Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

开发一款AI产品怎么入手

Answer

开发一款 AI 产品可以从以下几个方面入手:

  1. 明确技术方案,封装 API 调用提示词:
    • 在成功验证纯提示词方案后,进入产品化开发阶段。
    • 借助 Cursor、Windsurf 等 AI 编程工具,实现插件效果。
    • 产品化开发需考虑稳定获取网页内容、选择适合的 AI 大模型 API 服务、构建生产级提示词等问题。
    • 稳定获取网页内容可通过用户浏览器以插件形式本地提取,例如让 AI 设计获取相关元素的 js 代码。
  2. 对 AI 产品经理的要求:
    • 入门级:能通过开源网站或课程了解 AI 概念,使用并实践应用搭建。
    • 研究级:包括技术研究和商业化研究路径,能根据需求场景选择解决方案,或利用工具手搓出 AI 应用验证想法。
    • 落地应用级:有成功落地应用案例并产生商业化价值。
    • 总结来说,AI 产品经理要懂得技术框架,关注场景、痛点、价值。
  3. 创新产品和服务:
    • 探索基于 AI 的新产品或服务:调查分析市场需求,鼓励创新思维,开发原型并测试。
    • 利用 AI 技术提升现有产品的智能化程度:识别可优化部分,改善用户界面和交互体验,基于反馈不断迭代更新。

通过以上策略,有助于开发出具有创新性和竞争力的 AI 产品。

Content generated by AI large model, please carefully verify (powered by aily)

References

这款 AI 浏览器插件,想让你的网页链接分享更高级

在成功验证了纯提示词方案后,接下来就是产品化开发阶段。虽然代码编程不是我的强项,但配合Cursor、Windsurf这类AI编程工具,插件的实现效果相当不错。所以,我想试着分享一些关键过程,尤其是提示词封装环节,希望对有意开发AI产品的朋友有所启发。与提示词智能体不同,产品化开发需要考虑更多:1.如何稳定的获取网页内容?2.如何选择适合的AI大模型API服务?3.面向大模型API,如何构建生产级提示词?[heading2]1)如何稳定的获取网页内容?💻[content]在上述初版提示词实验中,获取网页内容极大依赖于大模型对话产品的外链解析能力。然而,这种方式非常容易遭到平台反爬机制的制裁。在实验过程中,最影响提示词方案效果的因素,不是大模型的生成质量,而是无法稳定地捕获网页内容。转换思路来看,网页内容通常以明文形式展示在用户浏览器中,内容平台不可能对用户设备进行反爬制裁。通过用户浏览器,以浏览器插件形式本地提取网页内容,正是一种稳定、经济的解决方案。以下是AI Share Card插件所获取的网页元素清单:附:开发时,如何确定需要插件获取哪些网页元素?你可以拿着初版提示词,询问AI:我希望通过浏览器插件,获取提示词中所需的标签页标题、链接、内容元素,请你帮我设计获取相关元素的js代码参考对话如下,也可以直接在Cursor、Windsurf里提示AI帮你完成开发

AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会

个人做了一下划分,仅供娱乐和参考。1)入门级能通过WaytoAGI等开源网站或一些课程了解AI的概念,使用AI产品并尝试动手实践应用搭建(对应的画像可能是喜欢听小宇宙APP的播客或浏览AI相关的文章哈哈);以前互联网刚兴起的时候,部分用谷歌的人会比用百度的有优越感,现在可能用AI搜索的更有优越感(当然我感觉都没啥好优越的,都是工具,关键还是看能用工具产出什么)。2)研究级我理解这里有两个路径,一个是技术研究路径,一个是商业化研究路径;对应传统互联网偏功能实现的产品经理和偏商业运营的产品经理,当然最好是同一个人,我一直的理念是产品运营不分家(产品即运营)。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用Hugging face等工具手搓出一些AI应用来验证想法;3)落地应用这一阶段我理解的画像就是有一些成功落地应用的案例,如产生商业化价值。对应传统互联网PM也有三个层级:1)负责功能模块与执行细节;2)负责整体系统与产品架构;3)熟悉行业竞争格局与商业运营策略;总结来说,对AI产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI说白了也是工具和手段,我认为产品经理要关注的还是场景、痛点、价值。举一些我们之前做的落地案例(我个人也是在2017年开始关注机器学习,还报了风变的Python课程,不过当时没有深入研究)。

中小企业利用人工智能(AI)进行转型

"AI驱动的产品/服务开发"涉及利用人工智能(AI)技术创新和改进产品或服务,旨在为客户提供更高效、智能和个性化的体验。首先,探索基于AI的新产品或服务。通过开发基于AI的新产品或服务,创造新的市场机会和客户价值。调查和分析市场需求,探索AI技术在不同领域的应用潜力。鼓励团队进行创新思维,探索如何将AI技术融入新产品或服务中。开发AI驱动产品或服务的原型,并进行测试以验证其可行性和市场吸引力。例如,开发智能分析工具,帮助企业自动分析市场趋势;或创建AI辅助应用程序,如个性化健康指导应用。其次,利用AI技术提升现有产品的智能化程度。通过集成AI功能,提升现有产品或服务的智能化水平和竞争力。识别现有产品或服务中可以通过AI技术优化的部分,如添加智能推荐、自动化流程等。利用AI改善用户界面和交互体验,使产品更加直观和易用。基于客户反馈和市场变化,不断迭代和更新AI集成的功能。例如,对于在线零售平台,可以通过集成AI来优化产品搜索和推荐算法,提供更精准的购物建议。通过实施这一策略,中小企业不仅能够开发出具有创新性和竞争力的新产品或服务,还能提升现有产品的价值和吸引力。AI技术的集成使产品更加智能化,能够更好地满足市场和客户的需求,从而帮助企业在竞争激烈的市场中脱颖而出。

Others are asking
目前的AI设计软件,能直接生成课程海报吗
目前的 AI 设计软件能够直接生成课程海报。例如 Claude 这款工具,其 Artifact 功能强大,无需专业设计技能和代码编写,也无需使用 PS 等软件,仅通过输入提示词和对话交流,就能生成课程海报,还能根据需求进行修改,如合并课程、添加日历、调整色彩等。 此外,还有一些其他的 AI 海报生成工具: 1. Canva(可画):https://www.canva.cn/ ,提供大量模板和设计元素,AI 功能可协助选择颜色搭配和字体样式。 2. 稿定设计:https://www.gaoding.com/ ,智能设计工具采用先进人工智能技术,自动分析和生成设计方案。 3. VistaCreate:https://create.vista.com/ ,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 4. Microsoft Designer:https://designer.microsoft.com/ ,通过简单拖放界面创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 另外,还有一个海报设计的案例分享——东阿阿胶。其步骤包括得到需求、提取元素、绘制线稿、用 controlnet 转绘上色、ps 优化、定稿。具体为:确定需求并提取元素,如风格要潮流插画、有唐代元素和国潮等;绘制线稿,根据需求调整元素,如将驴子换成琵琶等;拆分元素线稿,绘制单个元素使其更精致,方便后期替换;利用拼接好的线稿跑图抽卡,选出合适的进行 ps 优化;最后根据客户需求进行元素替换得到定稿。上色运用的大模型为 GhostMix 鬼混_V2.0,lora 模型为“盒子系列——平面国潮插画_v1.0:182ba9e2f576”,controlnet 模型为“Module:lineart_coarse,Model:contr”。
2025-03-26
不懂得提问ai,得出的答案总是不满意,又得费很多时间自己改
以下是一些关于如何向 AI 提问以获得满意答案的建议: 1. 避免追问 AI,因为这可能导致回答越来越离谱。可以使用 ChatGPT 的 temporary chat 功能,保证 AI 在没有任何记忆的情况下生成最新鲜的回答。 2. 当 AI 回答不理想时,可以告诉它退一步,重新审视整个结构,设想从零开始如何设计,以获得更简洁、直观的解决方案。 3. 如果 AI 自己猜测并修改问题,可让它依据日志判断问题所在。 4. 对于刚开始接触 AI 的用户,很多时候答案不符合预期并非 AI 能力问题,而是用户没有把问题和要求描述清楚。在提问时要把背景描述完整,把要求解释清楚,包括细节。 5. 推荐使用 5W1H 方法充分说明信息,即说清楚为什么(Why)、做什么(What)、啥时候(When)、涉及谁(Who)、在哪里(Where)、怎么做(How)。 6. 可以使用引号、分隔符号以及“首先、其次、最后”等连接词来组织 Prompt,赋予 AI 明确的角色,如专注于民商事法律领域的律师等。 7. 按照【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】的格式进行提问。 8. 讲清楚背景和目的,例如律师在处理交通事故案件时,清晰描述案件事实、法规等。 9. 学会提出好问题,使用清晰、具体的语言,避免模糊表述,了解 AI 的工作原理和限制,以提高回答准确性。 10. 在应用 AI 之前,对工作流程进行细致拆解,将复杂任务分解成更小、更具体的环节,以便 AI 更精确执行。
2025-03-26
最近的AI新闻
以下是近期的 AI 新闻汇总: 3 月 12 日: 【AI 3D】 BlenderMCP:与 Claude AI 沟通,在 Blender 实现快速 3D 建模。 MIDI:单幅图像到 3D 场景生成。 Move AI:更新动作捕捉能力,提出 Gen 2 Spatial Motion。 【AI 写作】 MMStoryAgent:AI 多模态故事生成系统。 【AI 视频】 VACE:阿里推出一体化视频创作和编辑技术。 VideoPainter:腾讯开源视频编辑技术。 Wonder Dynamics:推出摄像机轨道(Camera Track)和清洁板(Clean Plate)功能。 【其他】 OpenAI:为开发者推出一套 AI Agent 开发套件。 R1Omni:阿里情感识别模型,通过视频识别情感。 Luma AI:发布一种新的预训练范式 IMM,旨在突破算法瓶颈,提高生成预训练算法的性能。 Manus:宣布与阿里通义千问团队达成战略合作。 3 月 14 日: 【AI 模型及其他】 谷歌:Gemini 应用能力升级,包含升级推理模型 gemini 2.0 Flash Thinking Experimental 等多个功能提升。 OpenAI:4 项更新。 Bolt:一键将 Figma 设计转换为可运行的 Web 应用。 阿里:推出 AI 旗舰应用“新夸克”。 360 智脑团队:开源推理模型 LightR114BDS,复现 Deepseek 的强化学习效果。 【AI 视频】 Pika:更新 Pikaffects,新增多款变身特效。 Freepik 与 Fal 平台:引入 Topaz AI 的提升“FPS 和视频分辨率”能力。 Krea:上线 Veo 2 模型,支持图生视频功能,但生成成本较高。 【AI 绘图】 LBM:用于快速图像到图像转换的潜在桥匹配方法,支持可控图像重新照明、角色去除和图像修复。 【AI 语音】 Sesame:开源 TTS 语音模型 CSM1B。 3 月 26 日: 【AI 模型及应用】 OpenAI:推出 GPT4o 图像生成能力。 谷歌:发布 Gemini 2.5 Pro Experimental 模型。 Trea:已内置 DeepSeekV30324。 【AI 音乐】 昆仑万维:发布全球首款音乐推理大模型 Mureka O1。 【AI 视频】 混元 Portrait:音频视频驱动图片肖像形成动画。 PPVCtrl:新可控制视频生成模型。 【AI 3D】 Vibe Draw: 草图进行 3D 建模。 PhysTwin:通过视频创建交互式物理数字孪生。 GroomLight:用于重打光的人体头发外观建模的混合逆向渲染。
2025-03-26
ai能写科技论文吗?
AI 能够写科技论文。在论文写作领域,AI 技术的应用正在迅速发展,能提供从文献搜索、内容生成、语言润色到数据分析等多方面的辅助。 一些常用的论文写作相关 AI 工具和平台包括: 1. 文献管理和搜索:Zotero 能结合 AI 技术自动提取文献信息,Semantic Scholar 是由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作:Grammarly 可通过 AI 技术提供文本校对、语法修正和写作风格建议,Quillbot 是基于 AI 的重写和摘要工具,能帮助精简和优化论文内容。 3. 研究和数据分析:Google Colab 提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于进行数据分析和可视化,Knitro 用于数学建模和优化,可帮助进行复杂的数据分析和模型构建。 4. 论文结构和格式:LaTeX 结合了自动化和模板,可高效处理论文格式和数学公式,Overleaf 是在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化论文编写过程。 5. 研究伦理和抄袭检测:Turnitin 是广泛使用的抄袭检测工具,Crossref Similarity Check 通过与已发表作品比较,检测潜在抄袭问题。 但需要注意的是,虽然 AI 工具是好东西,但目前大多数人还停留在零碎使用的阶段,未系统应用到工作场景中。比如有人像小明那样,在挑选和切换工具时浪费不少时间,导致效率降低。问题不在于 AI,而在于没有形成适合自己的 AI 工作方法论和流程。未来,科技精英可能更多扮演“与 AI 协作”的角色,引导 AI 工作并保持审慎监督。使用这些 AI 工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。
2025-03-26
ai编程
以下是关于 AI 编程的相关信息: Trae 国内版 是国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 具有国内用户友好、使用完全免费、内置预览插件等特性。 网址:Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键 打通学习与反馈循环,包括验证环境、建立信心、理解基本概念,实现“理解→实践→问题解决→加深理解”的循环。 使用流行语言和框架,先运行再优化,小步迭代,借助 AI 生成代码后请求注释或解释,遇到问题三步走:复现、精确描述、回滚。 用好 AI 编程工具(如 Cursor)的关键技能 准确描述需求,清晰表达目标和问题。 具备架构能力,将复杂系统拆解为松耦合的模块。 拥有专业编程能力,能够判断 AI 生成代码的优劣。 具备调试能力,快速定位问题并解决,可独立或借助 AI 完成调试。
2025-03-26
ai编程
以下是关于 AI 编程的相关信息: Trae 国内版 是国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 具有以下特性: 对国内用户友好,有中国官网、中文界面、国内模型,稳定且快速。 使用完全免费,无需折腾会员,下载后可直接使用。 内置预览插件,写完代码一键运行,所见即所得。 网址:Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键 打通学习与反馈循环,包括验证环境、建立信心、理解基本概念,实现“理解→实践→问题解决→加深理解”的循环。 建议使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。 用好 AI 编程工具(如 Cursor)的关键技能 准确描述需求,清晰表达目标和问题。 具备架构能力,将复杂系统拆解为松耦合的模块,便于 AI 高效处理。 拥有专业编程能力,能够判断 AI 生成代码的优劣。 具备调试能力,快速定位问题并解决,可独立或借助 AI 完成调试。
2025-03-26
零基础小白如何入手AI
对于零基础的小白,入手 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其适合纯 AI 小白。作者的学习模式是输入→模仿→自发创造,学习内容可在 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。该日记中的学习资源免费开源。 对于编程工具,Cursor 是一个零代码基础的小白用户也能上手的 AI 编程工具,基于 Visual Studio Code 构建,集成了强大的 AI 功能。其具有 AI 辅助编程、简单易用的界面、支持多种语言、强大工具等特点和优势。下载可通过打开浏览器,访问,点击“Download”按钮,选择适合电脑的版本,下载完成后,双击安装文件,按照提示完成安装。新建项目时,在界面中选择 open project,新建一个纯英文名称的文件夹后选择打开。其界面包括代码区、文件区、状态栏和 AI 互动区等主要区域。在正式开始项目前,可先设置一下 Cursor Rules。
2025-03-24
我是一名 C 端用户产品经理,想转行做 AI 产品经理,应该从哪里入手
如果您作为一名 C 端用户产品经理想转行做 AI 产品经理,可以从以下几个方面入手: 1. 学习 Prompt 提示词:了解 Prompt 提示词的概念和应用,参考相关文档如 https://www.promptingguide.ai/zh ,掌握通过 Prompt 提示词解决产品经理日常工作场景的方法,例如行业洞察分析、方法论专家、头脑风暴、需求文档设计、功能价值分析、竞品分析报告、流程图/图表设计、思维导图设计、解决方案专家、周报生成器等场景。 2. 了解行业动态:关注 AI 行业的最新发展和趋势,通过混入各种相关群,与不同的人交流业务和技术,获取最新信息。 3. 弥补知识差距:由于 AI 技术发展迅速,可能存在技术与业务之间的知识断档。需要努力弥补自己在技术和业务方面的不足,熟悉相关技术知识,同时深入理解业务需求。 4. 积累项目经验:可以尝试参与一些 AI 相关的项目,哪怕是免费为相关人员提供服务,以积累实际经验。 5. 分析成功案例:研究已有的 AI 产品,了解其成功的因素和实现方式。
2025-03-22
怎么开始入手学习
以下是针对新手入手学习 AI 的建议: 1. 编程语言基础: 从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 工具和平台体验: 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 前沿动态关注: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 6. 课程学习: 阅读「」部分,熟悉 AI 的术语和基础概念。 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有机会获得证书。 7. 选择感兴趣的模块深入: 根据自己的兴趣选择特定的 AI 模块(如图像、音乐、视频等)进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 8. 实践和尝试: 理论学习后进行实践,巩固知识。 尝试使用各种产品做出自己的作品。 参考知识库提供的实践作品和文章分享。 9. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-14
我想学习ai,应从哪步入手
如果您想学习 AI,可以从以下几个方面入手: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其中提到: 1. 适合纯 AI 小白:如果您还在观望 AI,不知道从何入手,可以参考这个日记。 2. 学习模式:输入→模仿→自发创造。 3. 学习内容:日记里的学习内容可能不适用,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 4. 时间安排:在半年多的时间跨度中,其中有 100 天在学习 AI,不是每天依次进行,而是有空的时候学习。 5. 学习状态:保持良好的学习状态,能学多少算多少。 6. 费用:学习资源的内容都是免费开源的。
2025-03-02
我想用AI设计一款小程序,我应该从哪里入手
如果您想用 AI 设计一款小程序,可以从以下几个方面入手: 1. 形成项目需求文档:与相关人员沟通确认需求细节,并查看对应文档。 2. 整理对应模块,进行功能设计:包括明确需求,进行 UI 和技术(前后端实现途径)、测试用例的设计。根据 AI 写的功能设计模块文档,观看确认和完善,以了解项目技术实现和执行方式。 3. 编写代码:根据模块任务一点点写代码,并将代码文件和更改记录写到对应代码说明文档,同时做好代码注解。在每个功能块开发完成后,用测试用例跑一遍。 4. 界面设计:可以先绘制草图,然后借助多模态 AI 工具(如 GPT/Claude)生成初步的前端结构代码。前端开发语言方面,HTML 用于构建网页基础框架,CSS 负责布局样式美化,JavaScript 实现交互逻辑。 此外,您还可以参考以下相关知识: 直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。 直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。 了解如何实现文件上传,通过 Coze 的,用户可将本地文件上传至 Coze 的云存储。 参考关于 API 的使用及工作流执行流程的。 希望以上内容对您有所帮助。
2025-03-01
我是一名数据产品经理,想转行ai产品经理,该从哪里入手。你的知识库里有哪些可以帮到我。最好把他们列举出来,具体一些最好有步骤
以下是为您整理的从数据产品经理转行 AI 产品经理的相关知识和建议: 一、AIPM 技能树 1. 理解产品核心技术 了解基本的机器学习算法原理,有助于做出更合理的产品决策。 2. 与技术团队有效沟通 掌握一定的算法知识,减少信息不对称带来的误解。 3. 评估技术可行性 在产品规划阶段,能更准确地判断某些功能的技术可行性。 4. 把握产品发展方向 了解算法前沿,更好地把握产品的未来发展方向。 5. 提升产品竞争力 发现产品的独特优势,提出创新的产品特性。 6. 数据分析能力 掌握相关知识,提升数据分析能力。 二、AI 提示词工程师岗位技能要求 1. 学历和专业背景 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 AI 工具 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 3. 项目经验 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 4. 技术理解 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 5. 数据分析与决策 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 6. 创新思维 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 7. 技术关注 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 8. 编程能力 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 三、AI 市场与 AI 产品经理分析 当前有两个场景: 1. 企业(包括传统企业和互联网企业)如何实现 AI 转型或用好 AI。 2. 产品经理如何转型 AI 产品经理。 希望以上内容对您有所帮助。
2025-01-21
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答,现在请你告诉我如何操作
以下是捏制一个满足您需求的 AI Agent 的操作步骤: 1. 规划: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 AI Agent 相关概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 常见的 AI Agent 类型包括: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-23
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答
以下是为您提供的关于捏制 AI Agent 的相关知识: 一、手捏 AI Agent 的思路 在 Coze 中创建工作流驱动的 AI Agent,简单情况可分为 3 个步骤: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 二、AI Agent 的概念 AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 同时,需要三个 Agent: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 三、Agent 的“明斯基时刻” 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 其特点包括: 1. 多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 2. 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。 3. 分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。 同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能: 专家 Agent:拥有特定领域知识和技能的 Agent,负责处理复杂的任务和解决特定问题。 管理 Agent:协调和控制其他 Agent 的活动,确保整体系统协调一致地运行。 学习 Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。
2025-03-23
我想要制作一款小游戏,上架到抖音和微信,请你给我列举出需要用到的ai和软件
以下是制作小游戏并上架到抖音和微信可能需要用到的 AI 和软件: AI 方面:可以利用 AI 描述需求生成游戏代码,例如向云雀 3.5 等模型描述需求来辅助生成代码。还可以让 AI 处理图片、绘制角色形象等。 软件工具: 图像托管网站:用于上传游戏中的图片,选择无需登录、兼容性强的网站。 代码解释网站:有专门解释代码改游戏 bug 的网站,部分有免费额度。 GitHub:用于游戏发布,需要注册账号,设置游戏名,选择公共或锁定,上传文件等。 Zion:支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 Coze:可作为后端服务。 微信开发者工具:用于微信小程序的开发。
2025-03-10
每一款ai的优势是什么
以下是一些常见 AI 的优势: Notion AI(免费可用):可在笔记和文档中直接接入 AI 能力,能让工作更迅速,写作更出色,思考更伟大。 Guidde AI(免费可用):作为生成式 AI 平台,使团队能够以 11 倍的速度传递专业知识,与客户或员工共享。 Arc Max:能在任何网页寻求 AI 辅助,具备智能标签页、下载重命名、集成 ChatGPT 等功能,可优化浏览体验,是一个节省时间的 AI 功能套件。 Trickle(免费可用):可以帮助总结和整理截图,提取洞察以便于搜索和查询,将视觉混乱的图片转化为智能档案,允许用户截取任何内容,并在以后轻松地检索和使用其内容。 此外,像 GPT4 功能全面,还具备代码解释器等特色功能;Claude 在写作和深度洞察方面备受好评;Gemini 则擅长提供清晰的解释。Claude 3 的上下文窗口超过 150,000 字,而 GPT4 的上下文窗口能够处理 8,000 至 32,000 字的内容。 在科学领域,AI 也展现出诸多优势,例如: 计算机视觉模型可用于拼凑出 5500 万光年外的首个黑洞图像。 英国的一家 AI 公司训练的神经网络能预测蛋白质结构,解决了长期困扰科学家的难题,并推进了结构生物学领域的发展。 深度学习 AI 有望改善乳腺癌筛查,提高检测效率。 AI 机器人能提高农业生产效率。
2025-03-09
如何用AI做一款app
以下是用 AI 做一款 app 的一些建议和方法: 1. 从基础小任务开始: 让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 对于特定需求,如学习写 chrome 插件,让 AI 选择适合小白上手的技术栈生成示范项目,包含典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。 若使用 o1mini,可在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(Windows 机器则是 create.cmd),以一次性生成多个目录和文件。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,包含影响技术方案选择的细节,方便后续开发时参考。 3. 提升应用效果的技巧: 对于界面样式,不用非得用语言描述,可从设计平台找喜欢的设计稿上传图片让模型参考,如国内的站酷、海外的 Dribbble 和 Layers。重点描述静态图片无法表现的部分。 要求 AI 引用在线图片填充页面需要图片的部分,如 unsplash 等开源图片网站。 要求 AI 在生成页面时引用在线的图标库,如 Font Awesome 或 Material Icons 等,以替代 emoji 图标,使页面更简洁整齐。 此外,Eric Quan 表示使用 Trae 进行开发,贡献度接近 100%,能极大提高开发效率,尤其是前端代码开发,0 到部署所需时间从原来的 1 周到现在的 10 小时,1 个月的 MVP 能做到原来需要半年才敢想的 App。在产品使用中,Chat 模式更可控,Builder 模式也可在必要时使用。
2025-03-06
如何用AI辅助做一款App
以下是用 AI 辅助做一款 App 的相关指导: 1. 在网站上增加一个 AI 助手: 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用。在对话框,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以选择输入一些 Prompt,比如设置一些人设以引导大模型更好的应对客户咨询。 在页面右侧可以提问验证模型效果。不过您会发现,目前它还无法准确回答你们公司的商品信息。点击右上角的发布,我们将在后面的步骤中去解决这一问题。 获取调用 API 所需的凭证: 在我的应用>应用列表中可以查看所有百炼应用 ID。保存应用 ID 到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY。保存 APIKEY 到本地用于后续配置。 2. 用 AI 写出漂亮炫酷的应用的技巧: 不用非得用语言来描述想要的界面样式,可以去一些设计平台找喜欢的设计稿将图片上传让模型参考。国内推荐站酷、海外推荐 Dribbble 和 Layers。在跟 Claude 说的时候重点描述静态图片无法表现的部分。 可以要求 Claude 生成界面时引用在线的图片来填充到页面需要图片的部分,推荐 unsplash 这个开源图片网站。 要求 Claude 在生成页面的时候引用在线的图标库,比如 Font Awesome 或 Material Icons 这些开源图标库。 常用的前端样式代码是用 CSS 写的,但 CSS 本身的一些样式没太考虑美观度要求。 3. AI 时代创业的相关经验: Eric Quan 作为 AI IDE 的深度用户,发现 AI 会钻牛角尖,追问会给出离谱答复,还会不懂装懂给出错误知识。 解决模型幻觉问题的技巧:新建一个窗口;告诉 AI 忘掉之前所有内容,重新聊或新建会话窗口重新提问;告诉 AI 退一步,重新审视整个结构,设想从零开始如何设计;当 Claude 边猜边修改问题时,告诉它不确定就看日志并粘贴给它。一般借助这三个技巧引导 AI。或许真正的程序员把 Trae 当作辅助工具,但对 Eric Quan 来说,他是 AI 的辅助,只需告诉 Trae 想要什么,由它们来实现。
2025-03-06
我是一位程序开发小白,不会用代码开发程序。我现在有一台安装Window 11操作系统的笔记本电脑,配置为14代i7CPU、32G内存、1TB硬盘、1张RTX4070显卡。我想部署一套本地的大模型+智能体+知识库。我要怎么样才能实现无代码部署,请列出详细的安装步骤。
以下是为您提供的无代码部署本地大模型、智能体和知识库的详细安装步骤: 1. 硬件评估:您的笔记本电脑配置为 14 代 i7 CPU、32G 内存、1TB 硬盘、1 张 RTX4070 显卡,基本满足部署要求。但需要注意,运行内存最低 32GB,越高越好,最低配可能会经常爆显存。建议将软件和模型部署在 SSD(固态硬盘)上,以提高加载模型的速度。 2. 选择合适的部署工具:ComfyUI 是一个相对配置要求较低、系统资源占用少、出图速度快的工具。它最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 安装准备:如果您的电脑能顺畅清晰地玩 3A 游戏,那么运行相关部署工具一般也没问题。 4. 预算和需求:根据您的需求和预算来选择合适的配置。例如,如果有做 AIGC 视频、建模渲染和炼丹(lora)的需求,可能需要更高的配置。 请注意,以上步骤仅为参考,实际部署过程可能会因具体情况而有所不同。
2025-03-26
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
AI开发微信小程序
以下是关于 AI 开发微信小程序的相关信息: 白九龄在开发微信小程序时遇到了诸多问题。例如,在前端开发中,为营造氛围添加背景元素、实现自适应和清晰字体展示等方面,由于大模型难以理解相关需求,导致不断出错和调整。在意图分析页面,信息展示、排版和整体风格的优化也因大模型的理解限制而困难重重。生成海报时,在字数显示、行数限制、小程序码添加及位置和视觉呈现的调整上,大模型同样表现不佳。此外,还存在模型 token 费用、变现困难以及测试成本高等问题。 关于开发微信小程序的知识图谱中,有“Trae+微信开发者工具协同开发”“微信认证和 ICP 备案”等相关内容。 在智能纪要中提到已完成部分微信小程序开发,如首页和个人简介页面,其他部分有待安排。
2025-03-26
我是新手小白,先学习人工智能开发,从而找工作,如何开始
对于新手小白想要学习人工智能开发从而找工作,可以按照以下步骤开始: 1. 了解自身硬件情况和财力,选择合适的开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:对于电脑不符合要求的,可以使用在线工具,包括在线出图和云电脑,根据实际情况选择,前者功能可能受限,后者需手动部署。 配台电脑:不建议一开始就配主机,玩几个月后仍对 AI 有兴趣再考虑,主机硬盘要大,显卡在预算内买最好,其他随意。 2. 学习相关课程: 先验经验:需要熟练使用文生图、图生图,有一定逻辑思考和推理能力,适合炼丹新人、小白。 课程安排:课程约 70 80%是理论和方法论内容,大部分练习在课外沟通、练习,少部分必要内容在课上演示。 学习路径:必学、必看内容是基础课,解决环境和软件安装问题;建炉针对不同炼丹方式提供不同炼丹工具安装教程;正式内容分为数据集预处理、模型训练以及模型调试及优化三个部分。 3. 进行项目实践,例如: 可以参考“齐码蓝:你(或孩子)还需要学编程吗?AI 编程 Master GPTs”中的项目,先进行需求分析与项目规划,包括功能需求(如每个离谱生物的页面展示图片、头像、文字介绍,支持文字和语音对话,展示相关离谱事件)和非功能需求(页面加载速度快、用户界面友好、支持响应式设计),以及用户故事(如访客浏览不同离谱生物档案、了解背景故事和相关事件、进行文字或语音交流)。 然后进行架构设计与模块化,采用前后端分离架构,前端负责展示界面和用户交互,后端负责处理业务逻辑和数据存取,通过 REST API 实现前后端交互,模块化分为前端模块(生物档案组件、事件展示组件、对话组件)和后端模块(生物档案 API、事件 API、语音处理 API)。 4. 了解法律法规:阅读《促进创新的人工智能监管方法》,了解 AI 在社会和经济中的应用和影响,以及相关的监管环境。
2025-03-24
安卓开发的实用AI工具有哪些
以下是一些适用于安卓开发的实用 AI 工具: 1. Hand Talk:能将文本或语音自动转换成美国手语,既是翻译工具,也是学习平台。链接:https://xiaohu.ai/p/5688 、https://x.com/imxiaohu/status/1777201503142601143 2. OctopusV2 模型:可在安卓手机上运行,能通过文字指令控制手机进行如拍照、发邮件等各种操作,代表 AI 手机技术今年有望实现重大飞跃。链接:https://x.com/imxiaohu/status/1777194451590615448 3. Chinese Tiny LLM:首个针对中文设计的 20 亿参数大语言模型,基于 12000 亿中文语料库预训练,还有新中文对齐基准测试 CHCBench 来测试模型对中文文化、历史的深入理解。链接:https://xiaohu.ai/p/5674 、https://x.com/imxiaohu/status/1777181431799959886 4. Octopusv2:由斯坦福大学 Nexa AI 开发,专为 Android API 优化,比 Llama7B+RAG 方案快 36 倍,性能胜过 GPT4,错误率低,响应快,适用于智能家居和移动应用开发。链接:https://xiaohu.ai/p/5538 、https://arxiv.org/abs/2404.01744 、https://huggingface.co/NexaAIDev/Octopusv2 、https://x.com/imxiaohu/status/1776447275864371533 5. Trae:字节跳动推出的智能编程助手,提供基于 Agent 的 AI 自动编程能力,使用自然语言对话就能实现代码编写。支持代码编写、项目管理等传统 IDE 功能,还有智能问答、实时代码建议、代码片段生成、从 0 到 1 开发项目等功能。官网下载地址:https://www.trae.ai/download ,支持 Mac 系统、Windows 系统,未来支持 Linux 系统。
2025-03-23
降本增效的情况下建筑设计院自己开发AI和应用好现有的AI哪个选择更好
在降本增效的情况下,建筑设计院是自己开发 AI 还是应用现有的 AI,需要综合多方面因素来考虑。 现有的 AI 工具已经在很多领域带来了显著的优势,例如: 1. 提高效率:能够快速产生创意效果和设计方案。 2. 丰富设计效果:极大地丰富了设计自由度,实现各种创意。 3. 拓展工作流程:促使设计工作流程重新组合再造,拓展设计师的思维边界。 同时,也有一些专门针对建筑设计的现有 AI 工具,比如: 1. HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型,软件 UI 和设计成果颜值在线。 2. Maket.ai:面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,能根据输入需求自动生成户型图。 3. ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期阶段可引入标准和规范约束设计结果。 4. Fast AI 人工智能审图平台:形成全自动智能审图流程,能实现建筑全寿命周期内信息的集成与管理。 然而,自己开发 AI 也有其潜在的好处,比如可以更精准地满足设计院的特定需求和业务特点。但开发 AI 需要投入大量的资源和时间,包括技术人才、资金、研发周期等。 综上所述,建筑设计院应根据自身的技术实力、资源状况、业务需求的独特性等因素来权衡选择。如果资源有限且现有工具能满足大部分需求,应用现有的 AI 可能是更好的选择;如果对特定功能有极高的要求且有足够的能力和资源支持,自己开发 AI 也未尝不可。
2025-03-23