Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI律师,法律咨询类如何借助ai来搞定,推荐文章和工具

Answer

以下是关于法律咨询类如何借助 AI 来搞定的相关内容:

  • 潘帅提出,使用 AI 进行数据分析时,应将各环节分开处理以优化性能和便于发现修正问题。针对复杂问题,律师可逐步深化细化提问方式。要给 AI 提供参考和学习内容,包括操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。利用专业领域术语引导 AI 回答方向,如在处理合同纠纷时提示特定方面。使用 AI 回答后要进行交叉验证,结合自身专业知识筛选判断。还可指定 AI 模仿资深律师的风格,要求其提供多个例子和从多个角度思考,如给出多种诉讼策略并分析优劣。
  • 陶力文律师认为不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应把提示词当作相对完善的“谈话方案”,在对话中产生成果。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入就得到想要的东西。
  • 潘帅还提到了 PEMSSC 方法,包括个性化的风格、给参考或一定逻辑结构、从多个角度思考、总结概括、区分以及明确能力或角色,并分别举例说明了如何应用。
Content generated by AI large model, please carefully verify (powered by aily)

References

潘帅:手把手分享法律人如何用好AI — Prompt篇

例如,如果你正在使用AI进行数据分析,你可能需要将数据清洗、数据提取、模型选择、模型训练和结果解释等环节分开处理。这样做的好处是,你可以针对每个环节优化AI的性能,同时也便于发现和修正问题。还有一种是针对复杂的问题,律师可以采用逐步深化和细化的方式提问。先提出一个较为宽泛的问题,然后根据AI的回答进一步细化或深化问题。这种方法有助于律师逐步深入了解问题的各个方面。例如,在处理一起知识产权侵权案件时,律师可以先问:“这起案件中,被告是否构成侵权?”然后根据AI的回答进一步提问:“如果构成侵权,那么侵权的类型和程度是怎样?”给AI参考和学习的内容让他理解结构和学习,写出流程,写出knowhowAI系统通常需要大量的数据和示例来学习和理解任务的结构。提供高质量的参考材料和学习内容是提高AI性能的关键。这可能包括详细的操作指南、行业最佳实践、案例研究等。同时,编写详细的流程和知识(knowhow)也很重要,这不仅能帮助AI更好地理解任务,也能为人类用户提供指导。例如,在自动化文档处理中,你可以编写一个详细的指南,说明如何处理不同类型的文档,以及如何使用AI工具来提高效率。利用专业领域的术语引导在Prompt中使用法律术语来引导AI的回答方向。比如,在处理合同纠纷时,律师可以提示:“从合同签订条件、排他性合作和违约责任三个方面分析该合同的履行情况。”这样的引导有助于AI更精准地提供所需信息。验证与反馈大模型的语料存在一定滞后性,在使用AI的回答后,律师一定要对内容进行交叉验证,确保信息的准确性。同时,律师在使用AI时,还应结合自身的专业知识进行引导。通过专业知识对AI的回答进行筛选和判断,确保其符合我国法律伦理、立法目的和实务。

陶力文律师:拘灵遣将|不会写Prompt(提示词)的道士不是好律师——关于律师如何写好提示词用好AI这件事

这意味着你不能期待设计一个完美的提示词,然后AI百分百给到你一个完美的符合你要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”——这本质上还是前AI时代“机器编程”的思路,是工程学的,把AI当成机械的。这意味着的你要给到AI的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生——实际上你也需要在对话中来限缩你自己思维中的模糊地带。现在大多数人(包括各个大厂的提示词工程师们)基本上都还抱着前AI时代的“机器编程”思路来进行AI的“自然语言编程”。就陶律师自己的实践来看,盲猜一波现在比较普遍那种希望通过一个超级提示词母机,保证ai不出错的一次性生成用户想要的理想效果的工程学路线——恐怕原理上比较难走而对于各位想要尝试AI的朋友们,陶律师的建议是,最好多给到AI几轮对话修正的余地,不要期望输入一次提示词AI就能给到你想要的东西——毕竟很多时候其实你自己刚开始也不知道自己想要什么。二、来写一篇灵机符箓吧下面是我自己写的一篇用AI帮忙写法律文章的Prompt,当然,基于个人习惯和审美偏好,在这里我会更喜欢把Prompt或者提示词称为【灵机符箓】或简称【符箓】,把AI称为【灵机】。具体我习惯用的大模型是KIMI,但别的GPT、文心一言、豆包等也都可以,具体效果可能有不同。敕令法律文章撰写箓:-author:叁随道人-version:1.0(20240626)-language:中文

潘帅:手把手分享法律人如何用好AI — Prompt篇

比如:指定它模仿某位资深律师的逻辑严谨和言简意赅的风格。这样,AI在提供信息时,会更加符合专业律师的沟通和表达习惯。Experiment,要求AI为你提供多个例子:比如:“请针对此案件,给出至少三种不同的诉讼策略,并分析每种策略的优劣势。”这种指令有助于律师更全面地了解信息,这种指令有助于帮助律师梳理多个思路,提供更多解决方案的灵感。第二种:PEMSSCP ersonality(个性化的风格)E xample Inquiry(给参考、或一定的逻辑结构)M ultiple Angles(多个角度来思考)S ummarize(总结概括)S eparator(区分:引号、分隔符号、首先、其次、最后等)C apacity and Role(能力或者角色)举例:Personality比如,我们可以选择一种幽默且富有洞察力的风格,同时融入某个人的创新视角。这样的风格不仅能让枯燥的法律分析变得生动有趣,还能启发客户从新的角度思考问题。Example Inquiry比如:在为客户提供法律建议时,我们可以采用SWOT分析法或4P原则等逻辑结构。例如,使用SWOT分析法来评估一个商业合同的优势、劣势、机会和威胁,从而帮助客户完成更明智的交易。Multiple Angles当面对复杂的法律问题时,我们需要从多个角度进行思考。比如,在分析一个商事诉讼时,我们可以从市场趋势、竞争对手的行为、战略规划、财务状况以及市场前景等多个角度来思考诉讼策略,以确保为客户提供全面且深入的法律建议。Summarize

Others are asking
画图那个ai最好
目前在 AI 绘画领域,没有绝对最好的工具,不同的工具各有其特点和优势。以下为您介绍一些常见的 AI 绘画工具: Stable Diffusion:有多种相关的插件,如脸部修复插件 After Detailer、UI 界面美化插件 Kitchen、高宽比锁定插件 Aspect Ratio、提示词自动翻译插件 promptallinone、最强控制插件 ControlNet 等,可满足不同的需求。 Photoshop 2023 Beta 爱国版:在某些方面表现出色。 即梦 3.0:在中文场景下有较好的表现,不仅提升了大字的准确性、设计感和丰富度,还大幅改善了小字的稳定性问题。相比即梦 2.1 和 GPT4o 在中文场景中的表现,即梦 3.0 更具优势。 您可以根据自己的具体需求和使用场景选择适合您的 AI 绘画工具。
2025-04-11
Ai生成海报
以下是关于 AI 生成海报的相关内容: 有摊主在 10 天前开发的 AI 不仅能提供配方,还能自动生成海报,例如鸡尾酒的配方和海报可私人订制。 即梦 3.0 能根据输入的提示词生成类似杜蕾斯风格的海报,输入五一劳动节或二十四节的立夏等关键词,能生成相应的提示词并生成海报。 女神节海报可通过即梦 AI 生成,操作简单,只需 3 步:打开即梦 AI 选择“图片生成”功能,选择模型输入提示词,点击生成即可。同时提供了女神节海报的案例提示词,如案例一的提示词为女神节主题,3D 设计,梦幻氛围等;案例二的提示词为粉色主题,梦幻氛围等;案例三的提示词为妇女节,3D 设计,粉色主题等。
2025-04-11
ai音乐的行业研究报告
以下是为您提供的关于 AI 音乐的行业研究报告相关内容: 量子位智库发布的《AI 音乐应用产业报告(2024 年)》指出,AI 音乐生成技术通过学习大量音乐数据,已能创作出具有一定艺术性的音乐作品。技术发展迅速,音频模型尤其受到关注,因其能直接生成流畅自然的音乐。AI 音乐简化了音乐制作流程,为音乐产业带来变革。流媒体平台可能成为商业化的最大受益者,而传统音乐工程可能面临冲击。数据和情感表达的精准把控是技术迭代和商业化的关键。报告还提到,AI 音乐生成产品如 Suno 和 Udio 等,正在推动“人人皆可创作”的时代,同时面临技术、音乐属性和商业化等方面的挑战。 《专访 Luma AI 首席科学家:我们更相信多模态的 Scaling Law》中,Luma AI 首席科学家 Jiaming Song 在访谈中介绍了他们新推出的视频生成模型 Dream Machine。该模型旨在通过提升动作幅度来改善用户体验,以满足市场对视频生成的需求。Luma 的转型从 3D 生成到视频生成,是为了实现更高维度的 4D 表现,视频被视为实现更好 3D 效果的有效途径。Jiaming 指出,视频生成模型具备强大的 3D 一致性和光学效果,能够直接将图像转化为视频,再进一步转换为 3D 模型。 AI 音乐|2.21 资讯中,包含生成式人工智能对音乐领域的影响研究、谷歌推出 MusicRL:生成符合人类偏好的音乐、使用 Beatoven AI 的文生音乐功能给视频配乐、HyperGANStrument:使用音高不变超网络进行乐器声音合成和编辑、Stability AI 发布 Stable Audio AudioSparx 1.0 音乐模型等内容。 2024 年度 AI 十大趋势报告中提到,AI 生成音乐存在基于乐理规则的符号生成模型和基于音频数据的音频生成模型两种主流技术路线。开发者正在使用 AI 生成音乐来填充游戏过程与游戏 UI 中需要使用到的各类音效、不同游戏场景中用以渲染氛围的各种音乐。AI 生成音乐作为音乐资产在游戏制作和发行环节使用都是非常可行的,像 MusicLM 等模型已经支持生成多音轨的作品。使用 AI 生成音乐为原型、佐以专业制作人的协调,将使 AI 音乐更快进入游戏制作与发行的生产线。同时,AI 还能基于玩家游戏行为评估玩家技能水平和游戏风格,动态调整游戏难度等,提升玩家体验。此外,许多充满灵感的开发者正在尝试将 AI 作为游戏玩法的一环,促进游戏产业变革。 相关报告链接: 《AI 音乐应用产业报告(2024 年)》:https://waytoagi.feishu.cn/record/YoicrOScreZ7scct1Z3ciDM7nAd 生成式人工智能对音乐领域的影响研究报告:https://www.gema.de/documents/d/guest/gemasacemgoldmediaaiandmusicpdf
2025-04-11
现在学AI视频怎么学上手快些
以下是一些能帮助您快速上手学习 AI 视频的途径和方法: 1. 您可以先查看 AI 视频学社的相关内容,包括入门教程: 2. 加入 AI 视频学社的交流群,需要学习 AI 视频的,参与 AI 视频挑战赛,参与 AI 视频提示词共创的小伙伴,可以扫二维码或联系:三思或小歪【备注:AI 视频学社】,但必须有 AI 视频账号才能进群。 3. 参加每周都举办的 Video Battle 以及不定期举办的各种视频比赛。 4. 您还可以学习我 AI 北京系列共学课,例如: 12 月 13 日 20:00(,讲师:@啊朔 12 月 14 日 20:00(,讲师:@二金 5. 对于小白来说,做 AI 视频思路清晰很重要,提示词方面要注意主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),您可以参考相关案例,如: 生成视频: 第一次生成 抽卡结果不理想 ,符合要求的修改提示词:母亲很疲惫看着孩子
2025-04-11
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-04-11
如何用AI辅助写论文,
利用 AI 辅助写论文可以按照以下步骤进行: 1. 确定论文主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关研究文献和资料。 3. 分析和总结信息:借助 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:利用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:使用 AI 工具辅助撰写,确保内容准确完整。 6. 构建方法论:根据研究需求,参考 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据收集和分析,运用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:借助 AI 写作工具撰写各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:使用 AI 抄袭检测工具确保原创性,并进行最后的格式调整。 在论文写作领域,常用的 AI 工具和平台有: 1. 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,帮助管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行论文写作时,应保持批判性思维,并确保研究的质量和学术诚信。同时,如果担心孩子用 AI 代写作文偷懒,可以让孩子提交与 AI 共同完成作文的聊天记录,重点关注孩子能否说清楚 AI 作文的优缺点及如何修改。
2025-04-11
法律咨询ai、agent推荐
以下为为您推荐的法律咨询 AI 和 agent: 法信智能法律咨询:这是一个 AI 法律咨询助手,运用自然语言处理和知识图谱技术,能够解答法律问题并提供法律咨询。其市场规模达数亿美元。 Casetext:在法律领域表现出色,2023 年 4 月访问量约 479 万,2024 年 3 月增至 628 万,占比提升至 68%。它是法律赛道的领先产品,可能因提供高质量法律信息和工具而受用户青睐。
2025-01-13
有没有一键生成流程图的AI。参考[一招搞定:用AI秒生成专业流程图](https://mp.weixin.qq.com/s/cSLHwMFQhfU-VjSvRDJhzw)
目前有一些可以一键生成流程图的 AI 工具,例如: Lucidchart: 注册并登录: 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 利用这些 AI 工具,可以快速、高效地创建专业的流程图,满足各种工作和项目需求。但需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-18
从网站、公众号等做数据的采集能否用大模型进行接卸搞定
数据采集可以通过大模型来辅助,但要完全依靠大模型来解决所有问题可能并不现实。大模型通常用于处理自然语言理解、文本生成、图像识别等任务,在数据采集方面可以发挥以下作用: 1. 内容抽取和识别:大模型可以帮助识别网页、公众号文章等的关键内容,提取需要的信息,例如标题、摘要、正文内容等。 2. 语义理解:大模型可以帮助理解文本内容的含义,从而更准确地判断网页或文章的相关性、质量等,有助于筛选出更有价值的数据。 3. 图像识别:如果涉及到图像数据的采集,大模型可以用于识别图像内容,从而帮助自动化地筛选出符合要求的图像数据。 4. 数据清洗和预处理:大模型可以用于自动化地清洗和预处理采集到的数据,例如去除重复内容、规范化格式、纠正错误等。 但需要注意的是,虽然大模型在某些方面可以提高数据采集的效率和准确性,但在实际应用中可能还需要结合其他技术和手段,例如规则引擎、数据抓取工具、人工审核等,才能更好地完成数据采集任务。此外,数据采集涉及到的网站、公众号等也可能会有反爬虫机制,需要针对性地处理和应对。因此,综合利用大模型和其他工具技术,可能更有利于完成复杂的数据采集任务。
2024-04-16