Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

模型理解汉字能力很差

Answer

目前模型在理解汉字方面存在一些问题,主要表现为:

  1. 语义理解较差,例如在某些应用场景中对中文的理解不够准确。
  2. 中文汉字的集合较大,纹理结构更复杂,增加了理解难度。
  3. 缺少中文文字的图文对数据,影响了模型对汉字的学习和理解。

为了提升模型对中文文字的生成能力,采取了以下措施:

  1. 选择 50000 个最常用的汉字,机造生成千万级的中文文字图文对数据集,但机造数据真实性不足。
  2. 实用 OCR 和 MLLM 生成海报、场景文字等真实中文文字数据集,约百万量级。通过结合高质量真实数据,提升了中文文字生成能力的真实性,即使是真实数据中不存在的汉字的真实性也有所提高。
Content generated by AI large model, please carefully verify (powered by aily)

References

边聊天边自动修图?20个方式带你玩转今天最火爆Gemini 2.0 Flash Experimenta 0门槛教程

[heading2]By z.z.h[content][heading2]By进化论[content][heading2]By琼羽Eli[content]2025.03.131.中文的语义理解较差2.看起来交互方式要有大改变了,等模型能力成熟后一定会很哇塞[heading2]By李知锦[content][heading2]by威少[content][heading2]By阿琪[content][heading2]by非翔[content][heading2]By小歪[content]基础入门教程:[✨零门槛玩转AI改图!Gemini 2.0 Flash「说话就能PS」小白教程✨](https://waytoagi.feishu.cn/wiki/VmB3w5JNhi45T5kIZsIcloi9nPb?fromScene=spaceOverview)更多场景探索:照片修复产品设计[heading2]By CY-CHENYUE[content]简单的测试了,从产品草图到模特上身效果图[FocuSee Project 2025-03-13 14-05-17.mp4](https://bytedance.feishu.cn/space/api/box/stream/download/all/EuXKbiQWJo7zeNxDi8tcAoCOncc?allow_redirect=1)[heading2]By何先森Kevin[content]拼乐高[heading2]By洛水[content]剧本场景插画、教学插图、3D建模图[heading2]By羊羊[content]做红烧肉

waytoagi-deepseek小说家 -陈财猫

https://mp.weixin.qq.com/s/jObaC1A3JH6gFW77gLbcoQ[heading2]文风很好,才华横溢的模型[content]a.没有做过太多前额叶切除术等模型a.对汉语的理解很深刻http://xhslink.com/a/zAYvGUeL9uu5https://www.xiaohongshu.com/discovery/item/67950180000000001902ddb3?app_platform=android&ignoreEngage=true&app_version=8.69.3&share_from_user_hidden=true&xsec_source=app_share&type=normal&xsec_token=CBZEgBsaGlbCqtR_EUcJnIyAkRuoCJbzgcpFEl4f4g4mc%3D&author_share=1&xhsshare=WeixinSession&shareRedId=ODY3Rkg7SkA2NzUyOTgwNjY0OTc7PUpL&apptime=1737895645&share_id=f44384d000b142ecbd1e3b8962b26769&share_channel=wechat#pushStateb.非常喜欢用大词[heading2]极强的发散能力,但是难以收敛[content]很容易出现的幻觉例子:听证会http://xhslink.com/a/mxDqBawhywu5但是带来非常强的发散能力http://xhslink.com/a/ZNm5YuLagwu5

模型能力简介

准确生成文字的能力一直是文生图模型的一大难题。DALL-E 3和SD3已经有了很强的英文文字生成能力。但是,目前还未有模型具有中文文字的生成能力。中文文字的生成有两点困难:一是相比于英文呢,中文汉字的集合太大,而且纹理结构更复杂;二是缺少中文文字的图文对数据。为了提升中文文字的生成能力,Kolors从两个方面准备数据。一是选择50000个最常用的汉字,机造生成了一个千万级的中文文字图文对数据集。但是机造数据毕竟真实性不足。因此,第二方面又实用OCR和MLLM生成了海报、场景文字等真实中文文字数据集,大概有百万量级。作者观察到,虽然使用机造数据一开始中文文字的生成能力的真实性比较差,但是在结合高质量真实数据之后,真实性大大提升,而且即使是真实数据中不存在的汉字的真实性也得到了提升。[heading3]图片视觉质量[content]作为一个生图模型,好不好看,自然才是最关键的指标。Kolors从数据和训练方法两方面入手,提升图片视觉质量。在网络结构方面,Kolors没有进行改动,仍旧使用与SDXL一致的UNet结构。

Others are asking
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
有什么AI生图网站支持生成汉字?
以下是一些支持生成汉字的 AI 生图网站: 1. ComfyUI Kwai Kolors 快手可图:支持中英文提示词工作流,有相关的下载安装设置教程,可生成汉字。您可以通过了解更多。 2. 豆包 App 支持文生图中文文字生成。
2025-03-06
一个可以显示汉字的logo生成AI
以下是一些可以生成汉字 Logo 的 AI 产品: 1. Looka:这是一个在线 Logo 设计平台,使用 AI 理解用户的品牌信息和设计偏好,生成多个 Logo 设计方案供选择和定制。 2. Tailor Brands:AI 驱动的品牌创建工具,通过用户回答关于品牌和设计风格的问题来生成 Logo 选项。 3. Designhill:其 Logo 制作器使用 AI 技术创建个性化 Logo 设计,用户可选择不同元素和风格,AI 基于输入生成方案。 4. LogoMakr:提供简单易用的 Logo 设计工具,用户可通过拖放设计 Logo,并利用 AI 建议的元素和颜色方案。 5. Canva:广受欢迎的在线设计工具,提供 Logo 设计模板和元素,用户可利用 AI 辅助设计建议创建品牌标识。 6. LogoAI by Tailor Brands:Tailor Brands 推出的 AI Logo 设计工具,根据用户输入的品牌名称和行业类别快速生成 Logo 设计方案。 7. 标小智:中文 AI Logo 设计工具,利用人工智能技术帮助用户创建个性化 Logo。 您还可以访问网站的 AI 生成 Logo 工具版块,获取更多好用的工具。使用这些工具时,用户通常可根据品牌理念和视觉偏好,通过简单交互获得一系列设计方案,并进一步定制和优化,直到满意为止。
2024-12-29
图像生成里,汉字老是乱码
在图像生成中,之前的 SD 模型存在生成文字全是乱码的问题,无论是中文还是英文。如今的 SDXL 模型在文字和语言识别方面有所改进,英文表现不错,可以直接生成带有英文文字的图片,但中文仍存在不足。同时,SDXL 能更好地识别自然语言,支持用较少语句生成高质量图片,让用户更专注于内容创作。此外,SDXL 在人体结构方面有更精细的控制,一定程度上解决了面部变形和多余肢体等问题,但手部难题依然存在。
2024-12-29
如何创建一个针对小学生的易错汉字和易错单词的练习应用?
创建针对小学生的易错汉字和易错单词练习应用,您可以考虑以下步骤: 1. 明确练习目标:确定应用旨在帮助小学生掌握哪些具体的易错汉字和易错单词,例如常见的同音字、形近字、拼写相似的单词等。 2. 收集和整理内容:从教材、辅导资料、历年考试真题等渠道收集易错汉字和易错单词,并进行分类整理。 3. 设计练习形式:可以包括填空、选择、拼写、造句等多种形式,以增加练习的趣味性和多样性。 4. 制定难度等级:根据小学生的年级和学习进度,设置不同的难度等级,逐步提高练习的挑战性。 5. 提供错误反馈:当学生回答错误时,及时给出正确答案和详细的解释,帮助他们理解错误原因。 6. 增加趣味性元素:如使用可爱的图标、动画效果、奖励机制等,吸引小学生积极参与练习。 7. 进行用户测试:在小范围内让小学生试用应用,收集反馈意见,对应用进行优化和改进。 8. 确保界面简洁友好:操作简单易懂,方便小学生自主使用。
2024-12-18
如何给图片上加上汉字
给图片加上汉字可以通过以下几种方式实现: 使用绘图软件,如 PS 等,以个人方便的方式进行制作。 利用 Python 生成图片,按照特定格式生成包含汉字的图片。 参考 Nenly 同学的视频教程,将中文字做成白底黑字的图片样式,使用文生图的方式,使用大模型真实系,输入关键词和反关键词,反复刷机得到满意效果。 按照特定步骤在 SD 中进行操作,包括选择文生图、输入关键词咒语、启用 Controlnet 等,可生成具有特定效果的图片。 在进行操作时,可根据具体需求选择合适的方法,并注意以下几点: 确保图片的分辨率和质量符合要求。 合理设置关键词和反关键词,以获得理想的效果。 可以根据需要调整参数,如景深效果等。 可以参考他人的作品和教程,不断尝试和探索,以提高制作效果。
2024-06-30
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
ai大模型和工具组合使用技巧
以下是关于 AI 大模型和工具组合使用的技巧: 1. 在 Obsidian 中的使用: 简单方法:通过命令面板打开创建的页面(默认快捷键 Ctrl+P),在弹出的搜索框中输入插件名称(如 custom frames),选择 OpenKimi 并打开设置好的窗口。 进阶配置:包括笔记仓库嵌入大模型(Copilot)、笔记内容作为 RAG 嵌入大模型(Smart Conections)、笔记内使用大模型编写内容。 2. 利用大模型与工具的典型例子:如使用 Kimi Chat 查询问题时,它会在互联网上检索相关内容并总结分析给出结论,同时还有很多不同领域类型的工具为大模型在获取、处理、呈现信息上做补充。 3. Agentic Workflow 方面: Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程的运行。 多 Agent 协作:吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 AI Agent 基本框架:OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演“大脑”,规划包括子目标分解、反思与改进。 4. 从提示词优化到底层能力提升: 任务拆解:将复杂任务的提示词拆解成若干步骤的智能体,每个智能体负责特定子任务。 工作流构建:组合多个提示词或 AI 工具搭建高频重复工作的工作流。 创作场景的灵活应用:在创作过程中使用简单提示词和连续追问调整大模型回答。 深度思考辅助:将大模型用于辅助深度思考,从居高临下的指挥变为伙伴式的协作和相互学习,关注利用大模型训练和增强认知能力。
2025-03-26
帮我列举2025年3月1日以来,国内外、闭源开源模型厂商的更新记录。
以下是 2025 年 3 月 1 日以来,国内外、闭源开源模型厂商的部分更新记录: 2025 年 3 月 20 日,OpenAI 推出了一套全新的音频模型,旨在通过 API 为开发者提供更智能、更可定制的语音代理支持,包括改进的语音转文本和文本转语音功能,为语音交互应用带来显著提升。 李开复公开表示 OpenAI 面临生存危机,商业模式不可持续。他强调中国的 DeepSeek 以极低成本提供接近的性能,开源模式将主导未来 AI 发展。他认为企业级 AI 应用将成为投资重点,资源限制反而促进了创新。李开复大胆预测,中国将出现三大 AI 玩家,竞争愈发激烈。 SuperCLUE 发布《中文大模型基准测评 2025 年 3 月报告》,指出 2022 2025 年经历多阶段发展,国内外模型差距缩小。测评显示 o3mini总分领先,国产模型表现亮眼,如 DeepSeekR1 等在部分能力上与国际领先模型相当,且小参数模型潜力大。性价比上,国产模型优势明显。DeepSeek 系列模型深度分析表明,其 R1 在多方面表现出色,蒸馏模型实用性高,不同第三方平台的联网搜索和稳定性有差异。 以上信息来源包括: 《》 《》 《》
2025-03-26
用扣子的时候怎么让大模型严格按照知识库内容进行输出
以下是关于让大模型严格按照知识库内容进行输出的相关信息: 扣子的知识库功能强大,可上传和存储知识内容,提供多种查找方法。在智能体中使用知识库,收集相关内容,当智能体回答用户时会先检索知识库,使回复更准确。 在“掘金 x 扣子 Hackathon 活动 深圳站”的总冠军工作流中,对于用户向小说人物角色的提问,通过一系列节点,包括开始节点接收问题、知识库节点检索、大模型节点生成答案等,本质上是一个根据用户 query 进行检索增强生成(RAG)的任务,每个工作流中都嵌入了知识库节点,维护了如小说合集等知识库。 大模型节点是调用大语言模型,使用变量和提示词生成回复。按需选择基础版或专业版模型,基础版支持扣子预设的一批模型资源,专业版除默认添加的豆包模型外,还支持按需接入火山引擎方舟平台的模型资源。模型选择右下角生成多样性可从多个维度调整不同模型在生成内容时的随机性,有精确模式、平衡模式和创意模式等预置模式。输入方面,开启智能体对话历史后,上下文信息将自动携带进入大模型,参数名可随意设置但建议有规律,变量值可引用前面链接过的节点的输出或进行输入。
2025-03-26
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
是什么类似本地知识库的模型
本地知识库相关的模型主要涉及 RAG(Retrieval Augmented Generation,检索增强生成)技术。以下是对 RAG 技术的详细介绍: 背景:大模型的训练数据有截止日期,当需要依靠不在训练集中的数据时,RAG 技术发挥作用。 过程: 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM,生成更合理的答案。 如果想要对本地知识库进行更灵活的掌控,可以使用额外的软件 AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 选择大模型。 2. 选择文本嵌入模型。 3. 选择向量数据库。 在 AnythingLLM 中有 Workspace 的概念,可以创建独有的 Workspace 与其他项目数据隔离。构建本地知识库的步骤包括: 1. 首先创建一个工作空间。 2. 上传文档并在工作空间中进行文本嵌入。 3. 选择对话模式,包括 Chat 模式(大模型根据训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 4. 测试对话。 在一个政府政策问答的项目实践中,由于传统智能问答产品在政策咨询方面存在困难,而大模型具有诸多优势,选择 LangChainChatchat 框架构建政策文档的本地知识库,实现基于本地知识库内容生成回答,为用户提供政策问答和解读服务。
2025-03-26
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
我是一名硬件工程师 如何让ai快速理解我的原理图并优化
以下是关于让 AI 理解原理图并优化的相关知识: 1. 在 AI 硬件发展方面,存算一体的方式是未来的趋势。对比人脑,其能耗低,使用存算一体的芯片有望诞生全新算法,运行几百亿参数的大模型的最佳架构也是存算一体,因其避免了数据搬运。 2. 大模型在通用知识方面较强,但对专业领域知识了解不足。将大模型与私域知识结合有 5 种方法:重新训练(拿私域数据重新训练大模型)、微调(拿私有数据 finetuning 大模型)、RAG(将知识库里的知识搜索送进大模型)、关键词工程(写好提示词)、加长 Context(当 Context 能无限长时,可将知识和记忆 prefill 到 Context 里)。学术界中,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。 3. 在 Trae 优化代码方面,当请求“帮我把当前的代码给优化一下”时,请求先到 Trae 自己的服务器,服务器再请求对应模型返回数据。不会发送本地代码文件,只发送“文件名”加“问题”,且在最开始 Trae 打开项目进行索引构建时,已在云端构建好项目文件。 对于您作为硬件工程师让 AI 快速理解原理图并优化的需求,目前可能需要进一步探索如何将原理图的特征和相关信息转化为适合 AI 处理和理解的形式,或许可以借鉴上述将专业知识与大模型结合的方法,以及利用高效的数据库和模型架构来提高处理效率。
2025-03-23
通俗易懂地解释一下什么叫AGI,和我们平常理解的AI有什么区别
AGI 即通用人工智能,指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 与平常理解的 AI 相比,平常的 AI 往往是针对特定领域或任务进行设计和优化的,例如下围棋、图像识别等。而 AGI 涵盖了更广泛的认知技能和能力,不仅限于特定领域,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等,并且要求这些能力达到或超过人类水平。 在 AI 发展历程中,早期的研究有对智能的宏伟目标追求,但很多研究进展是狭义地关注明确定义的任务。直到 2000 年代初,“通用人工智能”(AGI)这一名词流行起来,强调从“狭义 AI”向更广泛的智能概念转变,回应了早期 AI 研究的长期抱负和梦想。 例如,GPT3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型则没有像 GPT3 这样连贯回应的能力。
2025-03-22
langchain到底是什么。如何理解。
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供了一系列工具、组件和接口,使利用大型语言模型(LLM)和聊天模型创建应用程序更便捷。 2. 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 具有模型抽象功能,能为用例选择合适模型,并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义处理步骤链,完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并调用工具。 7. 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,并提供内存功能维护状态。 LangChain 还是一个为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性,以适应业务需求变化。作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握,同时充分考虑了应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-03-21
哪些模型的视频理解能力比较好?
以下是一些视频理解能力较好的模型: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. Sora 模型:周鸿祎认为其技术思路完全不同,能像人一样理解现实世界,将大语言模型和 Diffusion 结合起来训练,实现了对现实世界的理解和模拟两层能力,对物理世界的模拟将对机器人具身智能和自动驾驶带来巨大影响。 3. 腾讯的混元模型:在语义理解方面表现出色,能够精准还原复杂的场景和动作,例如一只银渐层在游乐园里奔跑跳到小女孩怀里、一位紫衣女修在竹林中抚琴、星系边缘宇宙战舰引爆反物质引擎等场景。
2025-03-18