Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是一名主要服务于企业的律师,怎样才能得到ai最大化的帮助

Answer

作为服务于企业的律师,要得到 AI 最大化的帮助,可以从以下几个方面入手:

律师的优势:

  1. 具备深厚的法律专业知识,能提供专业的法律分析和建议。
  2. 在沟通和谈判中能够与各方建立信任、表达观点、促成交易等。
  3. 能够针对新兴行业或监管空白提出合规建议。
  4. 作为专业人士,在危机应对时能在紧急情况下做出专业判断,提供及时的法律建议和解决方案。

律师的不足:

  1. 处理大量信息和数据时人工效率有限,如大量文件调查中的数据提取和整理。
  2. 处理细节方面可能难以记住各类案件中的所有事实和细节,尤其在复杂案件中。
  3. 在处理复杂案件时,可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。

AI 的优势:

  1. 信息检索与整理:能迅速从大量数据中检索相关信息,提取和整理案件相关资料。
  2. 模式识别与预测:通过导入历史数据和参考信息,设定指令,可以预测案件的可能结果,辅助制定诉讼策略。
  3. 自动化文档处理:能够自动生成和修改标准化文本与合同,减少律师在文档起草和修订上的工作量。
  4. 多任务处理能力:可以同时处理多个任务,不受时间和体力的限制,对于同时处理基础任务能够极大提高效率。

AI 的不足:

  1. 法律解释与推理:难以像专业的法律人一样,推演复杂的法律解释和论证。特别是在涉及交叉多个法律领域或需要深入社会背景解读法条时,能力非常有限。
  2. 理解道德和情感:难以理解案件中涉及的复杂情感和动机。
  3. 创新或个性化的服务:难以提供客户的综合性需求来提供个性化的法律服务,因为大模型是基于预设的数据和规则,不能及时采集到客户所有的即时信息,很难超出语料的内容生成创新且专业的答案,因此很难针对性地为客户提供专业服务。

律师与 AI 协同的关键在于:根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导 AI 发挥其最大的效用。例如,在处理信息检索与整理任务时,律师可以指导 AI 精确抓取相关法律法规、先例判决等关键信息,能够迅速获得案件准备所需的素材,花更多的时间进行法律分析。当需要自动化处理文档时,律师可以指导 AI 生成和修改标准化合同。给出类似“根据提供的模板,自动生成一份关于 XX 事项的合同草案,并标注出需要人工审核的关键条款”的 prompt。

同时,要认识到 AI 存在一定的“不稳定性”,不能期待设计一个完美的提示词就能得到完美答案,提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在与 AI 的对话中产生,并且在对话中限缩自己思维中的模糊地带。

Content generated by AI large model, please carefully verify (powered by aily)

References

潘帅:手把手分享法律人如何用好AI — Prompt篇

律师在沟通和谈判中能够与客户方、相对方、其他机构建立信任、表达观点、促成交易等。3.创造性解决问题:律师能够针对新兴行业或监管空白提出合规建议,如为新技术制定合法性指导。4.危机应对:律师作为专业人士,恰恰需要具备能够在紧急情况下能做出专业判断,提供及时的法律建议和解决方案。律师不擅长的方面1.处理大量信息和数据:在需要处理大量文本和数据的情况下,律师人工的效率非常有限,如大量文件调查中的数据提取和整理。2.处理细节:律师可能难以记住各类案件中的所有事实和细节,如:时间,人物,金额,关系,尤其是在复杂案件中。3.精力与情绪:在处理复杂案件时,律师可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。基于以上,律师和Ai的协同并非简单相加,而是一种借助互相优势、相互加持的关系。律师在运用大模型这一强大工具时,最关键的任务是:如何根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导AI发挥其最大的效用。在处理信息检索与整理任务时,律师可以指导AI精确抓取相关法律法规、先例判决等关键信息,能够迅速获得案件准备所需的素材,花更多的时间进行法律分析。当需要自动化处理文档时,律师可以指导AI生成和修改标准化合同。例如,给出prompt“根据提供的模板,自动生成一份关于XX事项的合同草案,并标注出需要人工审核的关键条款”。这样,律师可以在保证合同质量的同时,大幅减少在文档起草和修订上的工作量。

拘灵遣将 | 不会写 Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好 AI 这件事

《浮士德》《一千零一夜》《酉阳杂俎》……各个地区各个时代的神怪小说一个非常重要的故事类型就是“当你面对一个‘似人非人拥有神力/魔法的异类’时,许愿没有许清楚会有什么倒霉下场。”时间到了我们这个时代,你真的想要AI发挥出期待的效果的话,最好也学习一下古人早就总结出来的智慧。(xs最好的AI提示词编写启蒙书其实是《一千零一夜》)2.基于祂“似人”的一面,你最好从一开始就接受祂会存在的“不稳定性”。也就是说,即使你的指令再清晰,祂也可能会学习人类思维磨洋工、乱搞、不执行,而你需要教育祂、监督祂、鞭策祂。虽然陶律师对AI的技术原理一窍不通,但基于“AI的方向是尽可能实现对人类思维、人类自然语言的高度模拟”这个哲学基点,可以预判一波“一定程度的不确定性/模糊性会是AI的固有属性。”因为这种一定程度内的不确定性/模糊性正是人类思维/自然语言的精华所在,是人(生灵)区别于机械的价值所在。这意味着你不能期待设计一个完美的提示词,然后AI百分百给到你一个完美的符合你要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”——这本质上还是前AI时代“机器编程”的思路,是工程学的,把AI当成机械的。这意味着的你要给到AI的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生——实际上你也需要在对话中来限缩你自己思维中的模糊地带。

潘帅:手把手分享法律人如何用好AI — Prompt篇

律师与AI如何更好地协同AI大模型擅长的方面1.信息检索与整理:AI大模型能迅速从大量数据中检索相关信息,如法律法规和案例的检索,提取和整理案件相关资料。2.模式识别与预测:通过导入历史数据和参考信息,设定指令,AI大模型可以预测案件的可能结果,如判决趋势、赔偿金额,辅助制定诉讼策略。3.自动化文档处理:AI大模型能够自动生成和修改标准化文本与合同,减少律师在文档起草和修订上的工作量。4.多任务处理能力:AI大模型可以同时处理多个任务,不受时间和体力的限制,对于同时处理基础任务能够极大提高效率。AI大模型不擅长的方面1.法律解释与推理:AI大模型可以根据历史信息和数据给出一些预测和判断,但仍然难以像专业的法律人一样,推演复杂的法律解释和论证。特别是在涉及交叉多个法律领域或需要深入社会背景解读法条时,AI的能力非常有限。2.理解道德和情感:AI大模型难以理解案件中涉及的复杂情感和动机,如离婚案件中的夫妻之间可能出现的多重关系。3.创新或个性化的服务:AI大模型难以提供客户的综合性需求来提供个性化的法律服务,因为大模型是基于预设的数据和规则,不能及时采集到客户所有的即时信息,很难超出语料的内容生成创新且专业的答案,因此很难针对性地为客户提供专业服务,哪怕是基于同样的事由或案件。律师擅长的方面1.法律专业知识:律师具备深厚的法律知识,能够提供专业的法律分析和建议,如在证券欺诈案件中的专业分析。2.沟通与谈判:

Others are asking
如何让ai帮我写短视频脚本
以下是一些让 AI 帮您写短视频脚本的方法: 1. 指令逻辑: 自己给出开头,让 AI 知道结尾,避免模糊式提问,如“小王,写一篇自律的报告给我”。 提供内容的上半部,让 AI 撰写下半部,并包含必要内容。 将生成的内容以不同写作技巧、强硬转换风格,多滚动几次,写出多样版本与风格,降低初稿修改时间。 2. 反问法:让 AI 问您问题,能发现它思考更仔细,也能了解其逻辑并修正。 3. 制作技巧: 使用 Fanbook 中的 niji6 模型及sref 指令,确定视频风格一致性,选择 16:9 尺寸。 根据主题确定风格和时长,设定故事主线和镜头。 按照场景、地点、镜号、画面描述、台词、音效等维度填充分镜头,精简人物对话,提炼重点。 借助语言大模型获取画面灵感,多提问、多尝试。 4. 故事来源: 原创(直接经验):自身或周围人的经历、做过的梦、想象的故事等。 改编(间接经验):经典 IP、名著改编、新闻改编、二创等。 5. 剧本写作: 编剧有一定门槛,不能单纯套剧作理论和模版,要多写多实践,再看书总结经验,循环往复。 短片创作可从自身或朋友经历改编入手,或对短篇故事进行改编。 多跟别人讨论故事,听取感受。
2025-03-15
ai扩图
以下是关于 AI 扩图的相关知识: 星流一站式 AI 设计工具: 智能扩图:自动提取原图信息,智能地生成新的图像内容以填充扩展区域。 使用方法:选中图像进入扩展功能界面,拖动选区边框进行扩充区域选择。智能扩图参数包括提示词框(输入生成的区域的描述)、重绘风格(选择与放大图像相对应的风格,会提升扩图效果),其余参数默认即可。 高清放大:对图像进行尺寸放大,增加更多的细节,目前支持最大尺寸为 4K(40964096)。放大参数包括放大倍率、变化幅度、风格类型、细节丰富度、清晰度、相似度和提示词。 智能去背景:支持一键去除图片的背景。使用方法为选中图像,点击一键去背景。 【SD】最强控制插件 ControlNet: 以一张图为例,将其导入到图生图界面。根据情况选择大模型,如卡通类选择“revAnimated”,真实类选择“Realistic Vision”。图生图中重要的参数有缩放模式(选择“缩放后填充空白”)、尺寸(横向扩充增加宽度,纵向扩充增加高度)、单批数量(根据需求填写)、重绘幅度(加大到“0.8”以上)。 进行 ControlNet 的设置,升级到最新版本,将图片导入。启用插件,控制类型选择“局部重绘”,预处理器选择“inpaint_only+lama”,控制模式选择“更倾向 Controlnet”,缩放模式选择“缩放后填充空白”。为了让出图更统一,还可增加一个 reference_only 的通道巩固扩图风格。设置好后点击生成,选择满意的结果。 试验不同的图时,有时可通过反推提示词的方式增加文本控制。生成的图可能存在色差,需调整各项参数修正。 Stability AI 推出基于 Discord 的媒体生成和编辑工具: (扩图):在图像中插入其他内容以向任何方向填充空间,价格为 4 积分。
2025-03-15
关于教学的ai提示词
以下是关于教学的 AI 提示词的相关内容: 遵循最简化原则: 1. 内容长度限制:确保模型输出不超过用户设定的字数或信息量。 2. 内容类型限制:避免生成不恰当或不相关内容,可通过预设过滤规则实现。 3. 逻辑和一致性限制:增强模型理解和处理逻辑关系的能力。 4. 风格和语调限制:使模型输出符合特定写作风格或语调。 未遵循最简原则的情况: 1. “理解中文语义”这类描述无意义,因这是大模型基础设定。 2. “评估和打分文本质量”目标已包含打分任务,无需再提。 3. “提供文本改进建议”在目标中重复出现。 4. Markdown 格式错误,如“Profile:Goals:”结构错误,应将 Goals 放到 Role 层级下。 5. Initialization 部分可细化,如“明白以上要求后请回复:‘请提供需要打分的提示词:’”,更清晰指代用户下一句回复信息。 此外,写 Prompt 应先分析达成任务所需模块,且模块并非一成不变,需根据任务增减。同时注意: 1. 不需要包含作者信息,如 author、version 等。 2. 避免分类错误,如将输出错误分类到 Goals 目标,像“提供改进建议,以及改进原因”与“对用户的 Prompt 进行评分 1~10 分,10 分为满分”目标相似易造成困惑,应放到达成目标后的输出模块。 3. 注意拼写正确,如 Constrains 应拼写为 Constraints,限制条件要清晰且可被大模型执行。 以下是一些提示词模板的相关网站: 1. Majinai: 2. 词图: 3. Black Lily: 4. Danbooru 标签超市: 5. 魔咒百科词典: 6. AI 词汇加速器: 7. NovelAI 魔导书: 8. 鳖哲法典: 9. Danbooru tag: 10. AIBooru:
2025-03-15
在ai图像训练打标时,怎么让部分标签权重更大
在 AI 图像训练打标时,让部分标签权重更大的方法如下: 1. 在 Stable Diffusion 中,手动补充的特殊 tag 放在第一位,因为 tags 标签有顺序,最开始的 tag 权重最大,越靠后的 tag 权重越小。 2. 在 BooruDatasetTagManager 中采用方法二: 删除部分特征标签,如 All tags 中不该出现的错误识别的自动标签,Image tags 中作为特定角色的自带特征的标签,并将特征与 LoRA 做绑定。 完成所有优化删除后,点击左上角菜单 File>Save all changes 保存当前的设置。 此外,在 Stable Diffusion 训练数据集制作中还需注意: 1. 调用 Waifu Diffusion v1.4 模型需要安装特定版本(2.10.0)的 Tensorflow 库,在命令行输入相应命令完成版本检查与安装适配。 2. 进入到 SDTrain/finetune/路径下,运行相应代码获得 tag 自动标注,其中主要参数包括: batch_size:每次传入 Waifu Diffusion v1.4 模型进行前向处理的数据数量。 model_dir:加载的本地 Waifu Diffusion v1.4 模型路径。 remove_underscore:开启后将输出 tag 关键词中的下划线替换为空格。 general_threshold:设置常规 tag 关键词的筛选置信度。 character_threshold:设置特定人物特征 tag 关键词的筛选置信度。 caption_extension:设置 tag 关键词标签的扩展名。 max_data_loader_n_workers:设置大于等于 2,加速数据处理。
2025-03-15
AI应用总汇
以下是 AI 的一些应用场景: 1. 辅助创作与学习: AI 智能写作助手帮助用户快速生成高质量文本。 AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 在具体的行业应用中: 1. 医疗保健: 医学影像分析:AI 用于分析医学图像,辅助诊断疾病。 药物研发:加速药物研发过程,识别潜在药物候选物和设计新治疗方法。 个性化医疗:分析患者数据,提供个性化治疗方案。 机器人辅助手术:控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构风险。 信用评估:评估借款人信用风险,帮助做出贷款决策。 投资分析:分析市场数据,辅助投资决策。 客户服务:提供 24/7 服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(此处未提供具体应用内容)
2025-03-15
最好用的AI应用有哪些
以下是一些好用的 AI 应用: 1. AI 摄影参数调整助手:使用图像识别和数据分析技术,常见于摄影 APP 中,可根据场景自动调整摄影参数,市场规模达数亿美元。 2. AI 音乐情感分析平台:运用机器学习和音频处理技术,有音乐情感分析软件,能分析音乐的情感表达,市场规模达数亿美元。 3. AI 家居智能照明系统:基于物联网技术和机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 4. AI 金融风险预警平台:借助数据分析和机器学习,有金融风险预警软件,可提前预警金融风险,市场规模达数十亿美元。 5. AI 旅游路线优化平台:通过数据分析和自然语言处理,马蜂窝有路线优化功能,能根据用户需求优化旅游路线,市场规模达数亿美元。 6. AI 游戏道具推荐系统:利用数据分析和机器学习,常见于游戏内商城推荐功能,可根据玩家需求推荐游戏道具,市场规模达数亿美元。 7. AI 天气预报分时服务:采用数据分析和机器学习,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 8. AI 医疗病历分析平台:依靠数据分析和自然语言处理,医渡云有病历分析系统,能分析医疗病历,辅助诊断,市场规模达数十亿美元。 9. AI 会议发言总结工具:使用自然语言处理和机器学习,讯飞听见有会议总结功能,可自动总结会议发言内容,市场规模达数亿美元。 10. AI 书法作品临摹辅助工具:借助图像识别和数据分析,有书法临摹软件,能帮助书法爱好者进行临摹,市场规模达数亿美元。 11. AI 菜谱口味调整工具:运用自然语言处理和数据分析,如下厨房口味调整功能,可根据用户反馈调整菜谱口味,市场规模达数亿美元。 12. AI 语言学习纠错平台:通过自然语言处理和机器学习,英语流利说有纠错功能,能帮助语言学习者纠正错误,市场规模达数十亿美元。 13. AI 电影剧情分析系统:利用数据分析和自然语言处理,豆瓣电影有剧情分析工具,能分析电影剧情,提供深度解读,市场规模达数亿美元。 14. AI 办公文件分类系统:凭借数据分析和机器学习,腾讯文档有分类功能,可自动分类办公文件,方便管理,市场规模达数亿美元。 15. AI 美容护肤方案定制平台:基于图像识别和数据分析,美丽修行有定制方案功能,能根据用户肤质定制护肤方案,市场规模达数亿美元。
2025-03-15
我是一个公司的平面设计师,经常设计海报一类的工作,怎样才能用人工智能帮助到我。
作为一名平面设计师,您可以通过以下方式利用人工智能来辅助您的工作: 一、使用 AI 海报生成工具 1. Canva(可画):https://www.canva.cn/ 这是一个非常受欢迎的在线设计工具,提供大量模板和设计元素,用户可通过简单拖放操作创建海报,其 AI 功能能帮助选择合适颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案,稍作调整即可完成完美设计。 3. VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ 通过简单拖放界面,能快速创建演示文稿、社交媒体帖子等视觉内容,还集成丰富模板库和自动图像编辑功能,如智能布局和文字优化,简化设计流程。 二、参考案例分享 以东阿阿胶海报设计为例,拆解步骤如下: 1. 得到需求——提取元素——绘制线稿——用 controlnet 转绘上色——ps 优化——定稿。 2. 需求元素:风格要潮流插画,还要有唐代元素和国潮(前期基本上是沟通成本,主要定线稿)。 3. 提取元素:获取的信息需要体现产品图,需要体现唐代元素,需要 logo 在中心位置,按照需求开始绘制线稿。 4. 线稿绘制:沟通的元素是牡丹花、驴子(最后换成了琵琶)、人参和产品图和 logo,所以进行线稿调整绘制(中间很多细节沟通)最终定下线稿(里面很多元素都是拼接的)。 5. 拆分元素线稿:这一步非常重要,因为会涉及到后续元素替换等问题,比如单个 logo、产品等,提取出单独元素,进行绘制,最后进行替换。 6. 单个元素绘制:这样会让单个元素更加精致,也方便后期替换。 7. 然后利用拼接好的线稿进行大量跑图抽卡,选出一张最合适的进行 ps 优化。 8. 整体拼接上色后的效果(将单独跑的元素在 ps 里替换优化,再过一遍 sd 进行溶图放大)得到以下效果。 9. 最终客户把驴子去掉了,换成了一把琵琶,也是同产品图一样的做法,最后把琵琶替换掉驴子,得到定稿图。 三、相关模型和关键词 上色运用的大模型:GhostMix 鬼混_V2.0 。 lora 模型:“盒子系列——平面国潮插画_v1.0:182ba9e2f576 。 controlnet 模型:“Module:lineart_coarse,Model:contr 。 关键词:yellow background,Fashion,international blockbusters,fashion posters,fantasy,yellow,black and red tones,yellow background,peonies,donkeys,product packaging expert master,<lora:盒子系列——平面国潮插画_v1.0:0.3> 。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-06
我是一名高中物理教师,怎样才能得到ai最大化的帮助
以下是一些高中物理教师可能获得 AI 最大化帮助的途径: 1. 利用 AI 提供代码帮助,例如在使用特定计算语言(如 Wolfram 语言)表达教学内容时,从非正式概念转变为明确的计算语言。 2. 参考关于教师使用 AI 的小技巧,例如在生成教学相关的各种材料(如教案、课程计划、大单元教学计划等)时,借助 AI 提高效率和质量。 3. 探索人机智慧学习协作框架,以更好地将 AI 融入教学过程。 但需要注意的是,目前关于 AI 在科学领域的文献研究还不够系统,其在教学中的应用也有待进一步探索和完善。
2025-02-13
我是一个AI提示词小白,怎样才能提升自己对提示词编写的能力。
以下是提升提示词编写能力的一些方法: 1. 了解提示词的基本概念:提示词用于描绘您想生成的画面,输入语言支持中英文,不同模型可能有不同的输入要求。 2. 预设词组:小白用户可以点击提示词上方的官方预设词组进行生图。 3. 确保提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等要素,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 4. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 5. 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。 6. 善用辅助功能:如翻译功能可一键将提示词翻译成英文,还可删除所有提示词或使用会员加速。 7. 优化和润色提示词的方法: 明确具体的描述:使用更具体、细节的词语和短语,避免笼统。 添加视觉参考:插入相关图片参考,提高 AI 理解能力。 注意语气和情感:用合适的形容词、语气词调整整体语气和情感色彩。 优化关键词组合:尝试不同搭配和语序,找到最准确表达需求的方式。 增加约束条件:添加限制性条件,如分辨率、比例等。 分步骤构建提示词:将复杂需求拆解为逐步的子提示词。 参考优秀案例:研究有效的范例,借鉴写作技巧和模式。 反复试验、迭代优化:多次尝试不同写法,根据输出效果反馈持续完善。 8. 提示词探索路径: 遵循 OpenAI 官方的六项最佳实践,包括写清晰具体的指令、给模型时间思考、使用分隔符等。 运用各种提示词框架,如 CRISPE 和 BROKE 等。 明确任务目标,保证描述精确完整。 采用角色扮演方法,让模型更好地理解上下文并生成相关回答。 使用结构化提示词,提高可读性和组织性。 进行提示词测试和迭代,不断优化效果。 将提示词封装为智能体,使复杂任务处理更模块化和可复用。 总之,编写高质量提示词需要不断实践、总结经验,熟悉 AI 模型的能力边界,保持开放思维并尝试创新描述方式。
2025-01-15
AI在行政办公领域的最大化高效利用方法
以下是关于 AI 在行政办公领域最大化高效利用的相关内容: 拜登于 2023 年 10 月 30 日签署了 AI 行政命令,其中提到: 1. 为政府机构使用 AI 发布指导,包括明确保护权利和安全的标准,改进 AI 采购,并加强 AI 部署。 2. 通过更快速和高效的合同,帮助机构更快速、更便宜、更有效地获取特定的 AI 产品和服务。 3. 加速招聘 AI 专业人员,作为由人事管理办公室、美国数字服务、美国数字军团和总统创新奖学金领导的政府范围内 AI 人才激增的一部分。各机构将为各级相关领域的员工提供 AI 培训。 在其他方面: 1. 推动医疗保健领域负责任地使用 AI 并开发负担得起的救命药物,卫生与公众服务部将建立安全计划以接收和处理涉及 AI 的危害或不安全医疗实践的报告。 2. 通过创建资源支持教育工作者部署支持 AI 的教育工具,塑造 AI 在教育领域的潜力。 3. 为减轻 AI 对工人的风险,支持工人集体谈判的能力,并投资于所有人都能获得的劳动力培训和发展。制定原则和最佳实践以减轻 AI 对工人的危害并最大化其益处,解决工作岗位流失、劳动标准、工作场所公平、健康和安全以及数据收集等问题。制作关于 AI 对劳动力市场潜在影响的报告,并研究和确定加强联邦对面临劳动力中断(包括来自 AI 的)的工人支持的选项。 此外,AI 在科学领域不断改写着我们对世界的认知,例如在医疗领域,如乳腺癌筛查方面可能带来改进;在农业领域,通过机器人和 AI 应用于田间管理可提高效率等。
2024-10-16
如何最大化使用大模型
如何最大化使用大模型 大模型是一种基于深度学习的自然语言处理技术,它通过在大量语料上进行无监督学习,从而获得语言的统计规律和语义表示。这种技术可以用于各种自然语言处理任务,如文本生成、问答系统、机器翻译、摘要生成等。要最大化使用大模型,可以从以下几个方面入手: 1. 选择合适的模型:不同的大模型具有不同的特点和适用场景,需要根据具体任务和数据集选择合适的模型。例如,GPT3 是一种非常强大的语言模型,但它的计算成本较高,不适合处理大规模数据集。而 BERT 则是一种轻量级的语言模型,适用于处理大规模数据集。 2. 进行模型压缩:大模型的参数非常多,占用的内存非常大,因此在进行模型部署时,需要进行模型压缩。模型压缩可以通过使用更小的数据类型、剪枝、量化等技术来减少模型的大小和计算量。 3. 进行模型微调:大模型是通过在大量语料上进行无监督学习得到的,因此它的输出可能不符合具体任务的要求。为了提高大模型的性能,需要对其进行微调。模型微调可以通过在特定任务上进行有监督学习来实现。 4. 进行模型部署:大模型的部署需要考虑计算资源、内存、带宽等因素。为了提高模型的部署效率,可以使用容器化技术、分布式计算等技术来优化模型的部署。 5. 进行数据增强:大模型的训练需要大量的语料,为了提高模型的泛化能力和鲁棒性,可以使用数据增强技术来增加语料的多样性。数据增强技术可以通过对原始语料进行各种变换来实现,如替换、插入、删除等。 总之,要最大化使用大模型,需要选择合适的模型、进行模型压缩、模型微调、模型部署和数据增强等方面的工作。
2024-05-23
ai和律师的结合
AI 与律师的结合具有多方面的特点和协同方式: 律师擅长的方面: 1. 具备深厚的法律专业知识,能够提供专业的法律分析和建议,例如在证券欺诈案件中的专业分析。 2. 在沟通和谈判中能够与客户方、相对方、其他机构建立信任、表达观点、促成交易等。 律师不擅长的方面: 1. 处理大量信息和数据时,人工效率非常有限,如大量文件调查中的数据提取和整理。 2. 处理细节方面可能难以记住各类案件中的所有事实和细节,尤其是在复杂案件中。 3. 在处理复杂案件时,可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。 AI 大模型擅长的方面: 1. 信息检索与整理,能迅速从大量数据中检索相关信息,如法律法规和案例的检索,提取和整理案件相关资料。 2. 模式识别与预测,通过导入历史数据和参考信息,设定指令,可以预测案件的可能结果,辅助制定诉讼策略。 3. 自动化文档处理,能够自动生成和修改标准化文本与合同,减少律师在文档起草和修订上的工作量。 4. 多任务处理能力,可以同时处理多个任务,不受时间和体力的限制,对于同时处理基础任务能够极大提高效率。 AI 大模型不擅长的方面: 1. 法律解释与推理,难以像专业的法律人一样,推演复杂的法律解释和论证,特别是在涉及交叉多个法律领域或需要深入社会背景解读法条时。 2. 理解道德和情感,难以理解案件中涉及的复杂情感和动机。 3. 创新或个性化的服务,难以提供客户的综合性需求来提供个性化的法律服务。 律师与 AI 协同的方式和技巧: 1. 律师在运用大模型时,要根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导 AI 发挥其最大的效用。 2. 在处理信息检索与整理任务时,律师可以指导 AI 精确抓取相关法律法规、先例判决等关键信息,迅速获得案件准备所需的素材,花更多的时间进行法律分析。 3. 当需要自动化处理文档时,律师可以指导 AI 生成和修改标准化合同。 4. 例如在使用 AI 进行数据分析时,将数据清洗、数据提取、模型选择、模型训练和结果解释等环节分开处理,针对每个环节优化 AI 的性能,同时也便于发现和修正问题。 5. 针对复杂的问题,律师可以采用逐步深化和细化的方式提问。先提出一个较为宽泛的问题,然后根据 AI 的回答进一步细化或深化问题。 6. 给 AI 提供参考和学习的内容,包括详细的操作指南、行业最佳实践、案例研究等,同时编写详细的流程和知识(knowhow)。 7. 在 Prompt 中使用法律术语来引导 AI 的回答方向。 8. 大模型的语料存在一定滞后性,在使用 AI 的回答后,律师一定要对内容进行交叉验证,确保信息的准确性。同时,律师在使用 AI 时,还应结合自身的专业知识进行引导。通过专业知识对 AI 的回答进行筛选和判断,确保其符合我国法律伦理、立法目的和实务。
2025-01-25
AI律师,法律咨询类如何借助ai来搞定,推荐文章和工具
以下是关于法律咨询类如何借助 AI 来搞定的相关内容: 潘帅提出,使用 AI 进行数据分析时,应将各环节分开处理以优化性能和便于发现修正问题。针对复杂问题,律师可逐步深化细化提问方式。要给 AI 提供参考和学习内容,包括操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。利用专业领域术语引导 AI 回答方向,如在处理合同纠纷时提示特定方面。使用 AI 回答后要进行交叉验证,结合自身专业知识筛选判断。还可指定 AI 模仿资深律师的风格,要求其提供多个例子和从多个角度思考,如给出多种诉讼策略并分析优劣。 陶力文律师认为不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应把提示词当作相对完善的“谈话方案”,在对话中产生成果。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入就得到想要的东西。 潘帅还提到了 PEMSSC 方法,包括个性化的风格、给参考或一定逻辑结构、从多个角度思考、总结概括、区分以及明确能力或角色,并分别举例说明了如何应用。
2025-01-13
法律智能律师
以下是关于法律智能律师的相关内容: 一、什么是 Prompt 及如何写出好的 Prompt 1. Prompt 指的是给人工智能(AI)系统提供的信息或者问题,用来引导 AI 产生特定的回答或者执行特定的任务。对于 AI 来说,一个好的 Prompt 可以帮助它更准确地理解需求,并给出更相关、更有用的回答。 2. Prompt 的建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):明确 AI 的角色和能力,如专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):明确期望 AI 完成的任务,如要求 AI 总结案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):确定希望 AI 以什么风格或方式回答。 Experiment(举例):通过举例进一步说明。 二、关于写 Prompt 的实践经验 1. 不能期待设计一个完美的提示词,然后 AI 百分百给到完美符合要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”。这本质上还是前 AI 时代“机器编程”的思路,是工程学的,把 AI 当成机械的。 2. 给到 AI 的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在对话中产生,在对话中限缩自己思维中的模糊地带。 3. 现在大多数人(包括各个大厂的提示词工程师们)基本上都还抱着前 AI 时代的“机器编程”思路来进行 AI 的“自然语言编程”。这种希望通过一个超级提示词母机,保证 AI 不出错的一次性生成用户想要的理想效果的工程学路线,恐怕原理上比较难走。 4. 对于想要尝试 AI 的朋友们,建议多给到 AI 几轮对话修正的余地,不要期望输入一次提示词 AI 就能给到想要的东西,毕竟很多时候自己刚开始也不知道自己想要什么。 三、个人写 Prompt 的习惯和示例 1. 基于个人习惯和审美偏好,把 Prompt 或者提示词称为【灵机符箓】或简称【符箓】,把 AI 称为【灵机】。 2. 习惯用的大模型是 KIMI,但别的 GPT、文心一言、豆包等也都可以,具体效果可能有不同。 3. 示例:敕令法律文章撰写 箓: author:叁随道人 version:1.0(20240626) language:中文 符: 你是一名资深中国律师,不仅精通法律,而且熟悉商业实践和人性,本任务中你需要根据【基础材料】,输出特定【语言风格】的文章。开头是惯例的赋予 AI 灵机一个“身份”,这实际上就是一次划定【边界】,避免输出的结果里出现国外的或非法律的内容,过于宽泛。而后是一个总的任务流程,和两个关键变量【基础材料】和【语言风格】。首先获得基础材料。
2024-12-30
搭建一个专业的律师智能体
搭建一个专业的律师智能体需要考虑以下几个方面: 1. 多智能体的通信问题:不同智能体之间的通信至关重要,包括如何传递信息以及传递哪些信息。之前的很多多智能体开源框架存在效率低下和 token 消耗大的问题,而像 OpenAI 官方开源的多智能体框架「Swarm」在「Handoffs」方面处理得较为优雅。 2. 智能体的角色和职责:以客服多智能体为例,只需要准备如普通接线客服和宽带客服这样必要的 Agent,并明确其职责和交接逻辑。 3. 提示词的编写:对于律师智能体,写好提示词很重要。例如,在写作时需要对文章中出现的案例进行脱敏处理,替换具体的人物姓名、时间和地点。同时,注意深化写作时的分段和字数要求。 4. 遵循特定的规则和要求:像令中规定的初始化问候语、牢记并遵守全部要求等。 5. 决策智能体的应用:决策智能体在企业自动化中发挥作用,如在复杂、多步骤的推理流程中导航并做出业务决策。以 Anterior 为例,将付款方规则转换为有向无环图,利用智能体遍历决策树并评估相关文件。其他领域如 Norm AI 和 Parcha 也在利用决策智能体。
2024-12-17
律师如何使用 ai
律师使用 AI 可以从以下几个方面入手: 一、认识 AI 1. 把 AI 当成黑箱,只需知道它是能模仿人类思维、理解和输出自然语言的东西,不必深究技术原理。 2. 认识到 AI 具有“似人非人”的特点,存在一定的不稳定性和不确定性。 3. 借鉴人类各个文明传说和古老哲人的智慧,在与 AI 相处时,既要基于其“非人”一面,通过清晰的语言文字压缩其自由度,明确告知任务、边界、目标、实现路径和所需知识;也要接受其“似人”一面可能出现的问题,如学习人类思维磨洋工、乱搞、不执行等,并加以教育、监督和鞭策。 二、具体使用方法 1. 针对数据分析等任务,将各个环节分开处理,优化 AI 性能,便于发现和修正问题。 2. 对于复杂问题,采用逐步深化和细化的方式提问,先提出宽泛问题,再根据回答进一步细化或深化。 3. 为 AI 提供参考和学习的内容,包括详细的操作指南、行业最佳实践、案例研究等,编写详细的流程和知识(knowhow)。 4. 在 Prompt 中使用法律术语引导 AI 的回答方向。 5. 对 AI 的回答进行验证与反馈,交叉验证确保信息准确性,结合自身专业知识进行筛选和判断,确保符合我国法律伦理、立法目的和实务。
2024-12-04
如何利用AI帮助自己成为一名知识产权律师?我已经获得了法律职业资格证,但还没有实习成为一名律师。
成为一名知识产权律师可以借助 AI 从以下几个方面入手: 1. 知识学习与案例研究:利用 AI 驱动的法律数据库和学习平台,深入了解知识产权领域的法律法规、典型案例和最新动态。 2. 法律文书撰写辅助:借助 AI 工具提高法律文书如起诉书、答辩状等的撰写效率和质量,确保语言准确、逻辑清晰。 3. 模拟案例分析:通过 AI 模拟各种知识产权相关的案例场景,进行分析和应对策略的制定,提升解决实际问题的能力。 4. 客户需求分析:利用 AI 对潜在客户的需求和问题进行分析,以便更好地提供针对性的法律服务。 5. 法律研究与创新:借助 AI 探索知识产权领域的前沿研究和创新趋势,为自己的业务发展提供新思路。 需要注意的是,AI 只是辅助工具,不能替代您自身的专业判断和实践经验。在使用 AI 工具时,要对其结果进行审慎评估和验证。
2024-09-19