Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

以知识图谱的形式生成一张涉及大模型概念的知识图谱

Answer

以下是一张涉及大模型概念的知识图谱:

  • 大模型 Embedding 技术
    • 句子和文档嵌入
      • Doc2Vec:扩展了 Word2Vec,能够为整个文档生成统一的向量表示。
      • Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。
      • Transformers Sentence Embeddings:如 BERT 的[CLS]标记对应的向量,或者专门针对句子级别的模型如 Sentence-BERT。
    • 实体/概念嵌入
      • Knowledge Graph Embeddings:如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。
    • 其他类型
      • 图像 Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。
      • 音频 Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。
      • 用户/物品 Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。
      • 图 Embeddings:用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。
  • 关键技术标准
    • 机器学习标准:规范机器学习的训练数据、数据预处理、模型表达和格式、模型效果评价等,包括自监督学习、无监督学习、半监督学习、深度学习和强化学习等标准。
    • 知识图谱标准:规范知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。
    • 大模型标准:规范大模型训练、推理、部署等环节的技术要求,包括大模型通用技术要求、评测指标与方法、服务能力成熟度评估、生成内容评价等标准。
    • 自然语言处理标准:规范自然语言处理中语言信息提取、文本处理、语义处理等方面的技术要求和评测方法,包括语法分析、语义理解、语义表达、机器翻译、自动摘要、自动问答和语言大模型等标准。
    • 智能语音标准:规范前端处理、语音处理、语音接口和数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全双工交互、通用语音大模型等标准。
    • 计算机视觉标准:规范图像获取、图像/视频处理、图像内容分析、三维计算机视觉、计算摄影学和跨媒体融合等技术要求和评价方法,包括功能、性能和可维护性等标准。
    • 生物特征识别标准:规范生物特征样本处理、生物特征数据协议、设备或系统等技术要求,包括生物特征数据交换格式、接口协议等标准。
  • 国内大模型
    • 通用模型:如文心一言、讯飞星火等,处理自然语言。
    • 垂直模型:专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。
  • 大模型的体验
    • 以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了 Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。
  • 大语言模型的工作原理
    • 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用 b 链形容大小。
    • Transformer 架构:Transformer 是大语言模型训练架构,17 年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。
  • 大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。
  • Prompt 的分类和法则
    • 分为 system prompt、user prompt 和 assistant prompt。
    • 写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。
  • Fine tuning 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。
  • RAG 概念:未对 RAG 的具体内容进行详细阐述,仅提出了这个概念。
Content generated by AI large model, please carefully verify (powered by aily)

References

认识大模型 Embedding 技术加实战

Doc2Vec:扩展了Word2Vec,能够为整个文档生成统一的向量表示。Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。Transformers Sentence Embeddings:如BERT的[CLS]标记对应的向量,或者专门针对句子级别的模型如Sentence-BERT。[heading3]实体/概念嵌入[content]Knowledge Graph Embeddings:如TransE、DistMult、ComplEx等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。[heading3]其他类型[content]图像Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。音频Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。用户/物品Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。还有一种图Embeddings:是用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过DeepWalk、Node2Vec、GraphSAGE等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。下面以OpenAI为例继续展开介绍

国家人工智能产业综合标准化体系建设指南.pdf

1.机器学习标准。规范机器学习的训练数据、数据预处理、模型表达和格式、模型效果评价等,包括自监督学习、无监督学习、半监督学习、深度学习和强化学习等标准。82.知识图谱标准。规范知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。3.大模型标准。规范大模型训练、推理、部署等环节的技术要求,包括大模型通用技术要求、评测指标与方法、服务能力成熟度评估、生成内容评价等标准。4.自然语言处理标准。规范自然语言处理中语言信息提取、文本处理、语义处理等方面的技术要求和评测方法,包括语法分析、语义理解、语义表达、机器翻译、自动摘要、自动问答和语言大模型等标准。5.智能语音标准。规范前端处理、语音处理、语音接口和数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全双工交互、通用语音大模型等标准。6.计算机视觉标准。规范图像获取、图像/视频处理、图像内容分析、三维计算机视觉、计算摄影学和跨媒体融合等技术要求和评价方法,包括功能、性能和可维护性等标准。7.生物特征识别标准。规范生物特征样本处理、生物特征数据协议、设备或系统等技术要求,包括生物特征数据交换格式、接口协议等标准。

02-基础通识课

[heading2]总结大语言模型的介绍与原理国内大模型的分类:国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI蛋白质结构预测等。大模型的体验:以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。大语言模型的工作原理:大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用b链形容大小。Transformer架构:Transformer是大语言模型训练架构,17年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的temperature。关于大语言模型的原理、应用及相关概念Transformer模型原理:通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。Prompt的分类和法则:分为system prompt、user prompt和assistant prompt,写好prompt的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。Fine tuning微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。RAG概念:未对RAG的具体内容进行详细阐述,仅提出了这个概念。

Others are asking
ai的研究是否可以分为神经网络与知识图谱两个大的分类?
AI 的研究可以分为多个不同的分类,并非仅仅局限于神经网络与知识图谱这两个大的分类。 在常见的分类中: 非监督学习:最著名的是聚类,只需提供大量数据,让 AI 自行找出有趣信息。 迁移学习:在任务 A 中学习的内容可用于帮助完成任务 B,在计算机视觉领域有较多应用。 强化学习:根据输出好坏给予奖励或惩罚,利用“奖励信号”让 AI 自动学习最大化奖励,但需要大量数据。 生成对抗网络:由生成器和判别器构成,两者不断训练和竞争,提高生成真实数据的能力,广泛应用于多种领域。 此外,从技术和应用的角度来看: 知识图谱:在搜索等场景中展示关键信息,如人物相关信息、酒店信息等。 在企业中建构人工智能方面,NLG 可作为全新场景讨论,生成内容分为根据任务要求生成标准结果和根据信息进行内容创作两类,分别偏向 B 端和 C 端。NLP 能做的事情较标准化,LLM 的出现对其有提升和冲击。知识图谱领域本身有多种技术路径,与 LLM 可能是互补关系。 对于希望精进的学习者,还需要了解 AI 的背景知识,包括基础理论、历史发展、数学基础(统计学、线性代数、概率论),掌握算法和模型(监督学习、无监督学习、强化学习),学会评估和调优(性能评估、模型调优),以及神经网络基础(网络结构、激活函数)等。
2025-02-12
我是一名初中老师,我想了解符合我应用的知识图谱的相关知识
很抱歉,目前没有关于初中老师适用的知识图谱的相关具体内容。但一般来说,知识图谱是一种以图形化方式展示知识之间关系的技术。对于初中老师而言,知识图谱可以用于组织和呈现学科知识,帮助学生更好地理解知识点之间的关联。例如在数学学科中,可以将代数、几何等不同领域的知识点通过知识图谱进行关联,让学生清晰看到知识的体系结构。您可以根据教学的具体学科和需求,有针对性地构建和运用知识图谱。
2025-02-09
人工智能历史图谱
人工智能的历史可以追溯到二十世纪中叶。 起初,符号推理流行,带来了专家系统等重要进展,但因提取知识复杂、成本高等问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,如今基于神经网络和强化学习,能从自身错误中学习,学习速度快于人类。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 等是混合系统,使用神经网络转换语音、识别意图,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络取得成功。 近期神经网络研究在 2010 年左右有巨大发展,大型公共数据集出现,如 ImageNet 催生了相关挑战赛。2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率,此后神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中表现成功。 在过去几年,大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据,可先预训练再针对具体任务专门化。
2024-12-25
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取:通过自动化技术抽取可用的知识单元,包含实体抽取(命名实体识别)、关系抽取、属性抽取。 2. 知识表示:如属性图、三元组。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,包括实体对齐、知识加工、本体构建、质量评估、知识更新,以形成高质量知识库。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 AI Agent 系列中,外置知识包括向量数据库、关系型数据库和知识图谱。知识图谱以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。在实际应用中,外置知识的集成和管理常采用 RAG 架构,允许智能体实时检索和整合最新外部信息。 知识表示方面,知识是存在于我们脑海中、代表对世界理解的东西,通过活跃学习过程获得,将接收到的信息碎片整合进世界模型。知识与信息、数据等概念不同,在 DIKW 金字塔中,数据独立存在可传递,信息是头脑中解释数据的方式,知识是融入世界模型的信息,智慧是更高层次的理解。知识表示的问题是找到以数据形式在计算机中表示知识并能自动化使用的有效方法。
2024-12-19
如何用ai工具构建某一课程的知识图谱
以下是用 AI 工具构建某一课程知识图谱的方法: 一键知识图谱方法: 用 kimichat 让 AI 拆解这本书的三级章节并按照 Markdown 产出内容: Prompt:帮我拆解《爱的五种语言》,生成全书内容的思维导图,要求每个章节后面有三级展开,下一级是主要知识点,下下一级是知识点的论述。先输出对应的 Markdown。 访问地址: 复制 AI 内容粘贴到在线思维导图 Markmap 中,一键生成思维导图,还可以自定义微调内容,并免费导出图片: 访问地址: 推导知识图谱方法(可以参考下面 prompt 自己构建): 问题生成:使用大模型帮助生成一系列相关的、深入的问题。 探索性学习:将每个问题作为一个学习起点,利用 AI 搜索引擎和大模型进行深入探索。 知识图谱构建:随着学习的深入,使用大模型帮助构建和扩展知识图谱。 创造性应用:基于新获得的知识,尝试解决原问题或创造新的作品。 反思与迭代:定期反思学习过程,调整方向,并生成新的问题,形成持续学习和创作的循环。 此外,利用 AI 写课题的步骤和建议如下: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题原创性,并进行最后的格式调整。 需要注意的是,AI 工具可作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-03
知识图谱
知识图谱: 知识图谱是一种揭示实体之间关系的语义网络,能够对现实世界的事物及其相互关系进行形式化描述。它于 2012 年 5 月 17 日由 Google 正式提出,初衷是提高搜索引擎能力,增强用户搜索质量和体验,实现从网页链接到概念链接的转变,支持按主题检索和语义检索。 关键技术包括: 1. 知识抽取: 实体抽取:通过命名实体识别从数据源中自动识别命名实体。 关系抽取:从数据源中提取实体之间的关联关系,形成网状知识结构。 属性抽取:从数据源中采集特定实体的属性信息。 2. 知识表示:包括属性图、三元组等。 3. 知识融合:在同一框架规范下进行异构数据整合、消歧、加工、推理验证、更新等,实现数据、信息、方法、经验等知识的融合,形成高质量知识库。其中涉及实体对齐以消除不一致性问题,知识加工对知识统一管理,本体构建明确定义概念联系,质量评估计算知识置信度,知识更新迭代扩展现有知识。 4. 知识推理:在已有知识库基础上挖掘隐含知识。 在 AI Agent 系列中,外置知识包括知识图谱,它以图的形式组织数据,强调实体之间的关系,适合复杂的语义分析和知识推理。外置知识通常由外部数据库提供,能动态更新和调整,在实际应用中常采用 RAG 架构,结合检索和生成,通过检索外部知识源增强模型生成能力。 知识表示方面,知识是存在于我们脑海中、代表对世界理解的东西,通过活跃学习过程获得,将接收到的信息碎片整合到对世界的活跃模型中。知识与信息、数据等概念不同,在 DIKW 金字塔中,数据独立存在可传递,信息是头脑中解释数据的方式,知识是融入世界模型的信息,智慧是更高层次的元知识。知识表示的问题是找到在计算机中以数据形式有效表示知识并能自动化使用的方法,这是一个连续谱,简单的知识表示如算法不够灵活,自然语言功能强大但不利于自动化推理。
2024-11-03
搭建个人知识库的具体操作是什么?
搭建个人知识库的具体操作如下: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载不同类型的文档。 文本分割器把文档切分为指定大小的块。 存储涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 通过检索算法找到与输入问题相似的嵌入片。 把问题以及检索出来的嵌入片一起提交给 LLM 生成答案。 2. 本地知识库进阶: 若要更灵活掌控知识库,需使用 AnythingLLM 软件,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离。 操作包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 3. 使用 embeddings: 将文本转换成向量能节省空间,可理解为索引。 把大文本拆分成小文本块,通过 embeddings API 转换成向量,在向量储存库保存向量和文本块作为知识库。 用户提问时,问题先转成向量,与储存库中的向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。 例如,对于“此文作者是谁?”的问题,通过比较向量可找到关联度高的文本块。
2025-02-13
我是AI小白,希望到这里学习AI基础知识
以下是为您整理的 AI 基础知识学习内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习的定义及其之间的关系,以及其主要分支和联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 7. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 8. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 9. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2025-02-12
如何学习AI知识
以下是关于学习 AI 知识的全面指导: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、中学生学习 AI 的特别建议 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,这些是 AI 和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-02-12
我想学习所有能够赋能室内设计的AI知识
以下是关于能够赋能室内设计的 AI 知识: 1. MewXAI 平台:这是一款操作简单的 AI 绘画创作平台。 MX 绘画:拥有众多超火模型和上百种风格,支持文生图、图生图。 MX Cute:自研的可爱风动漫大模型,融合想象力和逻辑性。 MJ 绘画:创意度和想象力极高,适用于多种设计需求。 边缘检测:对草图上色,有多种渲染风格,创意无限。 室内设计:上传空间图,分析图片结构和形状,一键完成多种室内/建筑设计,为设计师提供灵感并节约时间。 姿态检测:通过姿态识别精准控制人物动作。 AI 艺术二维码:几秒内创建艺术二维码。 AI 艺术字:融入光影文字等,美观实用。 访问地址:https://www.mewxai.cn/ 2. 室外设计的最佳实践也可借鉴到室内设计中: 充分利用 AI 的创意生成能力,输入关键词生成多种方案,获取新颖灵感。 结合 AI 的模拟和可视化功能,利用 AR/VR 等技术模拟实际环境。 运用 AI 的分析和优化能力,对采光、动线、材料等方面进行优化。 借助 AI 的自动化设计功能,生成平面图、立面图等。 融合 AI 与人工设计的协作模式,发挥各自优势。 3. 2023 年历史更新(归档)中的相关内容: 12 月 28 日,邬嘉文开发的利用室内设计规则和现实布局特点重新渲染更协调室内设计方案的相关内容。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-12
waytoAGI知识库智能问答机器人是如何实现的
waytoAGI 知识库智能问答机器人的实现方式如下: 基于 Aily 和云雀大模型。Aily 是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用。云雀是字节跳动研发的语言模型,能通过自然语言交互高效完成互动对话等任务。 在飞书 5000 人大群里内置,根据通往 AGI 之路的文档及知识进行回答。使用方法为在飞书群里发起话题时,它会根据 waytoAGI 知识库的内容进行总结和回答。 其具备多种功能,如自动问答、知识搜索、文档引用、互动教学、最新动态更新、社区互动、资源共享、多语言支持等。 搭建过程包括介绍 WaytoAGI 社区的成立愿景和目标、利用 AI 技术帮助用户检索知识库内容、引入 RAG 技术、介绍基于飞书的知识库智能问答技术的应用场景和实现方法、使用飞书的智能伙伴功能搭建 FAQ 机器人以及智能助理的原理和使用方法等。
2025-02-12
如何搭建自己的知识库
搭建自己的知识库可以参考以下步骤: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,LangChain 提供 100 多种文档加载器,包括非结构化、结构化和代码等数据。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。 3. 本地知识库进阶: 若想更灵活掌控知识库,可使用额外软件 AnythingLLM,它包含 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建 Workspace 构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 总之,“看十遍不如实操一遍,实操十遍不如分享一遍”,希望您能成功搭建自己的知识库。如果对 AI Agent 技术感兴趣,可以联系相关人员或加入免费知识星球(备注 AGI 知识库)。
2025-02-12
纯小白对于模型等等都没有任何概念能看懂吗
对于纯小白来说,理解模型等相关概念是有一定挑战的,但通过以下内容可以逐步入门: Tusiart 相关概念: 1. 首页包含模型、帖子、排行榜,其中发布了各种模型和生成的图片。不同模型有 checkpoint 和 lora 两种标签,有的还有 XL 标签属于 SDXL 新模型。点击可查看模型详细信息,下方是返图区。 2. 基础模型(checkpoint)是生图必需的,任何生图操作都要先选定。它与 lora 不同,lora 是低阶自适应模型,类似小插件,可有可无,但对细节控制有价值,旁边的数值是其权重。 3. ControlNet 可控制图片中特定图像,如人物姿态、生成特定文字等,属于高阶技能。 4. VAE 是编码器,类似滤镜,调整生图饱和度,一般选择 840000 这个。 5. Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。 6. 图生图是上传图片后,sd 根据图片、模型及输入信息重绘,重绘幅度越大,输出图与输入图差别越大。 AI 技术原理相关概念: 1. 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,学习输入和输出映射关系,包括分类和回归)、无监督学习(学习数据无标签,算法自主发现规律,如聚类)、强化学习(从反馈学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑的方法,有神经网络和神经元,神经网络可用于多种学习。 生成式 AI 可生成文本、图片、音频、视频等。 LLM 是大语言模型,生成图像的扩散模型不是大语言模型,有的大语言模型如谷歌的 BERT 模型可用于语义理解。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本长距离依赖性。
2025-02-13
图生图 / img2img:上传一张图片,然后系统会在这个图片的基础上生成一张新图片,修改一些提示词(Prompt)来改变新图片的效果 , 给我推荐这类大模型
以下为您推荐可用于图生图(img2img)的大模型: 1. Stable Diffusion(SD)模型:由 Stability AI 和 LAION 等公司共同开发,参数量约 1B,可用于文生图、图生图、图像 inpainting、ControlNet 控制生成、图像超分等任务。在图生图任务中,SD 模型会根据输入的文本提示,对输入图片进行重绘以更符合文本描述。输入的文本信息通过 CLIP Text Encoder 模型编码成机器能理解的数学信息,用于控制图像生成。 2. Adobe Firefly image 2 模型:上周发布了 Beta 测试版本,增加了众多功能,模型质量提升。默认图片分辨率为 20482048,对图片的控制能力增强,具有更高质量的图像和插图生成、自定义选项和改进的动态范围。支持生成匹配(img2img),应用预先选择的图像集中的风格或上传自己的风格参考图像以创建相似图像,还有照片设置、提示建议、提示链接共享、反向提示词等功能。
2025-02-12
给我图生图的大模型
以下为一些常用于图生图的大模型: 1. AbyssOrangeMix2:可将真人图片转为二次元风格,通过 DeepBooru 反推关键词,并结合 LORA“blindbox”重新生成,能生成 2.5D 人物风格的图片。 2. majicmixRealistic:在进行“图生图”的“涂鸦”功能时可选用,是一款追求真实性的模型。 3. revAnimated:适用于卡通类图片的图生图。 4. Realistic Vision:常用于真实类图片的图生图。
2025-02-12
什么是大模型
大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以用“上学参加工作”来类比: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token 被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解 Token 之间的联系,还需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。 大模型的“大”指用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。 所谓的大模型,简而言之,就是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂的任务。其强大的原因在于庞大的参数数量和大量的数据训练,这些参数帮助模型更深入地理解和生成数据,而大量的数据是学习的基础,使其能掌握丰富的知识和技能。
2025-02-12
什么是rag模型
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构。 对于大语言模型(LLM)来说,存在一些缺点,如无法记住所有知识,尤其是长尾知识;知识容易过时且不好更新;输出难以解释和验证;容易泄露隐私训练数据;规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 允许模型到搜索引擎上搜索问题相关资料,并综合自身知识体系进行回复。但 RAG 的检索环节并非简单操作,还涉及传统搜索的逻辑,如输入问题的纠错、补充、拆分以及搜索内容的权重逻辑等。例如,对于错误表述“中国界世杯夺冠那年的啤酒销量如何”,会先纠错为“中国世界杯夺冠那年的啤酒销量如何”,然后拆分问题进行综合搜索,再将搜索到的资料交给大模型总结输出。 大语言模型技术存在输出结果不可预测、知识有局限性、存在幻觉问题、数据安全性等问题,而 RAG 是解决这些问题的有效方案,它能让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制文本输出,且用户能深入了解 LLM 生成最终结果的过程。并且,RAG 可与微调结合使用,适用于模型回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新的语言、格式或样式。
2025-02-12
coze 能调用用户自己部署的大模型吗
Coze 可以调用用户自己部署的大模型。例如: 在 Coze 上搭建工作流框架时,可通过“个人空间工作流创建工作流”进行操作,在编辑面板中拖入对应的大模型节点来实现各项文本内容的生成。 当在 COW 中直接调用千问的某一个大模型时,需要更改 key 和 model 等配置。获取 key 可参考相关的视频和图文教程,同时需要完成实名认证,否则可能出现报错。 在使用 Coze 做智能报表助手的过程中,也涉及到对大模型的运用,如将用户问题转换为 SQL 等。
2025-02-12
有没有能帮助生成特殊格式文档的ai工具
以下是一些能帮助生成特殊格式文档的 AI 工具: 对于文章排版: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 对于论文写作: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,帮助进行复杂的数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 对于制作 PPT: Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 美图 AI PPT:通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。
2025-02-13
我是一个UI界面设计师,现在我需要找一个UI界面设计的AI软件,能根据我的文字方案生成高大上的可视化界面UI图,或者能根据我设计的基本的UI界面图能进行优化
以下为您推荐几款可用于 UI 界面设计的 AI 软件: 1. Midjourney: 能生成数据图标、B 端图标设计、音乐软件 UI 设计等。 生成的图片在某些方面质感不错,但 UI 设计可能不规范、文字较乱,目前只能作为风格参考。 对于完全不懂 AI 绘图的新手来说容易上手。 设计指令:如果没想好输入哪些指令,可以先用指令模板「ui design forapplication,mobile app,iPhone,iOS,Apple Design Award,screenshot,single screen,high resolution,dribbble」,把里面的“类型”替换成想设计的产品的关键词描述(英文),就能生成想要的 UI 设计图。 2. 星流一站式 AI 设计工具: 具有无限画布区域,包括浏览视图、操作快捷键查询、图像快捷修改。 浏览视图包括视图百分比调节、聚焦、画布清理等功能。 图像快捷操作有细节微调、整体微调、增强模型、提示词、用作图生图、用作图片参考等。 支持图像分享与信息查看,包括图像信息查看、生成分享链接与发送到 LiblibAI 等。
2025-02-13
我想用deepseek 写微信公众号文章,我将要写的主题告诉他,让它为我生成个人角度的文章,我要写的主题一般围绕着软件分享,技术分享等。请你根据我的要求为我写一份适用的提示词
以下是为您生成的适用于使用 DeepSeek 写微信公众号文章的提示词: 我要写一篇关于软件分享或技术分享的微信公众号文章,文章标题要足够吸引人,以便能广泛传播。文章内容要详细且有条理,先介绍分享的软件或技术的基本情况,包括其功能、特点和优势;然后结合实际案例或个人使用体验,阐述其在实际应用中的效果和价值;最后总结并展望其未来的发展前景。请为我生成这样一篇完整的文章。
2025-02-12
ai视频生成
以下是关于 AI 视频生成的相关内容: 从生成方式分类: 1. 文生视频、图生视频:包括 Runway、Pika labs、SD+Deforum、SD+Infinite zoom、SD+AnimateDiff、Warpfusion、Stability Animation 等。 2. 视频生视频: 逐帧生成:SD+Mov2Mov 关键帧+补帧:SD+Ebsynth、Rerender A Video 动态捕捉:Deep motion、Move AI、Wonder Dynamics 视频修复:Topaz Video AI 3. AI Avatar+语音生成:Synthesia、HeyGen AI、DID 4. 长视频生短视频:Opus Clip 5. 脚本生成+视频匹配:Invideo AI 6. 剧情生成:Showrunner AI 从产品阶段和可用维度分类: 下面将按照相关维度进行产品介绍。 此外,生成带有文本提示和图像的视频: 在 Adobe 的 Advanced 部分,可以使用 Seed 选项添加种子编号,帮助启动流程并控制 AI 创建内容的随机性。如果使用相同的种子、提示和控制设置,可以重新生成类似的视频剪辑。选择 Generate 即可。 使用 Runway 生成第一个 AI 视频: 1. 网页:https://runwayml.com/ 2. 注册零门槛:右上角 Sign Up 注册,输入邮箱与基础信息,完成邮箱验证。 3. 选择 Try For Free 模式,新注册用户有 125 个积分进行免费创作(约为 100s 的基础 AI)。 4. 生成步骤: 选择左侧工具栏“生成视频”。 选择“文字/图片生成视频”。 将图片拖入框内。 选择一个动画系数。 点击生成 4 秒视频。 下载视频。 成品展示可参考相关链接。
2025-02-12
文章生成长视频
以下是关于文章生成长视频的相关信息: 主流文生视频技术发展路径: 自回归模型与 GANs 相比,具有明确的密度建模和稳定的训练优势,能通过帧与帧之间的联系生成更为连贯且自然的视频,但受制于计算资源、训练所需的数据和时间,模型本身参数数量通常比扩散模型大,对计算资源和数据集要求较高。自回归模型发展经历了三个阶段。 扩散模型是当前主要的文本到视频模式所采用的基于扩散的架构,2022 年 4 月 Video Diffusion Model 的提出标志着扩散模型在视频生成领域的应用。在视频生成中,基于 Stable Diffusion 的模型往往使用 2D 图像作为处理单位,并通过添加时间注意力或时间卷积来尝试捕捉视频中的时间序列信息,但在建模时间维度时通常较为弱效,导致生成的视频动作幅度小、连贯性差。现阶段,扩散模型已成为 AI 视频生成领域的主流技术路径。 文字生成视频的 AI 产品: 1. Pika:擅长动画制作,并支持视频编辑。 2. SVD:若熟悉 Stable Diffusion,可安装此最新插件,在图片基础上直接生成视频,由 Stability AI 开源。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看: Meta 发布 Meta Movie Gen 文生视频模型: 在时间平铺推理中,输入视频在时间维度上被分割成多个片段,每个片段独立进行编码和解码,然后在输出时将所有片段重新拼接在一起。这种方法不仅降低了对内存的需求,还提高了推理的效率。此外,在解码阶段使用了重叠和混合的方式来消除片段边界处的伪影问题,即通过在片段之间引入重叠区域,并对重叠区域进行加权平均,确保生成的视频在时间维度上保持平滑和一致。Meta 还开源了多个基准测试数据集,包括 Movie Gen Video Bench、Movie Gen Edit Bench 和 Movie Gen Audio Bench,为后续研究者提供了权威的评测工具,有利于加速整个领域的进步。这篇长达 92 页的论文还介绍了更多在架构、训练方法、数据管理、评估、并行训练和推理优化、以及音频模型的更多信息。感兴趣的可到文末链接查看。
2025-02-12