Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

欧盟《人工智能法案》在中国适用过程中的积极影响与不利影响,请举例说明

Answer

欧盟《人工智能法案》在中国适用过程中的积极影响与不利影响举例如下:

积极影响:

  1. 对中小企业的兼顾激励与监管:欧盟的法案顾及到了中小企业在人工智能领域的弱势地位,适当地将对中小企业的合规义务豁免规定以及合规支持规定纳入未来的人工智能立法中,有利于形成健康有序的公平竞争秩序,激发中小企业的科技创新活力,同时防止过度监管。例如,2023 年《AI 法案》折衷草案通过制约单方面强加给中小企业和初创企业的不公平合同条款、促进监管沙盒广泛而平等的参与、降低评估费用等措施降低中小企业的合规成本。
  2. 纳入道德伦理和人权考量:《人工智能法案》将人工智能系统对伦理道德和基本人权的影响有机纳入规制框架和评估框架中,我国《科技伦理审查办法(试行)》也是将伦理纳入包括人工智能开发在内的科技活动的积极探索。

不利影响:

  1. 以风险为基准的管理框架存在不确定性:伦理道德和人权具有高度概括性、抽象性和不确定性,如何将其融入人工智能治理考验立法技术。《人工智能法案》对“不可接受的风险”和“高风险”的人工智能系统的界定和解释存在相当大的不确定性和模糊性,可能难以统一进行风险分类,成效有待进一步观望和研讨。
  2. 可能无法完全适应中国国情:中国和欧盟在人工智能发展的阶段、市场环境、企业结构等方面存在差异,欧盟的法案在具体适用时可能需要进行较大的调整和适配,否则可能无法有效发挥作用。
Content generated by AI large model, please carefully verify (powered by aily)

References

【非官方解读】全球人工智能治理大变局之欧盟人工智能治理 监管框架评述及启示

[heading4](4)对中小企业的兼顾激励与监管的制度体系相较而言,我国的法律制度更多是在一般性规定的基础之上,强化对大型企业的监管。例如,就《个人信息保护法》而言,关键信息基础设施运营者和大型个人信息处理者将面临更多的合规义务,执行个人信息出境时也面临更严格的要求;而对于小型个人信息处理者的保障仅出现在第62条,属于个人信息保护工作推进内容之一,但目前尚未有具体规定。而专门针对人工智能领域制定的,针对算法推荐、深度合成、以及生成式人工智能的办法,均没有对中小型的服务提供者制定专门的规定,以控制其合规成本。从防止垄断,促进人工智能技术创新的角度而言,欧盟的《人工智能法案》顾及到了中小企业在当中的弱势地位。我们认为,适当地将对中小企业的合规义务豁免规定以及合规支持规定纳入到未来的人工智能立法中,将有利于形成人工智能领域健康有序的公平竞争秩序,有效激发中小企业的科技创新活力,同时也能够在制度上有效防止过度监管,避免“放过老虎抓苍蝇”的行为。以上,我们对欧盟整体的人工智能治理框架及2023年《AI法案》折衷草案的重点变化进行了梳理。可以看到,欧盟对于人工智能的治理整体上由分散不断趋于统一。同时,也逐渐重视欧盟内各项法律法规的衔接问题,以期构建欧洲数据治理的整体格局。接下来,我们将继续分析《人工智能法案》的重点制度,并通过对比分析,为我国的人工智能治理的具体路径提供可行思路。扫码订阅“金杜律师事务所”,了解更多业务资讯https://www.brookings.edu/blog/techtank/2023/05/08/the-politics-of-ai-chatgpt-and-political-bias/

【非官方解读】全球人工智能治理大变局之欧盟人工智能治理 监管框架评述及启示

[heading4](1)纳入道德伦理和人权考量的以风险为基准的统一人工智能治此外,伦理道德和人权向来都是人工智能技术发展绕不开的终极话题。其高度概括性、抽象性和不确定性,导致如何将这部分内容融入人工智能治理考验着立法者的立法技术。而以风险为基准的人工智能治理框架提供了其中一种解决方案。《人工智能法案》将人工智能系统对伦理道德和基本人权的影响有机纳入规制框架和评估框架中,对相关责任主体的义务配置和履行起着决定性的作用。实际上,我国《科技伦理审查办法(试行)》也是将伦理纳入包括人工智能开发在内的科技活动的积极探索。伦理审查委员会的审查结果也能够阻止违反道德伦理科技活动的开展。不过由于该《办法》适用于所有的科技活动,人工智能的特殊性可能无从得到体现。另外,应如何界定和解释“不可接受的风险”和“高风险”的人工智能系统也面临相当大的不确定性和模糊性。[26]https://arxiv.org/ftp/arxiv/papers/2107/2107.03721.pdf人工智能系统会带来的问题,具体取决于使用它们的人、地点和目的。在一定程度上可能难以统一进行风险分类。[27]https://link.springer.com/article/10.1007/s12027-022-00725-6《人工智能法案》虽然通过举例的方式帮助解释和澄清,但仍可能无法应对快速发展变化的人工智能系统。因而以风险为基准的人工智能管理框架究竟成效如何仍有待进一步的观望和研讨。

【非官方解读】全球人工智能治理大变局之欧盟人工智能治理 监管框架评述及启示

[heading4](4)对中小企业的兼顾激励与监管的制度体系在统一式的监管措施面前,虽然合规要求并无差距,但中小企业往往面临着难以承担的巨大合规成本。如果不采取适当的措施对中小企业进行保障,大型企业往往可以凭借自己的资源优势在实现技术创新的同时完成合规要求,而中小企业则只能在创新与合规中艰难抉择,这无疑可能会加剧大型企业的垄断局面。欧盟的数据立法向来意识到这一点,从GDPR到《数字服务法》,都采取了相应的措施适度降低中小企业的合规成本。《人工智能法案》也不例外。2023年《AI法案》折衷草案第一条进一步明确了要采取监管沙盒等措施降低中小企业的合规成本,促进科技创新。具体而言,通过第28a条制约单方面强加给中小企业和初创企业的不公平合同条款,通过采取规制格式合同的方式,一些显著不公平的条款将被视为无效约定,防止大型企业利用自身优势转嫁法律规定下本应自己承担的法律风险。在监管沙盒方面,2023年《AI法案》折衷草案第53a条特别提出应促进监管沙盒广泛而平等的参与,并减免参加费用和提供部署前服务和其他增值服务。最后,2023年《AI法案》折衷草案还通过适当降低中小企业的评估费用或其他合规要求,在处罚规定中要求将纳入中小企业的利益和经济活力,以实现降低合规成本的最终目标。2023年《AI法案》折衷草案还进一步吸纳了来自欧洲数字中小企业联盟的建议,要求相关准则的制定需要充分考虑中小企业的需求,以确保对其的合规负担不会因为中小企业参与缺位而导致过重。[29]https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12527-Artificial-intelligence-ethical-and-legal-requirements/F266557

Others are asking
举例说明,意图和FAQ训练的区别
意图和 FAQ 训练是两种不同的概念。 意图训练主要侧重于理解用户的核心意图或目的。例如,在一个客服场景中,用户的意图可能是查询产品信息、寻求技术支持或进行投诉等。通过对大量的用户交互数据进行分析和学习,模型能够识别出这些不同的意图类别。 FAQ 训练则侧重于常见问题及其对应的标准答案。比如常见的“产品如何退换货”“售后服务的联系方式是什么”等问题,以及相应的准确回答。 总的来说,意图训练更注重对用户目的的分类和理解,而 FAQ 训练更侧重于对特定常见问题的准确回答。
2025-01-13
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02
欧盟《人工智能法案》在我国适用过程中的影响,请举例说明(注意,简洁凝练)
欧盟《人工智能法案》在我国适用过程中的影响主要体现在以下方面: 1. 立法参考:我国与欧盟在人工智能立法工作上“齐头并进”,且立法理念有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则。该法案对我国人工智能立法工作具有重要参考意义。 2. 市场拓展:若我国的 AI 项目有意拓展欧洲市场,可能因针对不同市场重新训练特有模型效率不高,而不得不根据欧盟法案对产品进行调整。 同时,我国是第一个开始制定生成式人工智能监管框架的国家,从 2022 年开始陆续出台全面指南,如今审查机构已介入。我国持续生产 SOTA 模型,由国家互联网信息办公室监督。政府希望模型避免给政治问题提供“错误”答案,发布模型前须提交测试以校准拒绝率。虽然禁止 Hugging Face 等国外网站访问,但官方批准的“主流价值观语料库”可作为训练数据源。此外,伦理道德和人权向来是人工智能技术发展绕不开的终极话题,我国《科技伦理审查办法》也是将伦理纳入包括人工智能开发在内的科技活动的积极探索。但由于该《办法》适用于所有科技活动,人工智能的特殊性可能无从得到体现,且如何界定和解释“不可接受的风险”和“高风险”的人工智能系统也面临相当大的不确定性和模糊性。
2024-12-29
AI的能力边界是什么,请举例说明
AI 的能力存在边界,主要体现在以下方面: 1. 知识来源受限:AI 的知识来源于训练数据,无法超越这些数据的范围,如同学生不能回答课本之外的问题。 2. 推理能力有限:即使拥有足够的知识,AI 也无法像人类一样进行无限的推理和联想。 例如,在“Hallucination is Inevitable:An Innate Limitation of Large Language Models”这篇论文中,揭示了 AI 幻觉无法被完全消除的根本原因就在于 AI 模型的能力边界。 在探索者队伍的研究中,有人提出开发一个用于探索 AI 能力边界的实验平台,这也从侧面反映了对 AI 能力边界的关注。 此外,国际政治的边界或将按照 AI 技术边界来重新划分,也说明了 AI 能力边界的影响范围之广。
2024-08-31
大语言模型领域, 如何理解“退火”概念。 请用通俗易懂的方式举例说明
在大语言模型领域,“退火”是一个相对复杂的概念。通俗地说,您可以把它想象成铁匠打铁时的一个过程。铁匠在打造铁器时,不会一开始就用猛火高温一直烧,而是会逐渐升高温度,然后再慢慢降低温度,让金属的结构更加稳定和优化。 在大语言模型中,“退火”的作用类似于此。它可能是在模型的训练过程中,对某些参数或者条件进行逐步的调整和优化,以达到更好的性能和效果。但目前提供的知识库内容中,没有直接关于大语言模型中“退火”概念的详细且通俗易懂的解释和具体例子。
2024-08-13
如何做Agent,请举例说明
以下是关于如何做 Agent 的详细说明及举例: 一、基本框架 Agent 的基本框架可以概括为“Agent = LLM + 规划 + 记忆 + 工具使用”。其中,大模型 LLM 充当 Agent 的“大脑”。 二、规划(Planning) 主要包括子目标分解、反思与改进。子目标分解能将大型任务拆解为较小可管理的子目标,便于处理复杂任务。反思和改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,以提升最终结果的质量。 三、记忆(Memory) 分为短期记忆和长期记忆。短期记忆将所有的上下文学习视为利用模型的短期记忆来学习;长期记忆提供了长期存储和召回信息的能力,通常通过利用外部的向量存储和快速检索来实现。 四、工具(Tools) 五、智能体的类型 智能体可以根据其复杂性和功能分为以下几种类型: 1. 简单反应型智能体(Reactive Agents):根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并据此采取行动。比如自动驾驶汽车,不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体(Goalbased Agents):除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。金融交易智能体就是一个例子,它会根据不同市场条件选择最优的交易策略。 5. 学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。强化学习智能体通过与环境互动不断学习最优策略。 六、从产品角度思考 Agent 设计 以历史新闻探索向导为例,其身份是历史新闻探索向导,性格是知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可为其设计简短的背景故事,比如曾是一位历史学家,对世界重大历史事件了如指掌且充满热情,愿意分享知识。写好角色个性需考虑角色背景和身份、性格和语气、角色互动方式以及角色技能等方面。 例如吴恩达通过开源项目 ChatDev 举例,可让一个大语言模型扮演不同角色,如公司 CEO、产品经理、设计师、代码工程师或测试人员,这些 Agent 会相互协作,共同开发一个应用或复杂程序。
2024-07-22
怎么用飞书搭建一个人工智能知识库
以下是使用飞书搭建人工智能知识库的相关内容: 1. 参考文章: 《这可能是讲 Coze 的知识库最通俗易懂的文章了》:介绍了一系列关于 AI 知识库的知识,包括“通往 AGI 之路”这个使用飞书软件搭建的 AI 知识库,以及相关文章对 AI 时代知识库的讲解,读完可收获 AI 时代知识库的概念、实现原理、能力边界等内容。 《【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档》:其中提到创建知识库时可使用手动清洗数据,包括在线知识库和本地文档的处理方式,如在线知识库需创建飞书在线文档,每个问题和答案以“”分割等;还介绍了发布应用时要确保在 Bot 商店中能搜到。 《「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人》:提到创建知识库的路径为个人空间知识库创建知识库,文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用本地文档,可按照操作指引上传文档、分段设置、确认数据处理,同时提到知识库内容切分粒度的小技巧,如使用特殊分割符“”。 2. 总体步骤: 确定所需的数据清洗方式,如手动或自动清洗。 对于在线知识库,创建飞书在线文档,每个问题和答案以特定方式分割,选择飞书文档、自定义等选项,并可编辑修改和删除。 对于本地文档,注意拆分内容以提高训练数据准确度,按照固定方式进行人工标注和处理。 完成创建后可发布应用,确保在 Bot 商店中能搜到。
2025-03-04
告诉我211本科人工智能毕业一志愿考研结果不理想,很可能被调剂到一个双非院校,请给我在就业方面一个合适的方向(包括但不限于大学老师、大厂、中小厂、国企、考公考编、选调生等)
对于 211 本科人工智能专业毕业,考研一志愿结果不理想可能被调剂到双非院校的情况,在就业方面可以有以下几个方向: 大学老师:如果您有继续深造的意愿,在研究生阶段取得优异成果,未来仍有机会进入高校任教,但可能相对较难进入重点高校。 大厂:大厂通常对学历和能力都有较高要求。虽然您的研究生院校可能是双非,但如果在研究生期间积累丰富的项目经验、具备扎实的专业技能,仍有机会进入大厂。 中小厂:中小厂对于学历的要求相对宽松,更注重实际能力。您可以在中小厂获得更多实践机会,积累工作经验,为未来的职业发展打下基础。 国企:国企的稳定性较高,对于学历的要求也相对灵活。您可以关注国企的招聘信息,寻找与人工智能相关的岗位。 考公考编:公务员和事业单位的工作稳定性强,一些与科技、信息化相关的部门可能会招聘人工智能专业的人才。 选调生:如果您符合选调生的选拔条件,可以尝试通过选调生途径进入政府部门工作。 总之,无论选择哪个方向,都需要在研究生期间不断提升自己的专业能力和综合素质,增加就业竞争力。
2025-03-03
帮我找出现在成熟的人工智能大模型,列举他们的功能,附上打开链接
以下是一些成熟的人工智能大模型及其功能和链接: 百度(文心一言):https://wenxin.baidu.com 。 抖音(云雀大模型):https://www.doubao.com 。 智谱 AI(GLM 大模型):https://chatglm.cn 。 中科院(紫东太初大模型):https://xihe.mindspore.cn 。 百川智能(百川大模型):https://www.baichuanai.com/ 。 商汤(日日新大模型):https://www.sensetime.com/ 。 MiniMax(ABAB 大模型):https://api.minimax.chat 。 上海人工智能实验室(书生通用大模型):https://internai.org.cn 。 在这些大模型中: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 。 目前不能进行自然语言交流的:昇思、书生 。 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 。 特色功能:昇思——生图,MiniMax——语音合成 。 此外,还有其他一些大模型: OpenAI 系统:包括 3.5 和 4.0 版本,一个新的变种使用插件连接到互联网和其他应用程序。Code Interpreter 是一个非常强大的 ChatGPT 版本,可以运行 Python 程序。如果未为 OpenAI 付费,只能使用 3.5 。除了插件变种和一个暂时停用的带有浏览功能的 GPT4 版本之外,这些模型都没有连接到互联网。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,例如可以创建和查看图像,且可以在网页浏览器中阅读文档,并连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 Anthropic:发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口,本质上是 LLM 的记忆。Claude 几乎可以保存一整本书或许多 PDF,与其他大型语言模型相比,它不太可能恶意行事。
2025-03-03
人工智能生成内容(AIGC)感悟600字
以下是为您生成的 600 字左右关于人工智能生成内容(AIGC)的感悟: AIGC 作为当今科技领域的热门话题,正以惊人的速度改变着我们的生活和工作方式。 AIGC 强调的是利用人工智能技术生成各种内容,包括文本、图像、音频和视频等。它并非简单的技术堆砌,而是多种先进技术融合的成果。例如,Transformer 模型在语言处理和多模态领域的应用,为 AIGC 提供了强大的支撑。 从原理上看,AIGC 涉及多种生成算法,如 VAE、GAN、FlowModel 和 Diffusion Model 等。这些算法使得机器能够创造出具有一定质量和创意的内容。同时,还有像 IS 和 FID 这样的评价指标来衡量生成图片的质量。 在实际应用中,AIGC 展现出了巨大的潜力。它可以自动撰写新闻文章,为媒体行业带来效率的提升;能够生成艺术画作,为艺术创作注入新的活力;可以创作音乐,丰富音乐领域的多样性;还能制作视频游戏内容,为娱乐产业增添新的元素。 ChatGPT 作为 AIGC 在文本生成领域的杰出代表,充分展示了 AIGC 的强大能力。它通过预训练和大量的数据投喂,能够与用户进行流畅且相关的文本交流,仿佛在玩“文字接龙游戏”。 然而,AIGC 也面临一些挑战和问题。比如生成内容的准确性和可靠性需要进一步提高,版权和伦理问题也需要引起重视。但不可否认的是,AIGC 为我们开启了一扇充满无限可能的大门,让我们对未来充满期待。随着技术的不断进步和完善,相信 AIGC 将在更多领域发挥重要作用,为人类创造更多的价值。
2025-03-01
人工智能生成内容(AIGC)的突破、对齐及产业培育,感悟
以下是关于人工智能生成内容(AIGC)的突破、对齐及产业培育的感悟: 一、原理与概念 1. 人工智能(AI):是一种目标,让机器展现智慧,简称 AI。 2. 生成式人工智能(GenAI):目标是让机器产生复杂有结构的内容,简称 GenAI。 3. 机器学习:一种手段,让机器自动从资料中找到公式,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 4. 深度学习:一种更厉害的手段,参照人脑有神经网络和神经元(因有很多层所以叫深度),神经网络可用于多种学习方式。 5. 大语言模型(LLM):是一类具有大量参数的“深度学习”模型。 6. ChatGPT:是 AIGC 技术的一个应用实例,是美国 OpenAI 公司开发的基于大型语言模型的对话机器人,能根据用户输入生成连贯且相关的文本回复。 二、AIGC 的特点与应用 AIGC 是利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。其技术可用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。 三、相关概念的关系与区别 AGI、GenAI、AIGC 几个概念有所区别与联系,具体可参考相关图示。更多概念可问 Kimi、通义千问、文心一言等大模型。 四、技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-03-01
新手如何更好使用该网站,主要了解人工智能或者AGI进展,主流软件的学习和应用
对于新手想要更好地使用该网站来了解人工智能或 AGI 进展以及主流软件的学习和应用,以下是一些相关内容: AE 软件: 基本功能:可通过图层软件抠元素加插件做特效,如利用 auto field 自动填充工具,轨道遮罩功能让图层按特定形状变化等。 与 AI 结合运用:如用 runway 生成烟花爆炸素材,结合 AE 的图层混合模式、遮罩等功能实现特效可控的画面。 其他应用:用内容识别填充功能处理视频画面,如抹掉入镜的人;从素材网站获取粒子素材为画面添加氛围感。 学习路径:可在 B 站找丰富的 AE 软件入门课程自学,也可从包图网下载工程文件学习。 学习方法:通过拆解视频、留意路边广告特效、按层级逻辑思考画面运动来学习 AE,还可参考模板。 与 AI 的关系:AI 出现后,AE 使用减少,有些动效可用 AI 完成。 在短剧中的应用:在火焰、文字、光线等方面有少量应用。 AI 相关技术与活动: AI 音乐创作:通过输入更高级的词汇与 AI 音乐对话能产生更好效果,有 AI 音乐的版块、挑战、分享会和教程,可通过王贝加入 AI 音乐社区。 数字人语音合成:介绍了声音克隆技术,提到了微软、阿里等的相关成果,常用的是 JPT service。 Config UI 的应用:能降低成本、提高效率,在图书出版、引流等方面有应用,岗位稀缺,社区有相关共学课程。 社区共创项目:包括东京的 confii 生态大会、AI 文旅视频、娃卡奖、李普村共创故事、AI 春晚等活动。 作业与报名:作业是询问对 AI 方向的兴趣和想做的项目,活动报名可通过填写名字和申请新增学校参与。 线下寄送物料组织活动:会给大家寄送线下活动物料,在学校内组织。 AI 春晚即将开始:去年 300 人 30 天共创了 AI 春晚,今年的也即将开始,可报名参与多种岗位。 AIPO 活动及相关挑战:10 月 20 日的 AIPO 活动,可提前构思展示项目,有会话和视频相关的挑战赛。 共学活动与技能提升:接下来 10 天有从零基础到建站等内容的讲解,回放会放在链接里,可先从练习提示词入手。 硬件机器人材料购买:若搞硬件机器人,部分材料需尽快购买。 自媒体发布与流量扶持:在小红书发布活动内容带特定标签有流量扶持,作品也可发布在 GitHub 等平台。 活动奖项与历史玩法:设最佳创业奖和最佳投资奖各四个,有线下摆摊展示交流、IPO 路演等玩法,之前在多个城市举办过 AI 切磋大会。 工具使用与新大赛预告:可使用多种 AI 工具,新的大赛即将开启,有百万奖金池,相关动态会在社区活动栏目公布。 AI 音乐和数字人语音合成: AI 音乐方面,提到草爷、格林 king、狗哥带大家入门,有相关课程与教程,且淘宝上有套壳工具抄袭。社区伙伴做的 AI 音乐专辑不错。 数字人语音合成部分提到声音克隆,有新的声音克隆且音质很不错。 提到了微软新出的成果、阿里的 Cozy voice(指出其泛化能力不强)、大家常用的 GPT solve it、刚举办的 AI 3D 活动。 以小田的 config UI 基础工作流一日谈展开,讲述了多个案例,如许建拍摄场景图成本降低,郭佑萌在图书出版行业提升效率,影楼可进行换装等操作,文旅文创场景有有趣的合影生成方式,还提到该工作流岗位稀缺且社区有课程可供学习。 AJ 介绍平台资源,包括共学课程、专栏报告、数据等,还提及就业创业及一些企业专栏的内容。
2025-02-28
人工智能权利法案蓝图
以下是关于《人工智能权利法案蓝图》的相关内容: 一、总体概述 《人工智能权利法案蓝图》(Blueprint for an AI Bill of Rights)旨在保障公民在人工智能应用中的各项权利。 二、具体应用 1. 公民权利、公民自由和隐私 在公共和私营部门,保护公民的言论自由、投票自由,免受歧视、过度惩罚、非法监视以及侵犯隐私和其他自由。 保障机会均等,包括公平获得教育、住房、信贷、就业和其他计划的机会。 确保公民能够获得关键资源或服务,如医疗保健、金融服务、安全、社会服务、有关商品和服务的非欺骗性信息以及政府福利。 2. 数据隐私 公民应通过内置保护措施免受滥用数据行为的影响,对自身数据的使用拥有代理权。 设计应选择保护公民免受隐私侵犯,默认包含数据保护,确保数据收集符合合理期望,仅收集特定上下文严格必需的数据。 自动化系统的相关人员应寻求公民许可并尊重其关于数据收集、使用、访问、传输和删除的决定;若无法做到,应采用替代的隐私设计保护措施。 系统不应采用混淆用户选择的用户体验和设计决策,或通过侵犯隐私的默认设置给用户带来负担。 仅在适当且有意义的情况下,才以同意证明数据收集的合理性,同意请求应简短、易懂,并为用户提供数据收集和使用环境的代理权,改变当前难以理解的数据通知和选择做法。 加强对敏感领域(如健康、工作、教育、刑事司法和金融)相关数据和推论以及青少年数据的保护和限制。 禁止在敏感领域滥用数据,相关数据和推论只能用于必要功能,并受到道德审查和使用禁令的保护。 公民和社区应免受不受控制的监视,监视技术应受到加强监督,包括进行部署前评估,以保护隐私和公民自由。持续监视和监测不应在教育、工作、住房等可能限制权利、机会或访问的环境中使用。只要有可能,公民应有权访问报告,以确认数据决策得到尊重,并评估监控技术的潜在影响。
2025-01-10
欧盟人工智能法案在实施中对我国未来立法的影响
欧盟人工智能法案在实施中对我国未来立法主要有以下影响: 1. 参考意义:我国与欧盟在人工智能立法方面处于“齐头并进”态势,且立法理念有共通之处,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考价值。 2. 产品调整:若AI项目有意拓展欧洲市场,可能因不同市场要求而需根据欧盟法案对产品进行调整。 3. 对中小企业的监管:我国法律制度在一般性规定基础上强化对大型企业监管,而欧盟法案顾及到中小企业弱势地位。将对中小企业的合规义务豁免及合规支持规定纳入我国未来人工智能立法,有利于形成公平竞争秩序,激发中小企业科技创新活力,避免过度监管。 4. 法律衔接:我国《个人信息保护法》规定可能对人工智能研发和部署使用中的个人信息处理形成合规障碍,而欧盟《人工智能法案》在不影响GDPR实施的情况下对涉及个人数据的处理进行了解释和衔接。我国若进行统一的人工智能立法,个人数据处理的合法性问题无法回避,可在立法中进行特别规定。
2025-01-02
欧盟人工智能法案立法理念
欧盟人工智能法案的立法理念主要包括以下几个方面: 1. 风险分级管理:对不同风险程度的人工智能应用进行分类监管。 2. 强调高风险项目的“备案”“评估”“透明”等原则。 3. 全面禁止人工智能用于某些特定领域,如生物识别监控、情绪识别、预测性警务。 4. 要求生成式人工智能系统如 ChatGPT 披露内容是人工智能生成的。 5. 认为用于在被认为高风险的选举中影响选民的人工智能系统需特别监管。 6. 旨在促进以人为本、值得信赖的人工智能的应用,并保护健康、安全、基本权利和民主免受其有害影响。 7. 确保欧洲开发和使用的人工智能完全符合欧盟的权利和价值观,包括人类监督、安全、隐私、透明度、非歧视以及社会和环境福祉。 2021 年 4 月发布的《人工智能法案(提案)》引入了风险分级监管、市场准入制度、监管沙盒等制度,以应对突出的算法黑箱问题,确保投放到欧盟市场的人工智能系统及其使用的安全性。近年来,欧盟针对数据治理发布的一系列法案,与即将正式出台的《人工智能法案》共同构成欧盟数据战略框架下的重要监管规则,从底层逻辑入手加强数据的安全保护,促进欧洲数据流动,防范算法自动化决策的潜在风险,建立相关伦理价值标准,保障个人权利,构建监管与创新发展的平衡机制。
2024-12-31
欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟人工智能法案对我国在生成式人工智能方面立法具有以下启示: 1. 立法理念方面:我国与欧盟在人工智能立法上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现,欧盟法案对我国立法工作具有重要参考意义。 2. 特殊领域监管方面: 算法推荐、深度合成、生成式人工智能是我国规制人工智能的具体领域。欧盟法案对这些领域的某些产品或服务有特殊回应,一定程度上印证了我国特别监管的必要性。 对于深度合成,欧盟法案强化了系统使用主体信息透明度的要求,与我国相关规定有一致性,但我国规定更全面,不过存在规定交叉重复适用的问题。 对于生成式人工智能,欧盟法案将其视为“基础模型”的一种类型,并规定了额外义务,我国相关规定在义务上更为全面。 3. 监管体系方面: 中国针对不同涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体。 欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估划分风险层级,并匹配不同责任措施和差异化监管,进一步界定了各类主体的义务。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟《人工智能法案》对我国在生成式人工智能方面立法的启示主要体现在以下几个方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任作为基本落脚点,将“服务提供者”作为相关义务的履行主体。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同的责任措施和差异化监管。 2. 风险分类分级监管与算法安全评估:在我国,相关指导意见和法规已提出风险防控和算法分级分类安全管理的要求,以及对生成式人工智能服务的分类分级监管要求。欧美在这方面的路径和方法虽有争议,但总体上对我国仍具借鉴意义。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国相关立法的启示。可以举例
欧盟《人工智能法案》对我国相关立法的启示主要体现在以下方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体,如《互联网信息服务算法推荐管理规定》《生成式人工智能服务管理办法》等。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同责任措施和差异化监管。 2. 风险分级管理:我国与欧盟在立法理念上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现。 3. 对拓展市场的影响:如果我国的AI项目有意拓展欧洲市场,由于针对不同市场重新训练特有模型的效率不高,将因“木桶原理”而不得不根据欧盟《人工智能法案》对产品进行调整。 总之,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考意义。
2024-12-31
请推荐相关的学习资料: AI与新媒体设计:探索AI如何影响视频编辑、社交媒体内容创作、虚拟现实与增强现实设计等。
以下是关于学习“AI 与新媒体设计”的相关资料推荐: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),可根据自己的兴趣选择特定的模块进行深入学习,建议掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,通过对话获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2025-02-27
请推荐相关的资源:AI与新媒体设计:探索AI如何影响视频编辑、社交媒体内容创作、虚拟现实与增强现实设计等。
很抱歉,目前没有相关的具体资源可以推荐给您。但您可以通过以下途径获取相关信息: 1. 学术数据库:如 Web of Science、Scopus 等,搜索相关的研究论文。 2. 在线教育平台:例如 Coursera、EdX 等,可能有相关的课程。 3. 专业论坛和社区:如知乎、V2EX 等,与同行交流获取资源推荐。 4. 相关的行业报告网站:如艾瑞咨询、易观智库等。
2025-02-27
- AI与新媒体设计:探索AI如何影响视频编辑、社交媒体内容创作、虚拟现实与增强现实设计等。
AI 在新媒体设计领域的影响广泛且深入,主要体现在以下方面: 在视频编辑方面: 能够自动进行剪辑和特效处理,提高制作效率和质量。 在社交媒体内容创作方面: 可以对大量信息进行自动编辑和汇总,生成有趣的图文摘要。 辅助创作吸引人的文案和图片。 在虚拟现实与增强现实设计方面: 有助于创建更逼真的虚拟场景和增强现实体验。 在图文创作赛道: 内容生成:自动编写文章并选择或生成相应图片。 图像标注:识别和理解图片内容并生成文字描述。 图文匹配:为图片找到合适文字描述或为文字找到匹配图片。 数据可视化:将复杂数据以直观简洁的图表、信息图等方式展示。 设计辅助:生成 LOGO、海报等。 自动化排版:根据文本内容与结构自动进行页面布局和美观排版。 图文识别:借助 OCR 技术抓取图文内容后理解处理。 在艺术创作方面: 辅助绘画、音乐、文学等领域的创作,探索新的结合模式。 在智能产品设计方面: 如智能家居设备、可穿戴设备等。 在游戏行业: 是最有价值的应用场景之一,其应用可追溯至上世纪 80 年代。 从最初生成简单内容和随机元素,到辅助设计、生成动态世界和复杂内容,如动态场景、智能 NPC 行为等。 具有诸多优势,如游戏开发者亲近并乐于使用 AI 技术,游戏数据降低了筛选和清洗成本,游戏成为 AI 模型能力的最佳试验场。 革新游戏创作,简化工作流,在美术与风格、音效与音乐、剧情与任务、玩法与平衡、测试与优化等方面产生积极影响。
2025-02-27
AI对经济影响研究
AI 对经济的影响主要体现在以下几个方面: 1. AI 模型的智能水平大致等于用于训练和运行它的资源的对数,这些资源主要包括训练计算量、数据和推理计算量。只要投入足够资金,就能获得连续且可预测的收益,这一扩展定律在多个数量级上都相当准确。 2. 使用给定水平的人工智能的成本每 12 个月下降约 10 倍,价格下降导致使用量大幅增加。例如从 2023 年初的 GPT4 到 2024 年中期的 GPT4o,每个令牌的价格在该时间段内下降了约 150 倍。 3. 社会经济上线性提升智力的价值具有超指数性质,因此看不出在不久的将来会停止对 AI 进行指数级投入的理由。 此外,如果上述观察继续成立,对社会的影响将是重大的。现在已经开始推出人工智能代理,它们最终将感觉像虚拟同事。以软件工程师代理为例,它最终能够完成大部分一名顶尖公司、工作几年的软件工程师在两三天内可以做的任务,但需要大量人类的监督和引导,且在某些方面表现出色,某些方面糟糕。想象拥有大量这样的虚拟同事存在于每一个知识工作领域。从某种程度上来说,AI 在经济上可能会像晶体管一样,是一项重大的科学发现,能很好地实现规模效应,并渗透到经济的几乎各个角落。 需要注意的是,世界不会一夜之间改变,短期内生活的大部分会与往常相同,2025 年人们的生活方式与 2024 年不会有太大差别。人们依然会相爱,组建家庭,在网上吵架,去大自然中远足等等。
2025-02-19
deepseek的产生对AI行业的影响
DeepSeek 的产生对 AI 行业具有多方面的影响: 1. 华尔街分析师的反应: DeepSeek 展示出媲美领先 AI 产品性能的模型,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。 Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑。 高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 2. 实际使用体验: 在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。 数学能力经过优化,表现不错;编程能力略逊于 GPT,据用户反馈。 GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 3. 训练成本方面: 训练成本远高于传闻的 600 万美元,总计约 13 亿美元。 定价低于实际成本,导致高额亏损。 MixtureofExpert 方法降低计算需求,但大规模内存使用可能反而增加总成本。 4. 竞争格局影响: 以低成本开发顶级 AI 模型的 Mistral AI 被中国 DeepSeek 迅速赶超。 DeepSeek 的“极简算力”模式可能削弱 Mistral 的竞争优势。
2025-02-17
有10个数据如何分析其中9个数据对另外一个数据的影响因子大小
在面对有 10 个数据,需要分析其中 9 个数据对另外一个数据的影响因子大小时,通常可以采用以下几种方法: 1. 线性回归分析:建立线性回归模型,将这 9 个数据作为自变量,另一个数据作为因变量,通过回归系数来评估影响因子的大小。 2. 相关性分析:计算这 9 个数据与目标数据之间的相关系数,相关系数的大小和正负可以反映影响的程度和方向。 3. 逐步回归分析:通过逐步引入和剔除变量的方式,确定对目标数据有显著影响的变量及其影响因子。 需要注意的是,在进行分析之前,要确保数据的质量和合理性,并且根据数据的特点和分析目的选择合适的方法。
2025-02-08