我们已经看到领先的应用程序构建商如[Anterior](https://www.anterior.com/)、[Sema4](https://sema4.ai/)和[Cognition](https://www.cognition.ai/)正在建立解决方案,来处理之前只能由大量人力来解决的工作流程。借助多步逻辑、外部内存以及访问第三方工具和API等新型构建块,下一波智能体正在拓展AI能力的边界,实现端到端流程自动化。在我们深入探讨人工智能体领域的过程中,我们将概述Menlo对新兴市场的论点——首先定义什么是智能体以及什么使它们成为可能。我们将追溯[现代人工智能技术栈](https://menlovc.com/perspective/the-modern-ai-stack-design-principles-for-the-future-of-enterprise-ai-architectures/)从少量样本指令到检索增强型生成(RAG)再到完备的智能体系统的架构演化过程,然后探讨这一范式转变对应用和基础设施层面的影响。

Others are asking
AI企业应用
以下是关于 AI 企业应用的相关内容: 2024 年小型企业的人工智能应用新纪元:随着人工智能技术的迅猛发展,2023 年成为小型企业运用这一技术的关键一年。小型企业可通过多种 AI 应用程序提高效率、优化营销策略和改进客户服务,以下是七个重要的 AI 应用程序,正推动小型企业转型。 企业构建和购买生成式 AI 方式的 16 个变化:在应用方面,将会更多迁移到具体业务场景。目前企业正在自行构建而非购买应用程序,但当更多面向企业的 AI 应用上市时情况可能改变。一些企业领导者认为会有新工具出现,并愿意使用市面上最好的工具。GenAI 正成为一种“战略工具”,允许企业将某些功能内部化,而非依赖外部供应商。那些能在“LLM + UI”公式之外创新,重新思考企业基本工作流程或帮助企业更好利用专有数据的应用,将在市场上表现出色。 3.1 案例:AI 产品案例严选 AI+工作场景:包括企业运营(如日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询、法律文书起草等)、教育(协助评估学生学习情况、定制化学习内容等)、游戏/媒体(定制化游戏、出海文案内容生成等)、零售/电商(舆情监测分析、品牌营销内容撰写等)、金融/保险(个人金融理财顾问、识别欺诈活动风险等)等七大行业的商业化应用。
2024-09-04
生成App的logo的AI工具哪个好
以下是一些生成 App logo 的较好的 AI 工具: 1. Looka:在线 Logo 设计平台,利用 AI 理解用户品牌信息和偏好,生成多种设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答问题生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo,用户可选择元素和风格。 4. LogoMakr:提供简单易用的 Logo 设计工具,可利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,有 AI 辅助设计建议。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,能根据输入快速生成方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:https://waytoagi.com/category/20 。使用这些工具时,通常可根据品牌理念和视觉偏好,通过简单交互获得设计方案,并进一步定制优化至满意。
2025-02-20
ai概念第一次是被谁提出来的,什么时候?
AI 概念首次被提出是在 1956 年的达特茅斯会议上。这次会议由时任达特茅斯学院的数学助理教授约翰·麦卡锡发起,邀请了包括马文·明斯基、克劳德·香农、艾伦·纽厄尔、赫伯特·西蒙等多位杰出科学家参与。约 47 位参与者就自动计算机、编程语言、神经网络、计算理论等多个前沿话题进行了深入讨论,并首次提出了“人工智能”(Artificial Intelligence)这一术语,为这个新兴领域正式命名。在此之前,艾伦·图灵和约翰·冯·诺依曼等人通过理论和实践为 AI 奠定了初步的理论基础。1943 年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。此后近 70 年,AI 的发展起起落落。
2025-02-20
ai之后会取代人类么?
AI 是否会取代人类是一个复杂且备受争议的问题。 一方面,有人认为人类会被取代。比如丁一认为,AI 认识事物比人类更清晰、准确和全面,人类的所有工作,包括具有创造性的工作,都可能被 AI 取代。未来地球将是硅基生物(集成了 AI)的天下,因为当函数的参数超过兆亿级时,AI 便能理解人类的所有行为及背后的意义,实现对人类的全面超越。按照目前 AI 的发展速度,5 年时间行业就会有巨大变化,十几年内人类的所有事情乃至人类种族可能被完全替代。 另一方面,也有人认为人类不会被完全取代。在音乐行业,版权公司不需要焦虑,虽然 AI 辅助下音乐版权大量涌入,但这与过去独立音乐人版权涌入类似,是不同的生态。版权公司仍可通过独到的内容把控能力挑选优质作品。而且即使部分工作被 AI 替代,人类也会有新的岗位。但也存在担心,比如人类可能把想象和思考的权力交给 AI,逐渐退化思考和自主决策的能力,导致决策权出让给 AI。
2025-02-20
deepseek相比其他AI工具有什么优势
DeepSeek 相比其他 AI 工具的优势主要体现在以下方面: 1. 在写文方面全面领先。 2. 训练成本虽高,但定价低于实际成本。 然而,DeepSeek 也存在一些不足: 1. 对于协助编程,最大的上下文长度只有 64k,导致无法处理更长的上下文和更复杂的代码项目。 2. 在写文时,长文会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。
2025-02-20
AI 社交陪伴 产品
以下是为您整理的关于 AI 社交陪伴产品的相关信息: Butterflies AI: 公司简介:成立仅半年的初创公司,专注于开发人类与 AI 共存的社交软件,成功融资 480 万美元。 产品特点:推出“人类与 AI 共存”的社交平台,界面类似 Instagram。用户可创建具有独特个性的 AI 朋友“蝴蝶”,通过设定参数展现不同社交行为。依赖公共 AI 模型及公司自有技术,能在几分钟内创建 AI 朋友。虚拟角色有完整资料、背景故事等,并会自动发布内容与用户和其他 AI 互动。公司长期目标是提升 AI 真实感。 市场反响:用户喜欢产品概念,但也有更多期待。 其他相关信息: 2023 年,除了 ChatGPT 外,其他应用表现一般。文生图产品在颠覆创意设计行业,但存在废图多、细节修改靠人、付费有限等问题。AI 陪聊(AI 男女朋友)类陪伴型聊天产品是 2023 年唯一实现突破的 2C 产品,具有巨大潜力。AI 法律文书是 2023 年在 2B 行业唯一基本成熟的应用。 2023 年,互联网大厂中有多家已入局 AI 赛道,推出多款产品及功能服务,如腾讯音乐的“未伴”APP、腾讯阅文的“筑梦岛”APP、抖音的“抖音心晴”等。大模型在招投标市场预算规模集中在 10 万 500 万区间,需求两极分化明显,下半年平均项目预算呈上升趋势。
2025-02-20
Name card design AI tools
以下是一些设计名片的 AI 工具: 1. Canva(可画):https://www.canva.cn/ 是非常受欢迎的在线设计工具,提供大量模板和设计元素,用户通过简单拖放操作创建海报,其 AI 功能可帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,用户可快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 此外,一泽 Eze 提出通过 1 句提示词和 1 个品牌 Logo 即可利用 Claude Artifacts(非 AIGC 文生图产品)生成超级符合品牌调性的创意名片,整个流程简单,生成过程中需注意提示词目的是设计符合品牌调性的创意名片,Logo 建议使用清晰、底图透明的 PNG 格式,若生成结果不符合预期,可尝试让模型重新生成或与 AI 对话提出修改意见。 以下是一些生成 Logo 的 AI 产品: 1. Looka:在线 Logo 设计平台,使用 AI 理解用户品牌信息和设计偏好,生成多个设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过回答系列问题生成 Logo 选项。 3. Designhill:Logo 制作器使用 AI 技术创建个性化 Logo,用户选择不同元素和风格,AI 生成设计方案。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户拖放设计,利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,利用 AI 辅助设计建议创建品牌标识。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据输入快速生成设计方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块获取更多好用的工具:
2025-02-20
AI 智能体在企业落地
以下是关于 AI 智能体在企业落地的相关内容: 决策智能体方面: 决策智能体使用智能体决策制定在复杂、多步骤的推理流程中导航并做出业务决策。 以 Anterior 为例,其将付款方规则转换为有向无环图(DAG),智能体遍历决策树,在每个节点利用 LLMs 评估相关临床文件是否符合特定规则,遇到复杂任务时选择最佳方法并更新自身状态。 其他领域如 Norm AI 为监管合规打造 AI 智能体,Parcha 为 KYC 建立智能体。 相关人物与业务方面: 韦恩是智能体创业者、WayToAGI 共建者、微软提示词工程师、多平台 Agent 开发者、企业级 AI Agent 定制专家,荣获多家 AI 开发平台比赛奖项,有 12 年程序开发背景,是多家企业的 AI 落地顾问,承接 1v1 辅导、智能体培训、智能体定制开发、企业 AI 项目落地等业务。 生成式 AI 应用方面: 生成式 AI 应用当前有搜索、合成和生成三个核心用例与强大的产品市场契合度。 领先的应用程序构建商如 Anterior、Sema4 和 Cognition 正在建立解决方案,处理之前只能由大量人力解决的工作流程。 借助多步逻辑、外部内存以及访问第三方工具和 API 等新型构建块,下一波智能体正在拓展 AI 能力的边界,实现端到端流程自动化。
2025-02-16
flowith 2.0与refly的区别具体在哪里?
Flowith 2.0 与 Refly 的区别主要体现在以下方面: 功能定位:Refly 是一款国产应用,是全站式的文本创作工具,集成了“知识库+自由画布+AI 搜索+内容编辑”等功能,覆盖主题搜索、思维拓展、在线文档、文本优化等完整创作链条的每一个环节。Flowith 2.0 是一款出海应用,有成为订阅制 AI 知识社区的野心。 知识库:Flowith 2.0 的知识库允许自行上传制作并发布,还可以自由添加(或购买)他人已经发布的知识库,这是其作为 AI 付费订阅知识社区的基本雏形,而 Refly 没有此功能。 内容编辑器:Flowith 2.0 的内容编辑器有 Markdown、图片编辑器、代码编辑器、实时语音聊天等几种不同的模式,Refly 未提及有此多样的模式。 交互设计:Flowith 2.0 继承并优化了 1.0 版本的交互设计,尤其是 Agent 功能设计(包括 Project 功能、Oracle 模式、Agent Community 等)得到了强化,以及依旧流畅酷炫的对话模式(包括插件模式、比较模式、图片/视频生成模式等),Refly 未提及相关内容。 团队协作:Flowith 2.0 支持团队协作,允许邀请外部协作者评论、共同编辑当前 Flow,Refly 未提及此功能。
2025-02-13
智能体在电商领域的应用
智能体在电商领域有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更好的商品推荐效果。 2. 工作流协作:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个智能体完成各项功能,并由调度中枢协调工作和决策。 在品牌卖点提炼方面: 1. 构建中对结构的理解和控制最为重要,旨在提供结构化思路,单点可通过不断迭代完善。品牌卖点提炼助手本质是办公助手,能为有营销思维的团队提供思路,提高团队效率。 2. 实际搭建需根据公司业态调整,给智能体更多提示词提升分析合理性。不同行业的线上、线下和人员触点不同,遵循营销管理流程保证输出,调整提示词提升准确度。营销管理结构化提示词中避免依赖举例,决策和洞察力仍依赖人员,智能体作为灵感助手辅助决策。 3. 最终提炼的品牌卖点应用于与用户交互的所有场景,即触点,包括线上(如微信、抖音等平台)、线下(产品到达消费者手上的场景或线下实体门店场景)和人员(线上直播间、人工客服或线下销售人员等)触点。在最终步骤,需找到所有传达品牌卖点的场景,结合需求制作落地页或沟通话术,建立品牌价值。
2024-12-20
AI智能体在电商领域可落地的应用
AI 智能体在电商领域有以下可落地的应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,从而提供更好的商品推荐效果。 2. 工作流优化:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个完成不同功能的智能体,并由调度中枢协调工作和决策。 3. 品牌卖点提炼:AI 在逻辑推理、数据分析、内容理解和输出上有独特优势,可搭建品牌卖点提炼助手。但在搭建前需明确 AI 的能力边界,如对公司产品、独特之处、核心渠道等了解有限。AI 更适合做引导型助手,在寻找卖点陷入停滞时提供更多思考维度。实际搭建时,除遵循营销管理流程保证输出合理,还需根据公司业态调整智能体提示词以提升信息准确度。对于电商产品,需考虑线上线下不同触点和人员等因素。
2024-12-19
AI智能体在电商领域营销助手应用
AI 智能体在电商领域营销助手方面有以下应用: 1. 品牌卖点提炼: 智能体的构建中,理解和控制结构最为重要,其本质是办公助手,能为有营销思维的团队提供思路,提高效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。例如电商产品,线上触点有淘系、京东系等电商平台和抖音、小红书等兴趣电商内容平台,线下触点包括产品包装、包裹等,人员触点有销售人员等;线下实体服务行业,线上触点有大众点评/美团等,线下触点有门店展示等。 遵循营销管理流程构建智能体可保证输出准确,调整提示词能提升某部分助手信息准确度,但注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。 2. 电商导购: 以“什么值得买”智能体为例,用户输入“我想买个笔记本电脑”,智能体会提取关键词,通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类垂直搜索应用,提升商品推荐效果。 工作流 Workflow 可理解为多智能体协作,通过多个智能体组装解决复杂场景搜索问题,如新产品取名,涉及多个步骤和智能体,还需调度中枢协调工作和决策。 3. 搭建智能体提炼品牌卖点: AI 在逻辑推理、数据分析等方面有强项,可用于品牌卖点提炼,搭建品牌卖点提炼助手。 搭建前要明确 AI 能力边界,如 AI 不了解公司产品、独特之处等。 AI 真正的能力是逻辑推理、处理分析数据等,确定的智能体更适合做引导型助手,在寻找卖点陷入停滞时提供思考维度。
2024-12-19
AI智能体在电商领域到底能做什么
AI 智能体在电商领域主要有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入购买需求,如“我想买个笔记本电脑”,智能体会提取关键词,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更精准的商品推荐。 2. 工作流协作:通过多个智能体的组装,解决复杂场景的搜索问题。例如给新产品取名,定义多个智能体分别负责不同功能,如给出建议名字、检索是否同名等,同时需要调度中枢协调工作,决定是继续下一步还是回溯。 3. 决策支持:如在理赔提交审核中,将付款方规则转换为有向无环图,智能体遍历决策树,利用语言模型评估相关文件是否符合规则,并在复杂任务中选择最佳方法。 4. 品牌卖点提炼:实际搭建中,遵循营销管理流程保证输出合理性,根据电商业态调整单独智能体的提示词提升信息准确度,为营销团队提供更广阔思路和灵感。
2024-12-19
目前通过AI给自己擅长的领域赋能,且已经产生收益的案例有哪些
以下是一些通过 AI 给自己擅长的领域赋能且已经产生收益的案例: 在法律法规领域,AI 已在多个方面带来重大进展和效率提升,如交通监控、银行账户欺诈检测、工业大规模安全关键实践的控制,以及加速新药发现和应对气候变化的技术等。 在企业应用方面,工作流程自动化平台 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率;Palo Alto Networks 利用 AI 降低了处理费用的成本;Hubspot 利用 AI 扩大了能够支持的用户规模;瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。如今,成千上万的公司正在将 AI 整合到他们的工作流程中,以扩张规模和降低成本。
2025-02-20
AI应用在PPT生成的案例
以下是关于 AI 应用在 PPT 生成的案例: 1. 在“直播一期:知识库及 GPT 基础介绍”中提到,GPT 可以用于 PPT 生成,相关链接: 。 2. 在“给小白的 AI 产品推荐”中,推荐了国内的爱设计 PPT 作为 AI 辅助制作 PPT 的产品。其背后有强大的团队,能敏锐把握市场机遇,已确立市场领先地位,代表了国内 AI 辅助 PPT 制作的高水平。 3. 在“熊猫 Jay:超全的 AI 工具生成 PPT 的思路和使用指南,收获培训奖励 1000”中提到,目前市面上大多数 AI 生成 PPT 的主要思路为:AI 生成 PPT 大纲,手动优化大纲,导入工具生成 PPT,优化整体结构。并推荐了关于 ChatGPT 原理和提示词的文章。
2025-02-19
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
飞书接入deepseek 多维表格处理案例
以下是关于飞书接入 DeepSeek 多维表格处理的相关案例和信息: 自定义 AI(DeepSeek 版):https://bytedance.larkoffice.com/base/extension/replit_3f6c0f185eac23fb ,支持 DeepSeek R1、V3 模型,以及 DeepSeek 官方、火山方舟、硅基流动三个服务商。 有案例如“笨笨 v 泡泡”的 deepseekr1:7b 模型行测试题分析过程及结果,可参考:https://mp.weixin.qq.com/s/kjYiRS9RE25vywm0EsP6A?token=8615663&lang=zh_CN 。 相关文章和教程: 《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》:https://waytoagi.feishu.cn/wiki/RZE9wP94tiEO6bkU5cTcyecHnnb 。 《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》:https://waytoagi.feishu.cn/wiki/HzHSwEwtCiBmWrkRm6fc0J0Qneh 。 《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》:https://mp.weixin.qq.com/s/aIi4tIy0CCINyQE_3AfF_Q ,介绍了如何结合实现批量处理信息、提升工作效率等。 飞书多维表格的接入方法在整理列上这两天直播教程中的所有模板中有提及。 2 月 10 日的社区动态中有 DeepSeek R1 赏析分享会等相关内容。 2 月 14 日的社区动态中有关于另外一款推理模型 zero 的推理过程等相关内容。
2025-02-17