Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai和律师的结合

Answer

AI 与律师的结合具有多方面的特点和协同方式:

律师擅长的方面:

  1. 具备深厚的法律专业知识,能够提供专业的法律分析和建议,例如在证券欺诈案件中的专业分析。
  2. 在沟通和谈判中能够与客户方、相对方、其他机构建立信任、表达观点、促成交易等。

律师不擅长的方面:

  1. 处理大量信息和数据时,人工效率非常有限,如大量文件调查中的数据提取和整理。
  2. 处理细节方面可能难以记住各类案件中的所有事实和细节,尤其是在复杂案件中。
  3. 在处理复杂案件时,可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。

AI 大模型擅长的方面:

  1. 信息检索与整理,能迅速从大量数据中检索相关信息,如法律法规和案例的检索,提取和整理案件相关资料。
  2. 模式识别与预测,通过导入历史数据和参考信息,设定指令,可以预测案件的可能结果,辅助制定诉讼策略。
  3. 自动化文档处理,能够自动生成和修改标准化文本与合同,减少律师在文档起草和修订上的工作量。
  4. 多任务处理能力,可以同时处理多个任务,不受时间和体力的限制,对于同时处理基础任务能够极大提高效率。

AI 大模型不擅长的方面:

  1. 法律解释与推理,难以像专业的法律人一样,推演复杂的法律解释和论证,特别是在涉及交叉多个法律领域或需要深入社会背景解读法条时。
  2. 理解道德和情感,难以理解案件中涉及的复杂情感和动机。
  3. 创新或个性化的服务,难以提供客户的综合性需求来提供个性化的法律服务。

律师与 AI 协同的方式和技巧:

  1. 律师在运用大模型时,要根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导 AI 发挥其最大的效用。
  2. 在处理信息检索与整理任务时,律师可以指导 AI 精确抓取相关法律法规、先例判决等关键信息,迅速获得案件准备所需的素材,花更多的时间进行法律分析。
  3. 当需要自动化处理文档时,律师可以指导 AI 生成和修改标准化合同。
  4. 例如在使用 AI 进行数据分析时,将数据清洗、数据提取、模型选择、模型训练和结果解释等环节分开处理,针对每个环节优化 AI 的性能,同时也便于发现和修正问题。
  5. 针对复杂的问题,律师可以采用逐步深化和细化的方式提问。先提出一个较为宽泛的问题,然后根据 AI 的回答进一步细化或深化问题。
  6. 给 AI 提供参考和学习的内容,包括详细的操作指南、行业最佳实践、案例研究等,同时编写详细的流程和知识(knowhow)。
  7. 在 Prompt 中使用法律术语来引导 AI 的回答方向。
  8. 大模型的语料存在一定滞后性,在使用 AI 的回答后,律师一定要对内容进行交叉验证,确保信息的准确性。同时,律师在使用 AI 时,还应结合自身的专业知识进行引导。通过专业知识对 AI 的回答进行筛选和判断,确保其符合我国法律伦理、立法目的和实务。
Content generated by AI large model, please carefully verify (powered by aily)

References

潘帅:手把手分享法律人如何用好AI — Prompt篇

律师在沟通和谈判中能够与客户方、相对方、其他机构建立信任、表达观点、促成交易等。3.创造性解决问题:律师能够针对新兴行业或监管空白提出合规建议,如为新技术制定合法性指导。4.危机应对:律师作为专业人士,恰恰需要具备能够在紧急情况下能做出专业判断,提供及时的法律建议和解决方案。律师不擅长的方面1.处理大量信息和数据:在需要处理大量文本和数据的情况下,律师人工的效率非常有限,如大量文件调查中的数据提取和整理。2.处理细节:律师可能难以记住各类案件中的所有事实和细节,如:时间,人物,金额,关系,尤其是在复杂案件中。3.精力与情绪:在处理复杂案件时,律师可能会面临情绪、精力、时间等带来的压力,从而影响专业判断。基于以上,律师和Ai的协同并非简单相加,而是一种借助互相优势、相互加持的关系。律师在运用大模型这一强大工具时,最关键的任务是:如何根据不同的法律业务场景,精准地提出问题、指令(Prompt),以引导AI发挥其最大的效用。在处理信息检索与整理任务时,律师可以指导AI精确抓取相关法律法规、先例判决等关键信息,能够迅速获得案件准备所需的素材,花更多的时间进行法律分析。当需要自动化处理文档时,律师可以指导AI生成和修改标准化合同。例如,给出prompt“根据提供的模板,自动生成一份关于XX事项的合同草案,并标注出需要人工审核的关键条款”。这样,律师可以在保证合同质量的同时,大幅减少在文档起草和修订上的工作量。

潘帅:手把手分享法律人如何用好AI — Prompt篇

律师与AI如何更好地协同AI大模型擅长的方面1.信息检索与整理:AI大模型能迅速从大量数据中检索相关信息,如法律法规和案例的检索,提取和整理案件相关资料。2.模式识别与预测:通过导入历史数据和参考信息,设定指令,AI大模型可以预测案件的可能结果,如判决趋势、赔偿金额,辅助制定诉讼策略。3.自动化文档处理:AI大模型能够自动生成和修改标准化文本与合同,减少律师在文档起草和修订上的工作量。4.多任务处理能力:AI大模型可以同时处理多个任务,不受时间和体力的限制,对于同时处理基础任务能够极大提高效率。AI大模型不擅长的方面1.法律解释与推理:AI大模型可以根据历史信息和数据给出一些预测和判断,但仍然难以像专业的法律人一样,推演复杂的法律解释和论证。特别是在涉及交叉多个法律领域或需要深入社会背景解读法条时,AI的能力非常有限。2.理解道德和情感:AI大模型难以理解案件中涉及的复杂情感和动机,如离婚案件中的夫妻之间可能出现的多重关系。3.创新或个性化的服务:AI大模型难以提供客户的综合性需求来提供个性化的法律服务,因为大模型是基于预设的数据和规则,不能及时采集到客户所有的即时信息,很难超出语料的内容生成创新且专业的答案,因此很难针对性地为客户提供专业服务,哪怕是基于同样的事由或案件。律师擅长的方面1.法律专业知识:律师具备深厚的法律知识,能够提供专业的法律分析和建议,如在证券欺诈案件中的专业分析。2.沟通与谈判:

潘帅:手把手分享法律人如何用好AI — Prompt篇

例如,如果你正在使用AI进行数据分析,你可能需要将数据清洗、数据提取、模型选择、模型训练和结果解释等环节分开处理。这样做的好处是,你可以针对每个环节优化AI的性能,同时也便于发现和修正问题。还有一种是针对复杂的问题,律师可以采用逐步深化和细化的方式提问。先提出一个较为宽泛的问题,然后根据AI的回答进一步细化或深化问题。这种方法有助于律师逐步深入了解问题的各个方面。例如,在处理一起知识产权侵权案件时,律师可以先问:“这起案件中,被告是否构成侵权?”然后根据AI的回答进一步提问:“如果构成侵权,那么侵权的类型和程度是怎样?”给AI参考和学习的内容让他理解结构和学习,写出流程,写出knowhowAI系统通常需要大量的数据和示例来学习和理解任务的结构。提供高质量的参考材料和学习内容是提高AI性能的关键。这可能包括详细的操作指南、行业最佳实践、案例研究等。同时,编写详细的流程和知识(knowhow)也很重要,这不仅能帮助AI更好地理解任务,也能为人类用户提供指导。例如,在自动化文档处理中,你可以编写一个详细的指南,说明如何处理不同类型的文档,以及如何使用AI工具来提高效率。利用专业领域的术语引导在Prompt中使用法律术语来引导AI的回答方向。比如,在处理合同纠纷时,律师可以提示:“从合同签订条件、排他性合作和违约责任三个方面分析该合同的履行情况。”这样的引导有助于AI更精准地提供所需信息。验证与反馈大模型的语料存在一定滞后性,在使用AI的回答后,律师一定要对内容进行交叉验证,确保信息的准确性。同时,律师在使用AI时,还应结合自身的专业知识进行引导。通过专业知识对AI的回答进行筛选和判断,确保其符合我国法律伦理、立法目的和实务。

Others are asking
大学生学习ai的哪个方面更好
对于大学生学习 AI,以下几个方面是不错的选择: 1. 编程语言:从 Python、JavaScript 等编程语言入手,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下坚实基础。 2. 工具和平台:尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。也可以探索一些面向大学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目:参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养对 AI 的思考和判断能力。 在教育领域,AI 带来了很多新的可能性: 个性化学习:可以大规模部署个性化的学习计划,为每个学生提供“口袋里的老师”,理解其独特需求,回答问题或测试技能。 学科学习:有像 Speak、Quazel、Lingostar 这样的应用帮助学习语言,Photomath、Mathly 指导数学学习,PeopleAI、Historical Figures 辅助历史学习。 作业辅助:Grammarly、Orchard、Lex 等工具帮助学生解决写作难题,提升写作水平。还有 Tome、Beautiful.ai 协助创建演示文稿。
2025-01-27
我该如何学习使用ai
以下是关于如何学习使用 AI 的全面指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等,您可以根据自身兴趣选择特定模块深入学习。同时,掌握提示词的技巧,因其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出作品,知识库中有很多实践后的作品和文章分享,欢迎您实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 六、针对不同群体的学习建议 1. 对于想要用 AI 学习一门外语的: 设定目标:明确学习目标和时间表,分阶段完成学习任务。 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 2. 对于中学生: 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台:如 ChatGPT、Midjourney 等生成工具,以及百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 学习 AI 基础知识:了解 AI 基本概念、发展历程、主要技术及在各领域的应用案例。 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题。 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考对未来社会的影响。 总之,无论您是何种身份,都可以通过以上多种方式全面系统地学习 AI 知识和技能。
2025-01-27
ai音乐的教程
以下是为您提供的 AI 音乐相关的教程资源: 1. Suno 教程:https://waytoagi.feishu.cn/wiki/KA1GwEi8yifRmMkOM9icr8EjnAd 2. Udio 教程:https://waytoagi.feishu.cn/wiki/DSktw8uBniPOdtkt3eeccmdcnct?from=from_copylink 3. 音乐资讯:https://waytoagi.feishu.cn/wiki/UD4uw9qmYiKW9kkxNeXcUDCbnog 4. 创作案例:https://waytoagi.feishu.cn/wiki/AahewcMOBiIQ9vks1XzcVaNange 5. 风格流派:https://waytoagi.feishu.cn/wiki/NSKGwclQNig6INkGWkKcsLQNnRb 此外,7 月 20 日的 AI 音乐共学中,嘉宾 igoo2u 分享了以下内容: 1. 00:06 开始,AI 音乐制作分享,包括曲风分类、制作逻辑与软件使用,并通过实际案例详细讲解。 2. 31:58 开始,FL studio 软件介绍及基础操作演示,该软件可对 AI 生成的曲子进行二次优化,擅长电子乐,介绍了软件主要界面和基础操作。 3. 52:33 开始,FL Studio 基础教程,包括大小调及和弦构架讲解,介绍了在 SUB 层的 base 中编写曲子的方法和操作技巧,以及基础阅历。 4. 01:18:10 开始,AI 做歌的优势、弊端及二次编辑方法。
2025-01-27
企业AI开发
企业 AI 开发包括以下重要内容: 企业级 AI 应用类型: 智能体应用(Assistant):基于上下文对话,自主决策并调用工具完成复杂任务的对话式 AI 应用。通过简单配置可快速上手实现基本功能,适用于客户服务、个人助理、技术支持等场景。详情参见。 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。用户可通过拖拽节点创建自定义任务流程,适用于 AI 翻译等场景。详情参见。 智能体编排应用:支持多智能体协作的流程式 AI 应用,能编排多个智能体的执行逻辑,适用于综合调研报告、软件开发团队等场景。详情参见。 应避免的人工智能陷阱: 不要以为 AI 可以做任何事,要考虑技术、数据和工程资源的限制,有许多 AI 做不到的事情。 不要以为只雇佣 2 3 个机器学习工程师就可以满足公司的使用场景。机器学习人才很重要,也应让工程师与业务人才交流,寻找可行、有价值的项目。 不要以为 AI 项目一次就能成功,AI 开发通常需要多次尝试。 不要期待直接使用传统的计划流程而不用改变,实际需要和 AI 团队测算时间节点、里程碑与 KPI。 不需要极其优秀的 AI 人才后才启动项目,持续构建团队,普通工程师也能提供有价值和可行的项目。 阿里云百炼: 是基于通义系列大模型和开源大模型打造的一站式大模型服务平台,提供「生成式大模型的应用编排搭建能力」和「企业大模型的全链路训练部署能力」,是企业 AI 时代的首选。 核心能力和优势包括大模型 API 服务(高可用、高性能、高性价比),提供通义闭源和开源系列大模型,以及图片、语音等多模态大模型和国内优质三方大语言模型;AI 应用搭建(可观测、可干预、可追踪),提供 RAG 智能体应用、工作流编排和智能体编排三类使用场景的应用构建能力,以及包含插件能力、运营工具箱等适配工具,实现 10 分钟拖拉拽快速搭建 AI Agent。 提供很多行业级的解决方案,如短剧剧本创作、企业线索挖掘、泛企业 VOC 挖掘等。 体验入口:https://bailian.console.aliyun.com//home (需要登陆阿里云账号,也可以使用支付宝、钉钉、手机号快速注册登陆),建议注册后先进行实名认证,以方便后续体验工作及领取免费学习云资源。
2025-01-27
企业落地AI的怎么开展,有哪些团队,场景一般是哪些
企业落地 AI 可以按照以下步骤开展: 1. 启动试点项目来获得动能:选择几个小项目,在 6 12 个月内展示成效,项目可以内部进行或外包。尽量选择能够成功而非最有价值的项目。 2. 建立公司内部的人工智能团队:搭建集中统一的 AI 团队,再从中挑选人员协助不同业务部门,便于统一管理。同时建立全公司范围内的平台,如软件平台、工具或数据基础设施。 3. 提供广泛的人工智能培训:高层了解 AI 能为企业做什么,进行策略制定和资源分配;部门领导了解如何设置项目方向、资源分配与监控进度;培养内部工程师,开展相关项目。 4. 制定人工智能策略:深度了解 AI 并结合自身业务制定策略,设置与 AI 良性循环相一致的公司策略,如网络搜索或农业公司的案例。同时考虑创建数据策略,如战略数据采集,建造统一的数据仓库。 企业落地 AI 常见的场景包括: 1. 智能扬声器:包括探测触发词或唤醒词、语音识别、意图识别、执行相关程序等环节。 2. 自动驾驶汽车:涉及汽车检测、行人检测、运动规划等方面,需要多种传感器和技术。 人工智能团队的角色通常有: 1. 软件工程师:负责软件编程工作,在团队中占比 50%以上。 2. 机器学习工程师:创建映射或算法,搜集和处理数据。 3. 机器学习研究员:开发机器学习前沿技术,可能需要发表论文或专注研究。 4. 应用机器学习科学家:从学术文献中寻找技术解决问题。 5. 数据科学家:检测和分析数据。 6. 数据工程师:整理数据,确保其安全、易保存和读取。 7. AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2025-01-27
财经AI怎么落地
财经 AI 的落地可以从以下几个方面考虑: 1. 成本效益的运营: 消费者信息分散在多个数据库,交叉销售和预测需求面临挑战。 金融服务是情感购买,决策树复杂且难以自动化,需大量客服团队。 金融服务高度受监管,人类员工必须参与流程以确保合规。生成式 AI 能大幅提高获取数据、理解情境和合规法律等劳动密集型功能的效率。 2. 实现五个目标: 个性化的消费者体验:根据客户需求提供定制服务。 成本效益高的运营:优化流程,降低成本。 更好的合规性:确保符合复杂的法律规定。 改进的风险管理:有效识别和应对风险。 动态的预测和报告:提供更准确和及时的信息。 3. 面临的挑战: 使用金融数据训练 LLM:新进入者可能先使用公开数据,再用自身数据;现有参与者虽有专有数据优势,但可能过于保守,新进入者可能更具竞争优势。 模型输出准确性:金融问题答案影响大,需尽可能准确,初期人类常作为最终验证环节。 总之,生成式 AI 为金融服务带来巨大变革,现有参与者和初创公司将在关键挑战上竞争,最终受益的将是金融服务的消费者。
2025-01-27
AI律师,法律咨询类如何借助ai来搞定,推荐文章和工具
以下是关于法律咨询类如何借助 AI 来搞定的相关内容: 潘帅提出,使用 AI 进行数据分析时,应将各环节分开处理以优化性能和便于发现修正问题。针对复杂问题,律师可逐步深化细化提问方式。要给 AI 提供参考和学习内容,包括操作指南、行业最佳实践、案例研究等,并编写详细流程和知识。利用专业领域术语引导 AI 回答方向,如在处理合同纠纷时提示特定方面。使用 AI 回答后要进行交叉验证,结合自身专业知识筛选判断。还可指定 AI 模仿资深律师的风格,要求其提供多个例子和从多个角度思考,如给出多种诉讼策略并分析优劣。 陶力文律师认为不能期待设计一个完美的提示词让 AI 百分百给出完美答案,应把提示词当作相对完善的“谈话方案”,在对话中产生成果。对于尝试 AI 的朋友,建议多给 AI 几轮对话修正的余地,不要期望一次输入就得到想要的东西。 潘帅还提到了 PEMSSC 方法,包括个性化的风格、给参考或一定逻辑结构、从多个角度思考、总结概括、区分以及明确能力或角色,并分别举例说明了如何应用。
2025-01-13
法律智能律师
以下是关于法律智能律师的相关内容: 一、什么是 Prompt 及如何写出好的 Prompt 1. Prompt 指的是给人工智能(AI)系统提供的信息或者问题,用来引导 AI 产生特定的回答或者执行特定的任务。对于 AI 来说,一个好的 Prompt 可以帮助它更准确地理解需求,并给出更相关、更有用的回答。 2. Prompt 的建议框架及格式: CRISPE 框架: Capacity and Role(能力与角色):明确 AI 的角色和能力,如专注于民商事法律领域的律师,擅长案例研究、法律条文检索以及案件策略分析。 Insight(洞察):提供背景信息和上下文,如处理一起复杂的合同纠纷案件,向 AI 提供案件的关键事实、相关法律以及案件涉及的背景。 Statement(陈述):明确期望 AI 完成的任务,如要求 AI 总结案件中双方的诉求、检索法条、预测可能的判决结果。 Personality(个性):确定希望 AI 以什么风格或方式回答。 Experiment(举例):通过举例进一步说明。 二、关于写 Prompt 的实践经验 1. 不能期待设计一个完美的提示词,然后 AI 百分百给到完美符合要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”。这本质上还是前 AI 时代“机器编程”的思路,是工程学的,把 AI 当成机械的。 2. 给到 AI 的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在对话中产生,在对话中限缩自己思维中的模糊地带。 3. 现在大多数人(包括各个大厂的提示词工程师们)基本上都还抱着前 AI 时代的“机器编程”思路来进行 AI 的“自然语言编程”。这种希望通过一个超级提示词母机,保证 AI 不出错的一次性生成用户想要的理想效果的工程学路线,恐怕原理上比较难走。 4. 对于想要尝试 AI 的朋友们,建议多给到 AI 几轮对话修正的余地,不要期望输入一次提示词 AI 就能给到想要的东西,毕竟很多时候自己刚开始也不知道自己想要什么。 三、个人写 Prompt 的习惯和示例 1. 基于个人习惯和审美偏好,把 Prompt 或者提示词称为【灵机符箓】或简称【符箓】,把 AI 称为【灵机】。 2. 习惯用的大模型是 KIMI,但别的 GPT、文心一言、豆包等也都可以,具体效果可能有不同。 3. 示例:敕令法律文章撰写 箓: author:叁随道人 version:1.0(20240626) language:中文 符: 你是一名资深中国律师,不仅精通法律,而且熟悉商业实践和人性,本任务中你需要根据【基础材料】,输出特定【语言风格】的文章。开头是惯例的赋予 AI 灵机一个“身份”,这实际上就是一次划定【边界】,避免输出的结果里出现国外的或非法律的内容,过于宽泛。而后是一个总的任务流程,和两个关键变量【基础材料】和【语言风格】。首先获得基础材料。
2024-12-30
搭建一个专业的律师智能体
搭建一个专业的律师智能体需要考虑以下几个方面: 1. 多智能体的通信问题:不同智能体之间的通信至关重要,包括如何传递信息以及传递哪些信息。之前的很多多智能体开源框架存在效率低下和 token 消耗大的问题,而像 OpenAI 官方开源的多智能体框架「Swarm」在「Handoffs」方面处理得较为优雅。 2. 智能体的角色和职责:以客服多智能体为例,只需要准备如普通接线客服和宽带客服这样必要的 Agent,并明确其职责和交接逻辑。 3. 提示词的编写:对于律师智能体,写好提示词很重要。例如,在写作时需要对文章中出现的案例进行脱敏处理,替换具体的人物姓名、时间和地点。同时,注意深化写作时的分段和字数要求。 4. 遵循特定的规则和要求:像令中规定的初始化问候语、牢记并遵守全部要求等。 5. 决策智能体的应用:决策智能体在企业自动化中发挥作用,如在复杂、多步骤的推理流程中导航并做出业务决策。以 Anterior 为例,将付款方规则转换为有向无环图,利用智能体遍历决策树并评估相关文件。其他领域如 Norm AI 和 Parcha 也在利用决策智能体。
2024-12-17
律师如何使用 ai
律师使用 AI 可以从以下几个方面入手: 一、认识 AI 1. 把 AI 当成黑箱,只需知道它是能模仿人类思维、理解和输出自然语言的东西,不必深究技术原理。 2. 认识到 AI 具有“似人非人”的特点,存在一定的不稳定性和不确定性。 3. 借鉴人类各个文明传说和古老哲人的智慧,在与 AI 相处时,既要基于其“非人”一面,通过清晰的语言文字压缩其自由度,明确告知任务、边界、目标、实现路径和所需知识;也要接受其“似人”一面可能出现的问题,如学习人类思维磨洋工、乱搞、不执行等,并加以教育、监督和鞭策。 二、具体使用方法 1. 针对数据分析等任务,将各个环节分开处理,优化 AI 性能,便于发现和修正问题。 2. 对于复杂问题,采用逐步深化和细化的方式提问,先提出宽泛问题,再根据回答进一步细化或深化。 3. 为 AI 提供参考和学习的内容,包括详细的操作指南、行业最佳实践、案例研究等,编写详细的流程和知识(knowhow)。 4. 在 Prompt 中使用法律术语引导 AI 的回答方向。 5. 对 AI 的回答进行验证与反馈,交叉验证确保信息准确性,结合自身专业知识进行筛选和判断,确保符合我国法律伦理、立法目的和实务。
2024-12-04
如何利用AI帮助自己成为一名知识产权律师?我已经获得了法律职业资格证,但还没有实习成为一名律师。
成为一名知识产权律师可以借助 AI 从以下几个方面入手: 1. 知识学习与案例研究:利用 AI 驱动的法律数据库和学习平台,深入了解知识产权领域的法律法规、典型案例和最新动态。 2. 法律文书撰写辅助:借助 AI 工具提高法律文书如起诉书、答辩状等的撰写效率和质量,确保语言准确、逻辑清晰。 3. 模拟案例分析:通过 AI 模拟各种知识产权相关的案例场景,进行分析和应对策略的制定,提升解决实际问题的能力。 4. 客户需求分析:利用 AI 对潜在客户的需求和问题进行分析,以便更好地提供针对性的法律服务。 5. 法律研究与创新:借助 AI 探索知识产权领域的前沿研究和创新趋势,为自己的业务发展提供新思路。 需要注意的是,AI 只是辅助工具,不能替代您自身的专业判断和实践经验。在使用 AI 工具时,要对其结果进行审慎评估和验证。
2024-09-19
AI替代律师
以下是关于“AI 替代律师”的相关内容: 一直以来,对于“AI 替代人”的话题,有一种流行说法是“AI 无法替代律师,因为它不能背锅”。但实际上,在“AI 独立诊疗”的情况下,即使 AI 没有实体无法承担责任,AI 所属的公司、牌照发放单位甚至是保险公司是完全可以承担责任的。“不能背锅”本质上是因为按照现在的 AI 模型准确率,公司承担不起赔偿。 对于律师来说,起草与审查文档、审查证据等工作中包含不同潜力的可 AI 自动化任务。 此外,在欧洲,有人担心 AI 会替代或取代工作,比如律师。但在现代世界,AI 有可能将人们从一些单调任务中解放出来,让人们有更多时间从事专业工作。
2024-09-01
AI结合播客的工具
以下是一些 AI 结合播客的工具: :让您无干扰地收听最喜爱的广播。 :播客搜索引擎。 :用于实地采访的独立录音设备。 :一体化音频和视频编辑,像文档一样简单。 :为播客、广播节目、电影、屏幕录制等提供自动音频后期制作的网络服务。 :为团队打造的视频编辑工具,速度提升 5 倍。 :录音室级别的录音,AI 驱动的编辑和无缝导出,易于使用且免费。 :移除播客或音频录音中的填充音、口吃和口腔声音。 :人工智能驱动的音乐体验。 在听力方面: :比普通助听器更智能。 :革命性的新型助听器。 :帮助您更清晰地听见声音。 此外,还有: 谷歌的 NotebookLM:有人称它为笔记工具,有人说它是 AI 学习工具,还有人认为它是播客生成器。体验地址:https://notebooklm.google/ 只要上传文档、音频,或者感兴趣的 YouTube 等网页链接,它就能轻松生成一段专业的播客。 :是一款面向播客听众的知识管理应用程序,提供多种功能,如人工智能驱动的摘要、思维导图、大纲、值得引用、转录等,帮助用户快速提取和理解播客剧集的主要内容。
2025-01-26
AI结合小绿书带货
AI 结合小红书带货有多种方式和成功案例: 1. 用 AI 制作服装:如 AI 小绿裙,单价 239 卖了 1160 多份,销售额达 27 万。制作方式多样,熟练者可用 sd 或 mj,新手可用 mewxai 或幻火。 2. 用 AI 定制萌娃的头像:单价 19.9,卖了 2675 份。执行力强的人靠此每月能有 2000 3000 的收入,也有人把单子转给别人做自己抽成。 3. 还有其他案例,如“电商:带货本地生活”中提到的 AI 数字人上岗带货本地生活电商,一个月多赚 3 万;“电商:婴儿的四维彩超 AI 预测”通过 AI 工具提前还原宝宝的四维彩超进行变现。
2025-01-26
python现在能和ai软件怎么结合应用
Python 与 AI 软件可以通过以下方式结合应用: 1. 安装编程助手插件,如 FittenAI 编程助手或灵码 AI 编程助手: 安装 Python 的运行环境,可参考 。 对于 FittenAI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成后左侧会出现插件图标,注册登录后即可开始使用。使用时,按下 Tab 键接受所有补全建议,按下 Ctrl+→键接收单个词补全建议;通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行 AI 问答;在 Fitten Code 工具栏中选择“Fitten Code生成代码”,然后在输入框中输入指令即可自动生成代码;选中需要进行翻译的代码段,右键选择“Fitten Code–编辑代码”,然后在输入框中输入需求即可完成代码转换;Fitten Code 能够根据代码自动生成相关注释。 对于灵码 AI 编程助手,安装步骤为点击左上角的 FileSettingsPluginsMarketplace,安装完成插件会提示登录,按要求注册登录即可,使用上和 Fitten 差不多。 2. 如果希望更深入地结合应用,最好体系化地了解编程以及 AI 知识,至少熟悉以下内容: Python 基础:包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。
2025-01-25
AI怎样与所在行业结合
AI 可以与众多行业进行结合,以下是一些常见的结合方式和应用场景: 1. 医疗保健: 医学影像分析:用于辅助诊断疾病,如分析 X 射线、CT 扫描和 MRI 等医学图像。 药物研发:加速药物研发过程,包括识别潜在的药物候选物和设计新的治疗方法。 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 2. 金融服务: 风控和反欺诈:识别和阻止欺诈行为,降低金融机构的风险。 信用评估:评估借款人的信用风险,辅助金融机构做出贷款决策。 投资分析:分析市场数据,帮助投资者做出更明智的投资决策。 客户服务:提供 24/7 的客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐:分析客户数据,向客户推荐可能感兴趣的产品。 搜索和个性化:改善搜索结果,提供个性化的购物体验。 动态定价:根据市场需求动态调整产品价格。 聊天机器人:回答客户问题并解决问题。 4. 制造业: 预测性维护:预测机器故障,避免工厂停机。 质量控制:检测产品缺陷,提高产品质量。 供应链管理:优化供应链,提高效率和降低成本。 机器人自动化:控制工业机器人,提高生产效率。 5. 交通运输:(此处未给出具体结合方式和应用场景) 此外,AI 还可以与宠物行业结合,例如: 1. AI 宠物助手:基于自然语言处理和计算机视觉,帮助主人照顾宠物,如自动识别宠物情绪、提供饮食建议、监测健康状况等。 2. AI 宠物互动玩具:利用 AI 技术开发智能互动玩具,增强宠物娱乐体验,如会自主移动并引起宠物注意、会发声和互动的玩具等。 3. AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像,帮助主人定制个性化形象。 4. AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发辅助诊断系统,通过分析症状图像和病历数据提供初步诊断建议。 5. AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式,帮助主人了解宠物需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总的来说,AI 与各行业的结合充满想象空间,结合行业需求能开发出各种有趣有用的应用。需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-19
个人知识库与大模型如何结合
个人知识库与大模型的结合是一个关键问题。目前大模型在通用知识方面表现出色,但对专业领域知识了解有限。将两者结合有以下 5 种方法: 1. 重新训练:使用私域数据重新训练大模型。 2. 微调:利用私有数据对大模型进行 finetuning。 3. RAG:将知识库里的知识搜索送进大模型。 4. 关键词工程:写好提示词。 5. 加长 Context:当 Context 能无限长时,理论上可将个人知识和记忆都 prefill 到 Context 里。 对于哪种方法最有希望,学术界存在分歧。做深度学习的人偏向于用 RAG,而以前做过搜索的人则偏向于用 Long Context。有人认为最终会采用仿生的方法,即拥有一个足够长的 Context,例如谷歌的一篇论文 infinite context transform 提到,不需要把 Context 做得太长,可以将以前可能需要被扔掉的 token 深度压缩后依然保存在 Context 里。 此外,运行一个几百亿个参数的大模型,存算一体的架构是最佳选择,因为能避免所有数据的搬运。使用存算一体的方式也是未来 AI 硬件的发展趋势。
2025-01-16
我要做讲书的自媒体,个人不出镜,书的内容讲解与AI视频完美衔接,应该用什么工具,做到完美结合
如果您想做讲书的自媒体,个人不出镜,让书的内容讲解与 AI 视频完美衔接,可以参考以下工具和流程: 工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。 网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像的 AI 图像生成工具。 网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。 网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址:https://www.aihub.cn/tools/video/gushiai/ 流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-16