Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答

Answer

以下是为您提供的关于捏制 AI Agent 的相关知识:

一、手捏 AI Agent 的思路

在 Coze 中创建工作流驱动的 AI Agent,简单情况可分为 3 个步骤:

  1. 规划

    • 制定任务的关键方法。
    • 总结任务目标与执行形式。
    • 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。
    • 设计每个子任务的执行方法。
  2. 实施

    • 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。
    • 详细配置子任务节点,并验证每个子任务的可用性。
  3. 完善

    • 整体试运行 Agent,识别功能和性能的卡点。
    • 通过反复测试和迭代,优化至达到预期水平。

二、AI Agent 的概念

AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。

AI Agent 包括以下几个概念:

  1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。

  2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。

  3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。

同时,需要三个 Agent:

  • Responser Agent:主 agent,用于回复用户(伪多模态)。
  • Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。
  • Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。

三、Agent 的“明斯基时刻”

心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。

其特点包括:

  1. 多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。
  2. 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。
  3. 分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。

同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能:

  • 专家 Agent:拥有特定领域知识和技能的 Agent,负责处理复杂的任务和解决特定问题。
  • 管理 Agent:协调和控制其他 Agent 的活动,确保整体系统协调一致地运行。
  • 学习 Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。
Content generated by AI large model, please carefully verify (powered by aily)

References

一泽Eze:万字实践教程,全面入门 Coze 工作流|用 Coze 打造 AI 精读专家智能体,复刻 10 万粉公众号的创作生产力

在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法2.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性3.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。

皮皮:你的微信虚拟女友 - 李洛云

AI Agent:基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。AI Agent包括下面几个概念:Chain:通常一个AI Agent可能由多个Chain组成。一个Chain视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的Chain是大语言模型完成的LLM Chain。Router:我们可以使用一些判定(甚至可以用LLM来判定),然后让Agent走向不同的Chain。例如:如果这是一个图片,则a;否则b。Tool:Agent上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。总结下来我们需要三个Agent:Responser Agent:主agent,用于回复用户(伪多模态)Background Agent:背景agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)Daily Agent:每日agent,用于生成剧本,配套的图片,以及每日朋友圈Responser AgentDaily AgentBackground Agent每隔一段时间运行一次(默认3分钟)分析期间的历史对话变更人物关系(亲密度,了解度等)变更反感度,如果超标则拉黑用户抽简对话内容,提取人物和用户的信息成为“增长的记忆体”按照时间推进人物剧本有概率主动聊天(与亲密度正相关,跳过夜间时间)[heading1]复杂的东西:中期记忆中的增长记忆体

AI-Agent系列(一):智能体起源探究

核心思想:心灵社会理论认为,智能是由许多简单的Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些Agent在不同层次上执行不同的功能,通过协作实现复杂的智能行为。多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个Agent负责。功能模块:每个Agent类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的Agent共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,明斯基还详细描述了不同类型的Agent及其功能:专家Agent:拥有特定领域知识和技能的Agent,负责处理复杂的任务和解决特定问题。管理Agent:协调和控制其他Agent的活动,确保整体系统协调一致地运行。学习Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,到这里,“AI”和“Agent”就彻底聚齐了。往后,我们都将其称之为AI Agent。

Others are asking
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,并针对未来步骤进行完善,提高最终结果质量。 3. 记忆:包含短期记忆,所有的上下文学习利用模型的短期记忆来学习;长期记忆,为 Agents 提供长时间保留和回忆(无限)信息的能力,通常通过利用外部向量存储和快速检索来实现。 4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些与智能体 Agent 相关的目录: 1. 2. 3. 4. 5. 6. 2025AGENT 智能体全球创作大赛的常见问题: 1. 如何报名参加比赛?可以通过→首页的“立即参赛”按钮进入报名页面,填写相关信息并提交即可完成报名。 2. 参赛是否需要缴纳费用?本次比赛完全免费,不收取任何报名费用。 3. 可以使用哪些技术和工具开发 Agent?可以使用任何 AI 模型、编程语言和开发工具,只要最终作品符合提交要求即可。 4. 如何提交作品?在本网站直接提交,通过该通道上传您的 Agent 作品和相关材料,同时如果采用 flowith 搭建了 Agent 可以在微博、小红书、即刻平台发布,并@Flowith 官方,可以获得额外的会员奖励。 5. 比赛的奖项设置是怎样的?比赛设有金、银、铜奖和多个单项奖,在获奖后,将获得由组委会颁发的奖金和证书,请保证联系方式的准确性,以便组委会联系您。 6. 参赛作品的知识产权归属?参赛作品的知识产权归参赛者所有,但组委会有权在宣传和展示中使用参赛作品。
2025-03-25
有关国内Ai Agent的行业分析
以下是关于国内 AI Agent 的行业分析: 市场研究报告: 《爱分析:2024 中国 AI Agent 市场研究报告》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《爱分析:2024 年 AI Agent 实施的明路应用实践报告》指出企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 行业发展现状: 2024 年是大模型持续落地的一年,行业内普遍认为明年将迎来 Agent 的爆发。 从大模型落地具体方式来看,2024 上半年中国 MaaS 市场规模达 2.5 亿元,中国 AI 大模型解决方案市场规模达 13.8 亿元,百度智能云在这两个市场中均获得第一名。 百度智能云旗下有千帆行业场景解决方案,沉淀了制造、能源、交通,政务、金融、汽车、教育、互联网八大行业解决方案。在 2024 百度世界大会上,百度智能云千帆大模型平台发布了工作流 Agent 能力。 AI Agent 特点: 是一种智能代理系统,接近人类大脑,可形成记忆、达成行动规划、自动交互、主动预测。 具有个性化特点,能随着用户使用了解其习惯和想法并作出喜好预测。 能够自主完成任务,如 Auto GPT 可在用户输入目标后自主执行任务、递归地开发和调试代码。 具备多 Agent 协作能力,如斯坦福大学的 SmallVille 项目和 Fixie AI。 应用场景: 目前 AI Agent 应用大多集中在 2B 场景,面向个人消费者的产品较少,个人消费者方向目前主要是“私人助理”场景。
2025-03-25
多agent能做什么呢?
多智能体(MultiAgent)是由多个自主、独立的智能体组成的系统。每个智能体都能感知环境、决策并执行任务,且它们之间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型的出现,以其为核心构建的 Agent 系统受广泛关注。Agent 系统利用语言模型的归纳推理能力,为不同 Agent 分配角色和任务信息,并配备工具插件以完成复杂任务。目前常见框架多集中在单 Agent 场景,其核心是语言模型与工具的协同配合,可能需与用户多轮交互。同时,更多 Agent 框架关注多 Agent 场景,为不同 Agent 指定角色,通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架的主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,环境包含全局状态信息,Agent 与环境有信息交互与更新。 2. 阶段:通常采用 SOP 思想,将复杂任务分解为多个子任务。 3. 控制器:可以是语言模型或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:相比单 Agent,多 Agent 框架中因 Agent 数量增多,消息数量及相关字段也增多。 在 Agent 产品开发方面,本质是动态 Prompt 拼接,通过工程化手段将业务需求转述为新的 Prompt。包括短期记忆(messages 里的历史 QA 对)、长期记忆(summary 之后的文本塞回 system prompt)、RAG(向量相似性检索)、Action(触发 tool_calls 标记进行请求循环)等。 Coze Agent 是多功能的 AI 应用程序和聊天机器人开发平台,支持创建各种聊天机器人并部署到不同平台。它采用多 Agent 模式,可提高系统处理能力和效率,在自然语言处理等领域有效。用户能利用插件和工具定制机器人,支持四种主要设计模式,是强大灵活的工具。但内容由 AI 大模型生成,请仔细甄别。
2025-03-25
我是一个产品经理,我想要绘制ai agent对现有业务流程的提升ppt,有没有一些好的案例
以下是一些关于 AI Agent 对现有业务流程提升的案例,希望对您绘制相关 PPT 有所帮助: 1. 在查询问题方面,如使用 Kimi Chat 时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子,同时 PPT 中还介绍了众多不同领域类型的工具,为大模型在获取、处理、呈现信息上做补充。 2. 在任务执行的工作流路径规划方面,Agent 能够自行规划,面向简单或线性流程运行。例如,先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。 3. 在多智能体协作方面,吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色,如公司 CEO、产品经理、设计师、代码工程师或测试人员等,这些 Agent 相互协作共同开发应用或复杂程序。 4. 对于 AI Agent 的基本框架,OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。规划主要包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,处理复杂任务,并对过去行动进行自我批评和反思,从错误中学习改进未来步骤,提高最终结果质量。 5. 在信息处理方面,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,不断颠覆传统搜索引擎。智能摘要功能能辅助快速筛选信息,实现信息降噪。 6. 在信息表达方面,现在用自然语言描述一句话就能生成美观可用的图片,降低了不同角色的创作门槛和周期。 7. 对于产品经理的工作流,可使用 AI 进行搞定用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。但建议先摸清自己的日常工作流,再根据工作节点线索找到适合自己的工具。 关于 Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。同时,在法律法规方面,相关生命周期参与者应实施适当的透明度措施,直接受 AI 系统使用影响的各方应能获取足够信息以维护自身权利,技术标准也可为评估、设计和改进 AI 系统的透明度和可解释性提供指导。
2025-03-24
字节跳动开源的AGENT TARS
字节跳动开源的自学型 GUI Agent 名为 UITARS,具有以下特点和优势: 能够实现复杂任务自动化,支持跨平台操作,包括网页、桌面和移动端。 性能优于主流模型(如 GPT4 等)。 适用于复杂动态交互、表单填写、批量处理、在线预订等应用场景。 提供开发框架,支持桌面和网页端运行。 相关链接: 其核心能力包括界面识别与元素定位的感知能力、执行操作指令的行动能力、多步任务规划的推理能力以及记录并优化操作流程的记忆能力,能够实现端到端学习,支持“直觉式”反应(System1)与深度思考(System2)。
2025-03-24
关于agent,图片生成
以下是关于 agent 和图片生成的相关信息: 关于 Agent Scheduler 插件用于图片生成: 点击排队设置任务,可在控制面板查看处理生成中的任务。 不想立即运行可点击暂停,也可在设置中勾选“禁用队列自动处理”。 可设置多个任务,完成后在任务历史中查看参数和结果,不满意可重新生成。 如需该插件,可添加公众号【白马与少年】回复【SD】获取。 Agent 相关比赛: 赛道包括图文创作赛道、实用工具赛道、互动创意赛道。 参考方向有内容生成、图像标注、图文匹配、数据可视化、设计辅助、自动化排版、图文识别、新闻和社交媒体、艺术创作、智能产品设计等。 AIGC 相关: Meta 开源了名为 Image Bind 的 AI 模型,是首个能同时绑定六种模式数据的模型,能推进人工智能在跨模式检索、嵌入空间算法、生成等方面的发展。 HuggingFace Transformers Agent 使编码 LLM 能动态组合其他 HF 模型解决多模态任务,提供自然语言 API,具有可扩展性,有单次运行和聊天执行两种方法,预定义工具包括文档问答、文本问答、图像生成等。
2025-03-24
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答,现在请你告诉我如何操作
以下是捏制一个满足您需求的 AI Agent 的操作步骤: 1. 规划: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 AI Agent 相关概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 常见的 AI Agent 类型包括: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-23
我想找最新的关于大模型发展趋势的材料
以下是为您找到的关于大模型发展趋势的最新材料: 基础通识课中提到了 AI 模型及相关进展,包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等。还介绍了人工智能的发展历程,从早期到如今大模型和多模态模型百花齐放的阶段。同时提到大模型由数据、算法、算力构成,算法有技术架构的迭代,数据质量对生成理想的大模型至关重要,以及针对弱智 8 的问题对大模型进行测试等相关内容。 2023 年度中文大模型基准测评报告.pdf 中包含 2023 年国内大模型发展趋势、测评体系、方法说明、综合测评结果、SuperCLUE2.0 升级、四大维度测评分析及示例介绍、优秀模型案例介绍等内容。 2024 年历史更新(归档)中,有《探讨大模型未来:从 Scaling Law 到数据红利再到终极 Token 工厂》,探讨了大模型的未来,包括规模化法则、数据红利和 Token 工厂概念。还有《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》《智变时代/全面理解机器智能与生成式 AI 加速的新工业革命》《文生图大模型基准测评首期榜单公布,DALLE 3 取得最高 76.94 分》等相关文章。
2025-03-23
帮我找下提示词学习材料
以下是为您提供的提示词学习材料: 一、关于提示词的一般理解 提示词(Prompt)是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出。它发挥着“提示”模型的作用,设计高质量的提示词需根据目标任务和模型能力精心设计,良好的提示词能让模型正确理解需求并给出符合预期的结果。示例包括直接提问型、策略建议型、翻译型、算数型、概念解释型等。 二、系统学习 Stable Diffusion 提示词的步骤 1. 学习基本概念 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 三、Claude 3.7 核心提示词相关资源 Anthropic 定期对外更新 Claude AI 的核心系统提示词,为广大提示工程师提供了宝贵的学习资料。您可以在以下链接中找到更多相关内容: 1. 中找到他们往期开源的更多系统提示词,涵盖了从 Claude 3 Haiku 到现在所有的模型。 2. Claude 3.5 sonnet 内置提示词详细拆解与解说:https://mp.weixin.qq.com/s/0R4zgH3Gc5TAfAPY1oJU4A 3. Anthropic 的三位顶级提示工程专家聊《如何当好的提示词工程师》:https://mp.weixin.qq.com/s/VP_auG0a3CzULlf_Eiz1sw 4. 往期 Claude AI 核心系统提示词:https://docs.anthropic.com/en/releasenotes/systemprompts 5. Claude 官方用户手册 提示工程指南:https://docs.anthropic.com/en/docs/buildwithclaude/promptengineering/overview 6. Claude 官方提示库:https://docs.anthropic.com/en/promptlibrary/library
2025-03-15
AI音乐发布要准备哪些材料
发布 AI 音乐通常需要准备以下材料: 1. 音频文件:确保音频质量良好。 2. 歌词: 文本歌词需做成 TXT 格式上传。 可通过自带功能将文本歌词同步为逐字歌词 TRC,修正错别字后提交。 3. 描述音乐风格:如民谣、流行、嘻哈、国风等。 4. 若为人声歌曲,还需准备歌词:可以自己创作,也可让 AI 帮忙写作。 5. 选择音乐库中的合适音乐。 此外,在一些相关教程中还提到: 收藏过的满意音乐素材、音效素材以及抖音里收藏的音乐。 音效库方面,可通过搜索相应音效,如开门声,并添加到音轨。
2025-03-11
mpc相关材料
以下是关于 MPC 的相关材料: Claude 直接连接到 GitHub、创建新存储库并通过简单的 MCP 集成创建 PR。Anthropic 推出模型上下文协议(MCP),Claude Desktop 现在可以直接连接到 GitHub、创建新的存储库并创建 PR。 具身智能算法层中,模型预测控制(MPC)通过预测未来系统行为来做出决策,在未来的一个给定时间窗口内解决一个最优化问题,以寻找控制输入,最小化成本并满足约束。MPC 需要系统模型、成本函数、预测时间段、约束和反馈来运作,通过预测未来情况,机器人可产生相应动作进行“预判”,一定程度上加大机器人实用性。以足式机器人为例,可将 MPC 用于全身控制,能协调身体各部分,通过观测地面环境提前给出控制量,减缓欠驱动状态下系统的不稳定性,减少接触模态干扰,增强四足稳定性。此类路线的代表为波士顿动力,优点是传统算法可靠性高、可解释性强,缺点是对于 corner case(如光滑地面)处理不好。 11 月 25 日,Anthropic 发布开源 MCP 协议,其亮点是定义了一套标准且相对完善的协议,对大模型和应用的生态协同有很大指导意义,本质上是对 LLM 和 API 调用层的优化。
2025-03-09
我想学习一些AI创作小说的技巧,能给我推荐一些学习材料吗
以下是为您推荐的一些学习 AI 创作小说的资料: 此外,陈财猫还为您提供了一些创作技巧: 1. 显式归纳与列出您想要的文本特征。例如,明确描述写小说的刚需,如优秀的文风、细腻的文笔,具体到“几句话一换行”“以短句和对话为主,结构紧凑”“用词直白犀利”等,在调试过程中逐步调整描述,直到达到理想效果。 2. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本。比如,明确指出想要的小说类型,如“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。对于短剧剧本创作这类较新且有特殊要求的任务,更要准确描述其特点和出现的场景。
2025-03-05
如何部署本地AI?
部署本地 AI 可以参考以下内容: 1. 平台选择: 线上平台:出图速度快,不吃本地显卡配置,无需下载大模型,能参考其他创作者作品,但出图尺寸受限。 线下平台:可添加插件,不卡算力,出图质量高,但使用时电脑可能宕机,配置不高可能爆显存导致出图失败。 建议充分发挥线上和线下平台的优势,线上找参考、测试模型,线下作为主要出图工具。 2. 开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:电脑不符合要求的可使用在线工具,在线工具分为在线出图和云电脑两种,根据实际情况选择。 配台电脑:不建议一开始就配主机,玩几个月后还有兴趣再考虑,主机硬盘要大,显卡在预算内买最好。 3. 具体步骤(以把大模型接入小米音箱为例): 第四步:填写 API 服务,如智普、硅基等,其他模型的 API 端口参考官方文档。 第五步:语音服务,可参考官方说明,若有问题可自行尝试并反馈。 第六步:启动服务,在最上方可导出编辑内容为 json 格式,每次调整设置都需重置后重新启动,建议回答完毕后增加结束提示语以提高连续对话稳定性。 希望以上内容对您有所帮助。
2025-03-25
国内ai变成应用
国内 AI 应用发展迅速,在多个领域取得了突破: 早期应用:主要基于 NLP 技术,如聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但这些技术突破大多限于特定领域,模型应用范围相对狭窄。 新发展路线:OpenAI ChatGPT 等大型语言模型展示了新方向,通过大规模模型预训练,涌现出多功能于一体的智能应用。 编程工具:字节的 Trae 是很厉害的 AI 编程工具,国内版已上线,支持多款模型。目前处于公测阶段免费,能让不懂技术的人开发简单应用程序,未来超级产品经理或成为现实。 图像类产品: 可灵:由快手团队开发,用于生成高质量图像和视频,图像质量高,最初采用内测邀请制,现开放使用,价格相对较高,有不同收费选项。 通义万相:作为国产 AI 工具,在中文理解和处理方面出色,可选择多种艺术和图像风格,生成图像质量高、操作界面简洁直观、用户友好度高,可与阿里其他产品和服务无缝整合,目前免费,但存在一些局限性,如某些类型图像无法生成、处理非中文或国际化内容可能不够出色等。
2025-03-25
如何训练AI智能体
以下是关于训练 AI 智能体的一些信息: 1. 可以将一些创新的 prompt 融入工作流中,以更高效地训练智能体。这种方法不仅能改进现有的大语言模型,还能探索新的应用领域,实现低成本、高效能和模型效益最大化,突破单纯依赖算法的方式。 2. 采用流式训练方式提升训练速度和质量,例如将孔明灯换成泡泡,基于 Transformer 模型进行流匹配,这种方式优于扩大模型。 3. 利用多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN。 4. 了解 AI 工程平台,如 define 等,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。以 coach 平台为例,新版本有很多模板,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用 APP,有新手教程和文档,可创建智能体,通过工作流节点调用和 prompt 构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。 5. 了解一些为大模型提供数据、企业模型和算力服务的平台,如魔搭社区等,有按任务划分的模型库、数据集和在线应用供体验。
2025-03-25
mermaid编辑工具
Mermaid 是一款用于创建各种图表的工具,它支持多种类型的图表,如思维导图、时序图、UML 图等。以下是关于 Mermaid 编辑工具的一些信息: 可以使用 Mermaid 语法创建简单的思维导图,例如:GRAPH CODE 判断 大语言模型 自然语言处理 机器学习 深度学习 执行 文本分析 情感分析 算法优化 神经网络 结束。 可用于将代码转化为图表,如在“code to diagram”的搜索结果中,Mermaid 不仅支持十几种图像,还提供了在线编辑器,生成器的网址为:https://mermaid.live/ 。 可以通过 ChatGPT 结合自然语法生成 Mermaid 图形语法,生成流程包括确定制作目标、通过自然语言描述逻辑、在线校验测试是否成功。例如,要求 ChatGPT 基于给定内容生成高速公路上车辆切入场景的时序图。
2025-03-25
怎么零基础学习ai
以下是零基础学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是零基础还是中学生,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-03-25
AI编程
以下是关于 AI 编程的相关内容: Trae 国内版 Trae 是字节跳动旗下的 AI 原生编程工具,类似 Cursor、Windsurf 等 IDE 工具,可让用户通过自然语言编写出网页、软件。它具有以下特性: 1. 对国内用户友好,有中国官网、中文界面、国内模型,稳定且快速。 2. 使用完全免费,无需折腾会员,下载后可直接使用,支持豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 3. 内置预览插件,写完代码一键运行,所见即所得。 新手入门 AI 编程的建议 1. 打通学习与反馈循环,从验证环境、建立信心、理解基本概念开始,实现“理解→实践→问题解决→加深理解”的循环。 2. 使用流行语言和框架(如 React、Next.js、TailwindCSS)。 3. 先运行再优化,小步迭代,一次解决一个小功能。 4. 借助 AI 生成代码后请求注释或解释,帮助理解代码。 5. 遇到问题时采取复现、精确描述、回滚三步走。 用好 AI 编程工具(如 Cursor)的关键技能 1. 准确描述需求,清晰表达目标和问题。 2. 具备架构能力,将复杂系统拆解为松耦合的模块,便于 AI 高效处理。 3. 拥有专业编程能力,能够判断 AI 生成代码的优劣。 4. 具备调试能力,快速定位问题并解决,可独立或借助 AI 完成调试。 Trae 国内版的网址为:Trae.com.cn ,或点击文末【阅读原文】直接访问。
2025-03-25
请推荐1~2款适合初学者的AI编程助手和编程学习工具
以下是 1 2 款适合初学者的 AI 编程助手和编程学习工具: v0:适合初学者,能为编程提供一定的辅助和支持。 Bolt:对新手友好,有助于初学者在编程过程中获得帮助和指导。 此外,还有一些其他常见的适合初学者的工具,如 GitHub Copilot,它支持多种语言和 IDE,能为程序员快速提供代码建议;通义灵码,提供行级/函数级实时续写、自然语言生成代码等多种能力。您可以根据自己的需求选择最适合您的工具。
2025-03-18
初学者教程
以下为您提供一些适合初学者的 AI 教程资源: Blender 相关: 新手免费入门教程:https://flowus.cn/share/bf6780f53c0a43999e6cdf4a9f48d52b Blender 插件的安装方法和汉化、包括疑难杂症解决:https://flowus.cn/share/79f8f60ac2e94d669a56572d2cda5641 Up B 站空间:https://space.bilibili.com/206992617?spm_id_from=333.1007.0.0 关于 Blender 找工作问题:https://flowus.cn/share/7000d5e84ca94f0cb493406b08c29e3f Blender 插件寻找与下载:https://flowus.cn/share/42a2af8dbaf04d1db309fe33dcb061d2 Blender 资产、贴图、等等免费网站:https://flowus.cn/share/606da95d9130451f96000fe3789e3a42 提升审美网站:https://flowus.cn/share/0f6bad6a46034b8082a27a8c69bb1caa 面向 AI 应用的同学: 微软的 AI 初学者课程:https://microsoft.github.io/AIForBeginners/ AI for every one(吴恩达教程):https://www.bilibili.com/video/BV1yL411u7q6 大语言模型原理介绍视频(李宏毅):https://www.bilibili.com/video/BV1TD4y137mP/ 谷歌生成式 AI 课程:目录:https://ywh1bkansf.feishu.cn/wiki/DTm0way7QiKyHckMXsjc00kIn6e ChatGPT 入门:目录:https://ywh1bkansf.feishu.cn/wiki/QddLw0teKi7nUCkDRIecskn3nuc 微信机器人共学教程第一天教程 COW 部署的配置环境: 刚才在这里保存的“外网面板地址”,点击打开。(有小伙伴反馈,命令输出的地址是 login 结尾的,点击打不开。那您只需要把 login 改成 http://xxx.xxx.xx.xxx:8888/tencentcloud 就可以了) 输入账号密码,即上图中的 username、password 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 首次会有个推荐安装,只安装第一个即可。其他的取消勾选。
2025-03-16
Coze 智能体 教程 初学者 3个月内的内容
以下是为初学者提供的 Coze 智能体相关教程,预计在 3 个月内可以完成学习: 1. 页面布局: 常见的左右、上下布局及嵌套方法,包括如何设置容器实现左右布局、调整大小分割等,强调外层高度设置的重要性。 溢出处理方式及内边距影响,建议初学者用固定宽高布局。 换行布局及元素分布设置,用于图片排版。 证件照应用搭建过程及布局设置,如创建应用、清理页面,设置第一个 div 容器,证件照基础界面为上下布局,分标题、示例、操作展示三块,需拖三个容器,顶部高度大概 100。 2. 证件照应用的用户界面搭建与业务逻辑构建: 用户界面搭建,包括各部分尺寸、布局、组件设置,如文本、图片、表单等。 业务逻辑搭建,创建工作流,添加图片理解、图像生成、智能换脸等插件,设置参数、提示词,并告知文档地址在社区智能体 1.3 共学里。 3. 工作流与代码(重度用户): 对于轻度用户,不需要工作流;对于重度用户,可参考官方文档:https://www.coze.cn/docs/guides/welcome 。 工作流的优势,如解决速度慢和可能出错的问题。 介绍主工作流和 AI Project 工作流,以及中间用到的 python 代码和结合工作流修改的「人设与回复逻辑」。 4. 基础通识课: 在 cos 主页有新手教程文档,可据此构建智能体。 工作流偏向节点调用,可通过 prompt 构建提示词并优化。 能调用多种插件,可添加图像流、触发器和知识库,知识库可上传多种格式内容及在线链接以沉淀知识。 Nimbus 介绍智能交互相关内容,包括有趣的智能体、插件商城、扣子案例、模型社区并答疑。 AI 编程课前准备及相关工具、账号注册说明,如注册阿里云账号、安装无影、注册 GitHub 账号等。
2025-03-12
初学者可以从哪些方面上手
对于初学者上手 AI,以下是一些建议: 1. 调度器和采样器方面:可以从 Euler 或 DDIM 开始,因为它们提供了良好的平衡点,便于快速了解生成过程。如果对生成过程中的稳定性和细节处理有严格要求,可以考虑 DPM++ SDE Karras、LCM 和 Dynamic Thresholding 这样的采样器。在需要快速生成图像的情况下,DPM fast、Euler 和 DDIM Fast 是不错的选择。如果希望生成更具创意或独特风格的图像,可以尝试 Heun、DPM++ 3M SDE Palefire 以及 Restart 采样器。对于高要求的图像生成任务,推荐使用 DPM++ 3M SDE Karras、DPM2 Exponential 和 LCM 这些经过优化的采样器。 2. 基本概念方面: 阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系,浏览入门文章。 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 选择感兴趣的模块深入学习,掌握提示词的技巧。 3. 实践方面: 理论学习之后进行实践,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 4. 体验方面: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 5. Prompt 方面: 认真写出自己的第一个 prompt,理解 GPT 的工作原理,至少先真正理解以下几个问题:GPT 说人话的能力是怎么来的、“涌现”的产生、prompt 的概念和意义、为什么现阶段我们不得不用 prompt。推荐两个课外阅读,即 B 站 UP Yjango(于建国博士)很早前发布的相关视频。 您还可以关注获取更多内容。
2025-03-11
Coze 智能体 教程 初学者
以下是为初学者提供的 Coze 智能体相关教程: 1. 可能是全网最好的 Coze 教程之一,能一次性带您入门 Coze 工作流。即使是非技术出身的爱好者也能上手跟学,一站式学会 AI Agent 从设计到落地的全流程方法论。 阅读指南:长文预警,请视情况收藏保存。 核心看点:通过实际案例逐步演示,用 Coze 工作流构建一个能够稳定按照模板要求,生成结构化内容的 AI Agent;开源 AI Agent 的设计到落地的全过程思路;10+项常用的 Coze 工作流的配置细节、常见问题与解决方法。 适合人群:任何玩过 AI 对话产品的一般用户(如果没用过,可以先找个国内大模型耍耍);希望深入学习 AI 应用开发平台(如 Coze、Dify),对 AI Agent 工作流配置感兴趣的爱好者。 注:本文不单独讲解案例所涉及 Prompt 的撰写方法。文末「拓展阅读」中,附有相关 Prompt 通用入门教程、Coze 其他使用技巧等内容,以供前置或拓展学习。 2. 90 分钟从 0 开始打造您的第一个 Coze 应用: 智能纪要: 智能章节: 页面布局的常见方式与实际操作讲解:本章节主要介绍页面布局。先讲解常见的左右、上下布局及嵌套方法,演示如何设置容器实现左右布局、调整大小分割等,强调外层高度设置的重要性。接着说明溢出处理方式及内边距影响,建议初学者用固定宽高布局。最后介绍换行布局及元素分布设置,用于图片排版。 讲解证件照应用搭建过程及布局设置:本章节介绍证件照应用搭建。会魔法的大人让大家创建应用、清理页面,先设置第一个 div 容器方便后续操作。提到要 1:1 复刻其应用,讲解证件照基础界面为上下布局,分标题、示例、操作展示三块,需拖三个容器,因排列方向问题可能只看到两个,还提到顶部高度大概 100。 证件照应用的用户界面搭建与业务逻辑构建讲解:本章节主要讲解证件照应用的搭建。先介绍用户界面搭建,包括各部分尺寸、布局、组件设置,如文本、图片、表单等;后阐述业务逻辑搭建,创建工作流,添加图片理解、图像生成、智能换脸等插件,设置参数、提示词,并进行测试,还告知文档地址在社区智能体 1.3 共学里。
2025-03-09