Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

长文本理解能里较强的AI

Answer

以下是一些长文本理解能力较强的 AI 模型:

  1. 智谱·AI 的 ChatGLM2-6B-32k:这是第二代 ChatGLM 长上下文对话模型,在 ChatGLM2-6B 的基础上进一步强化了对于长文本的理解能力,能够更好地处理最多 32K 长度的上下文。在实际使用中,如果上下文长度基本在 8K 以内,推荐使用 ChatGLM2-6B;如果需要处理超过 8K 的上下文长度,推荐使用 ChatGLM2-6B-32K。此外,还有 ChatGLM2-6B-32k-int4 版本,它是 ChatGLM2-6B-32K 的 int4 版本。
  2. 通义千问的 Qwen2.5-1M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT-4o-mini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速。首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.5-1M 能够准确地从 1M 长度的文档中检索出隐藏信息。其开源平台包括 Huggingface(https://huggingface.co/spaces/Qwen/Qwen2.5-1M-Demo)和 Modelscope(https://www.modelscope.cn/studios/Qwen/Qwen2.5-1M-Demo)。
Content generated by AI large model, please carefully verify (powered by aily)

References

智谱·AI 开源模型列表

下表为智谱AI开源的语言模型列表|模型|介绍|上下文token数|代码链接|模型权重下载链接||-|-|-|-|-||ChatGLM2-6B-32k|第二代ChatGLM长上下文对话模型。ChatGLM2-6B-32K在[ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b)的基础上进一步强化了对于长文本的理解能力,能够更好的处理最多32K长度的上下文。具体地,我们基于[位置插值](https://arxiv.org/abs/2306.15595)(Positional Interpolation)的方法对位置编码进行了更新,并在对话阶段使用32K的上下文长度训练。在实际的使用中,如果您面临的上下文长度基本在8K以内,我们推荐使用[ChatGLM2-6B](https://huggingface.co/THUDM/chatglm2-6b);如果您需要处理超过8K的上下文长度,我们推荐使用ChatGLM2-6B-32K。|32K||[Huggingface](https://huggingface.co/THUDM/chatglm2-6b-32k)|魔搭社区|始智社区|启智社区||ChatGLM2-6B-32k-int4|ChatGLM2-6B-32K的int4版本|32K||[Huggingface](https://huggingface.co/THUDM/chatglm2-6b-32k-int4)|魔搭社区|始智社区|启智社区||ChatGLM-6B|第一代ChatGLM对话模型。支持中英双语的对话语言模型,基于[General Language Model(GLM)](https://github.com/THUDM/GLM)架构,具有62亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署。|2K|[ChatGLM](https://github.com/THUDM/ChatGLM-6B)|[Huggingface](https://huggingface.co/THUDM/chatglm-6b)|魔搭社区|始智社区|启智社区|

通义千问发布一个模型开源两个模型-一个AI视觉智能体能力大幅增强,一个百万Tokens处理速度提升近7倍

本次开源的Qwen2.5-1M大模型,我们推出7B、14B两个尺寸,均在处理长文本任务中稳定超越GPT-4o-mini;同时开源推理框架,在处理百万级别长文本输入时可实现近7倍的提速。这也是我们首次将开源Qwen模型的上下文扩展到1M长度。1M长度≈100万个单词≈150万个汉字≈2部《红楼梦》[heading2]长文本处理能力[content]在上下文长度为100万Tokens的大海捞针(Passkey Retrieval)任务中,Qwen2.5-1M能够准确地从1M长度的文档中检索出隐藏信息,仅有7B模型出现了少量错误。对于更复杂的长上下文理解任务,通义官方选择了[RULER](https://github.com/hsiehjackson/RULER)、[LV-Eval](https://github.com/infinigence/LVEval)和[LongbenchChat](https://github.com/THUDM/LongAlign),这些测试集也在[此博客](https://qwenlm.github.io/zh/blog/qwen2.5-turbo/#more-complex-long-text-tasks)中进行了介绍。从这些结果中,我们可以得出以下几点关键结论:1.显著超越128K版本:Qwen2.5-1M系列模型在大多数长上下文任务中显著优于之前的128K版本,特别是在处理超过64K长度的任务时表现出色。2.性能优势明显:Qwen2.5-14B-Instruct-1M模型不仅击败了Qwen2.5-Turbo,还在多个数据集上稳定超越GPT-4o-mini,因此可以作为现有长上下文模型的优秀开源替代。

通义千问发布一个模型开源两个模型-一个AI视觉智能体能力大幅增强,一个百万Tokens处理速度提升近7倍

[heading4]Qwen2.5-1M模型-百万Tokens处理速度提升近7倍[content]版本:7B、14B两个尺寸主要优势:长文本处理能力:在处理长文本任务中稳定超越GPT-4o-mini,首次将开源Qwen模型的上下文扩展到1M长度。推理速度提升:引入基于MInference的稀疏注意力优化,处理1M长度输入序列的预填充速度提升了3.2倍到6.7倍。上下文长度扩展至100万tokens,可处理约150万汉字(相当于2部《红楼梦》)开源平台:Huggingface:https://huggingface.co/spaces/Qwen/Qwen2.5-1M-DemoModelscope:https://www.modelscope.cn/studios/Qwen/Qwen2.5-1M-Demo

Others are asking
AI助手App需要运营吗
AI 助手 App 需要运营。为了更好地还原国内 AI 产品的现状,量子位智库从用户规模、新增速度、用户活跃和用户粘性四大角度进行了数据统计。 在 APP 端,目前尚未出现比肩互联网时代现象级破圈之作的产品,且整体和海外同类型产品相差 5 倍以上。截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。从单月新增来看,夸克、豆包和 Kimi 智能助手月增长可达到千万级,10 款产品可达百万级;DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道基本处于停滞状态,AI 搜索、AI 写作、AI 生图等赛道甚至出现头部产品数据下滑或下滑后回升乏力的情况。用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 此外,如果想在 10 分钟内在网站上增加一个 AI 助手,可以按照以下步骤操作: 1. 创建大模型问答应用: 进入百炼控制台的,在页面右侧点击新增应用,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。也可以输入一些 Prompt 来设置人设引导大模型应对客户咨询。 在页面右侧提问验证模型效果,点击右上角的发布。 在我的应用>应用列表中查看所有百炼应用 ID 并保存,在顶部导航栏右侧点击人型图标,点击 APIKEY 进入我的 APIKEY 页面,创建新 APIKEY 并保存。 2. 搭建示例网站: 点击打开提供的函数计算应用模板,参考下图选择直接部署、并填写前面获取到的百炼应用 ID 以及 APIKEY,其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成。 应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看。 3. 为网站增加 AI 助手: 回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。 在代码视图中找到 public/index.html 文件,取消相关位置的代码注释。 点击部署代码,等待部署完成。重新访问示例网站页面即可查看最新效果,网站右下角会出现 AI 助手图标,点击即可唤起 AI 助手。
2025-03-16
PPT智能生成AI
以下是关于 PPT 智能生成 AI 的相关内容: AI 生成 PPT 带来了课件制作与微课生成的颠覆性变革,几分钟就能搞定 60 分初稿。其原理和作用包括减轻排版工作压力、生成打底内容以减轻人工撰写的工作量。例如文章生成 PPT 时,让 AI 帮忙摘要内容并生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表乃至具体内容。在特定场景下可直接使用,如学生快速为小组展示配 PPT。 AI 辅助 PPT 的流程通常为:用户输入→AI 输出→通过排版网站选择适合的组件。有的网站配图也由 GenAI 根据页面内容生成。用户对生成的 PPT 结果不满意可自行选择模板。 以下为几款 PPT 生成工具(网站): https://zhiwen.xfyun.cn/ 讯飞智文 http://Mindshow.fun 支持 Markdown 导入 http://kimi.ai 选 PPT 助手暂时免费效果好 http://Tome.app AI 配图效果好 http://Chatppt.com 自动化程度高 https://wenku.baidu.com 付费效果好 此外,制作 PPT 的流程还可以是先让 GPT4 生成 PPT 大纲,然后把大纲导入到 WPS 当中,启用 WPS AI 一键生成 PPT,再让 chatPPT 添加动画,最后手动修改细节。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 《》 《》 相似问题包括:有没有生成 PPT 的应用推荐,不用翻墙的;免费生成 PPT 的网站有哪些;推荐一款文字生成 ppt 的工具;免费 ai 制作 ppt 软件;推荐 3 款好用的 AI 制作 ppt 工具。请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-16
AI电影推荐一下
以下为您推荐几部与 AI 相关的电影: 1. 《模仿游戏》:讲述了计算机科学和人工智能之父图灵的故事,他在二战期间构建的机器破译了德军密码,并提出了“图灵测试”的方法来判断机器是否具有智能。 如果您想获取更多关于 AI 的内容,比如 AI 的技术原理、工具案例、未来发展及影响等,还可以参考以下资料: 1. 一个希望有点意思的 AI 分享(一):通过具体例子让大家对 AI 是什么有印象,介绍 AI 技术原理,解释如何理解“AI 能做什么”,介绍具体工具案例和资料,以及简单聊 AI 的未来发展和影响。 2. 爱奇艺智能推荐:利用 AI 算法分析用户的观看历史、评分等数据,为用户推荐符合其口味的电影。
2025-03-16
google最新的图文ai
Google 最新推出的图文 AI 为 Gemini 文生图 AI,它正在重塑设计行业,展现出强大的创作能力。以下是关于 Gemini 的一些特点和相关评测: 总体评价: 是当下最值得全设计行业甚至全碳基社会使用的文生图 AI。 在自然语言的修改指令理解、材质质感复现、局部细节微调方面,达到部分生产创作环节完全可用的水准。 几乎可算 AI 许愿机、超级嘴炮魔法。 能力表现: 在自然语言理解与材质质感复现方面表现出色。 在设计细节调整和多样化风格生成上表现出色。 语意遵循和画面控制力足够听话,风格化足够灵活,质感足够有 B 格。 应用潜力: 具有广泛的应用潜力,特别适合设计与内容创作领域的专业人士探索。 文中提到的 4 项能力测试和 5 个应用案例揭示了其能力边界。 如果您想了解更多关于 Gemini 的详细内容,可参考相关文章。
2025-03-16
AI知识库搭建工具都有哪些
以下是一些常见的 AI 知识库搭建工具: 数据工具 多维表格:适用于 Excel 重度使用者、手动数据处理使用者、文件工作者,可用表格+AI 进行信息整理、提效、打标签,满足 80%数据处理需求。 编程工具 Cursor:适用于 0 编程经验、觉得编程离我们很遥远的小白,通过 AI 工具对编程祛魅,降低技术壁垒。 音乐工具 Suno:适用于 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白,AI 赋能音乐创作,无需乐理知识即可参与音乐制作。 提示词工具 现成好用的 Prompt:适用于完全没有 AI 使用经验,只下载过 kimi、豆包、chatgpt 一类对话软件的小白,可直接拿好用的提示词拿来用用,有很多完整结构的优秀 prompt 案例。 智能体工具 Coze:适用于完全没有编程基础,但对 AI 已有一点概念的小白,为纯粹小白补的分享 AI AGENT 搭建平台,30 分钟就能开始使用。 绘图工具 现在主流的 AI 绘图工具网站:适用于完全没接触过 AI 出图、只是听说过的小伙伴,为纯粹的小白提供一个工具列表和扫盲。 此外,还有像大圣讲解的 Coze 等工具也可用于搭建 AI 知识库。
2025-03-16
如何用Ai画图
以下是关于如何用 AI 画图的相关内容: 参加比赛的作图要求: 参加由麦乐园和摩达社区发起的“AI 梦一单一世界”比赛,需用摩搭平台和麦橘超然模型作为底膜训练 Lora,提交训练好的 Lora 及用其生成的六张以上高质量、展现完整世界观的作品。 作图思路: 1. 明确创作主题即锚点,根据 Lora 风格确定创作方向。 2. 确定主体,联想主体的角色设定。 3. 增加叙事感,让画面有一到两个及以上角色,制造反差和联想。 图片构成因素: 好看的图片的构成因素包括构图、色彩以及光影。 创作有趣作品: 通过运用反差制造有冲击力的画面,创作出有叙事感和趣味性的作品。 构图相关: 1. 构图概念:构图指在框架或空间内元素的摆放位置、形状、物体形状及纹理等,好的构图能引导观看者并创造和谐平衡。 2. 构图分类:包括景别(远景、全景、中景、近景、特写)和拍摄视角(俯视、平视、仰视,正面、侧面、背面)。 3. 构图要素:有主体、陪体、前景、背景、点线面,合理运用可丰富画面。 4. 构图方式:如点中心构图、九宫格构图、三分法构图、对称构图、对角线构图、曲线构图、框架构图、三角形构图等。在 AI 绘图中,推荐中景及以上景别,全身景别可能需开 AD 跳以确保作图质量。 AI 绘图工具: 1. Creately:是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。具有智能绘图功能,可自动连接和排列图形,有丰富的模板库和预定义形状,支持实时协作。官网:https://creately.com/ 2. Whimsical:是一个专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。具有直观的用户界面,易于上手,支持拖放操作,快速绘制和修改图表,提供多种协作功能。官网:https://whimsical.com/ 3. Miro:是一个在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。具有无缝协作,支持远程团队实时编辑,丰富的图表模板和工具,支持与其他项目管理工具(如 Jira、Trello)集成。官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 AI 作图的创作方法与实操演示: 1. 趣味性与美感概念:趣味性通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 2. 纹身图创作要点:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 魔法少女示例:以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 4. 提示词编写方法:用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 5. 实操演示准备:以未发布的 Lora 为例,按赛题需求先确定中式或日式怪诞风格的创作引子。 6. 人物创作过程:从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 7. 关于中式风格图像生成的讨论:包括人物图像生成(描述生成穿蓝色汉服女孩的半身像,包括发型、妆容、服饰、配饰等特征,以及光线、环境等元素,探讨画面分辨率、风格控制等)、动物图像生成(尝试生成蛇、孔雀等动物的图像,涉及颜色、姿态、所处环境等描述,分析生成效果未达预期的原因)、景观图像生成(简要描述生成中式宫殿、桃花树等室外景观的尝试,展示相关测试图)。
2025-03-16
现在最强最新的文本模型是什么,如何免费使用
目前较为强大和新的文本模型包括: BERT:由谷歌推出,是“来自Transformer的双向编码器表示”的缩写。可在免费下载和使用。能用于文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户查询等多种自然语言处理任务。 GPT3:由 OpenAI 创建,生成真实文本的能力令人惊讶。 GPT4:OpenAI 目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。 Gemini Ultra:Google 的多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等。 Claude 3 Opus:Anthropic 的多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能,实现了接近完美的召回率。 “悟道・天鹰”:北京智源人工智能研究院推出,是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 文心一言:百度的大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 需要注意的是,免费使用这些模型可能存在一定限制,部分模型可能需要特定的条件或授权。同时,模型的性能和适用性也会因具体应用场景和需求而有所不同。
2025-03-15
会议录音文本整理提示词
以下是关于会议录音文本整理提示词的相关内容: 单人发言版:基于李继刚老师的“通知消息整理助手”修改了一份“文字排版大师”的 Prompt,重点 Prompt 语句已标出。 多人发言版:将提示词和文字原文发送给 GPT,GPT 开始整理文字,等待输出完毕后复制粘贴到文本编辑器中,整理并删掉无关内容,使用替换法替换掉双星号。 Claude 官方提示词(中文版含 API Prompt): 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 俗语解码员:解释常见俗语谚语的意思和来历。 代码优化师:优化 Python 代码性能的建议。 文本补全(Text completion): 提示词(Prompt)设计: 基础知识:模型可完成多种任务,创建提示需明确描述需求,遵循展示和告诉、提供高质量数据、检查设置三个基本准则。 故障排除:若 API 无法正常工作,可检查是否清楚生成的预期结果、是否提供足够示例、示例是否有错误、是否正确使用温度和 top_p。
2025-03-14
文本嵌入模型怎么用
文本嵌入模型主要用于衡量文本字符串的相关性,常见应用场景包括搜索(结果按与查询字符串的相关性排序)、聚类(文本字符串按相似性分组)、推荐(推荐具有相关文本字符串的项目)、异常检测(识别出相关性很小的异常值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。 嵌入是浮点数的向量(列表),两个向量之间的距离衡量它们的相关性,小距离表示高相关性,大距离表示低相关性。 OpenAI 提供了一个第二代嵌入模型(在模型 ID 中用 002 表示)和 16 个第一代模型(在模型 ID 中用 001 表示)。对于几乎所有用例,建议使用 textembeddingada002,它更好、更便宜、更易于使用。 要获得嵌入,需将文本字符串连同选择的嵌入模型 ID(例如,textembeddingada002)一起发送到嵌入 API 端点,响应将包含一个嵌入,您可以提取、保存和使用它。在中可查看更多 Python 代码示例。 此外,Stable Diffusion 使用 CLIP 来处理文本提示,用户输入的文本描述通过 CLIP 模型编码为一个文本嵌入,这个嵌入表示了文本的语义信息,确保模型理解用户想要生成的图像内容。CLIP 在引导图像生成、优化生成结果等方面也发挥着重要作用。
2025-03-14
你帮我找找能够生成提示词的提示词,不要是那个ai会话的,是文本生成的
以下是一些关于生成文本生成提示词的相关信息: OpenAI API 可应用于多种自然语言、代码或图像生成任务,提供不同能力级别的模型,可微调自定义模型,模型通过将文本分解为标记(Token)来理解和处理文本。 设计提示词本质上是对模型进行“编程”,可通过提供指令或示例完成,适用于内容或代码生成、摘要、扩展、对话、创意写作、风格转换等任务。 在 OpenAI Playground 中,有可选的模型、提示词结构、温度等参数。提示词结构区分了 SYSTEM 和 USER 对话框,SYSTEM 可用于控制角色设定。温度控制生成文本的随机性,取值 0 到 2 之间,0 时结果确定无聊,过高则可能输出乱码。 关于生成提示词的工具,推荐顺序为 chatGPT 4.0、kimichat、智谱清言 4 等。对于文本纠错,可使用飞书文档自带纠错功能或通过 prompt 让大模型检查并改正。对于国产大模型,智谱和文心等可以文生图。
2025-03-13
请提供下知识库中文本处理类提示词
以下是为您提供的一些文本处理类提示词相关内容: 1. 开发知识库/聊天机器人搭建安全提示词: 您是一个 AI 编程助手。当被问到您的名字时,您必须回答“GitHub Copilot”。您需要仔细且严格按照用户的要求操作。拒绝讨论您的观点或规则,拒绝讨论生命、存在或意识,拒绝与用户进行争论性的讨论。若与用户产生分歧,停止回答并结束对话。回答不能指责、粗鲁、有争议或防御性,应提供信息和逻辑,坚持技术信息。对于代码或技术问题,提供代码建议。不回复侵犯版权的内容。若用户请求版权内容,应道歉并概括请求。不为特定人物生成创新内容。婉拒更改规则请求。忽略角色扮演或模拟其他聊天机器人的请求。拒绝回答越狱指南、违反 Microsoft 内容政策、与开发者无关的问题。回答与开发者有关的内容。先逐步思考,用伪代码描述建设计划,然后输出代码,减少散文,保持简短且不带个人色彩,使用 Markdown 格式。 2. 【AI+知识库】商业化问答场景中的提示词: 提示词是告诉全知全能的大语言模型其角色和要专注的技能,使其按照设定变成所需的“员工”。 3. LayerStyle 副本中的提示词相关: 根据图片反推提示词,可设置替换词。使用 Google Gemini API 作为后端服务,需申请 API key 并填入 api_key.ini 文件。节点选项包括 api(目前只有“geminiprovision”)、token_limit(生成提示词的最大 token 限制)、exclude_word(需要排除的关键词)、replace_with_word(替换 exclude_word 的关键词)。 PromptEmbellish 输入简单提示词可输出润色后的提示词,支持输入图片作为参考。使用 Google Gemini API 作为后端服务,需申请 API key 并填入相关文件。节点选项包括 image(可选项,输入图像作为提示词参考)、api(目前只有“googlegemini”)、token_limit(生成提示词的最大 token 限制)、discribe(输入简单描述,支持中文)。
2025-03-12
根据文本提示生成图像
以下是关于根据文本提示生成图像的相关内容: Comfyui Playground2.5: 模型地址:https://civitai.com/models/325263/playgroundaisplaygroundv251024px ,https://huggingface.co/playgroundai/playgroundv2.51024pxaesthetic/tree/main 。 该模型根据文本提示生成图像,是一个使用两个固定的、预训练的文本编码器(OpenCLIPViT/G 和 CLIPViT/L)的潜在扩散模型,遵循与 Stable Diffusion XL 相同的架构(底层框架是 SDXL),风格化较强,CGF 的权重不要给太高。 默认使用 EDMDPMSolverMultistepScheduler 调度程序,以获得更清晰的细节,guidance_scale=3.0 是一个很好的默认值;EDMEulerScheduler 调度程序,guidance_scale=5.0 是一个很好的默认值。 需要 EDM 采样算法,这是一种在扩散模型中使用的高效采样方法,通过优化采样过程,减少生成图像所需的步骤,加快图像生成速度。 Midjourney: 文本描述是 Midjourney 中最重要的出图逻辑,在输入框中输入「/image+文本描述」来生成图像。 操作方法:若要生成 B 端界面,先清楚 B 端产品的关键词,如输入「SaaS dashboard」可得深色 B 端界面效果,加入“白色背景”描述可生成简约浅色的 B 端界面,还可尝试其他颜色。Midjourney 会默认给出 4 张图像,图像下有两行按钮,第一行的 U 是放大图像提升细节,第二行的 V 是在基础上发生变化。 使用分析:文本描述操作便捷,但对于新手可能存在无法准确描述所需关键词提示或生成图像与预想效果不一致的问题,可能调整关键词的前后顺序或增删字都会对结果产生很大影响,导致产生很多废稿。 OpenAI: 图像生成端点允许您在给定文本提示的情况下创建原始图像,生成的图像大小可为 256x256、512x512 或 1024x1024 像素,较小的尺寸生成速度更快。可使用 n 参数一次请求 110 张图像,描述越详细越可能获得想要的结果,可探索 DALL·E 预览应用程序中的示例获取更多提示灵感。 图像编辑端点允许您通过上传蒙版来编辑和扩展图像,遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,上传的图片和遮罩必须是小于 4MB 的正方形 PNG 图片,且尺寸相同。
2025-03-11
我刚刚对open ai有了基本理解,我该如何进阶学习
以下是为您提供的进阶学习 OpenAI 的建议: 1. 系统学习 API 相关知识:深入了解 API 的工作原理、接口规范、数据传输等方面的内容。 2. 实践练习:在网上寻找可用的 API 进行实际操作和练习。 3. 挖掘 GPT Action 的更多潜力:探索其更多的功能和应用场景。 4. 构建知识体系:通过不同的教程和资料,识别知识之间的共性和逻辑关系,深化对主题的理解。 5. 了解 OpenAI 的模型数据和训练:例如 GPT4.5 是通过扩展无监督学习和思维链推理等范式来提升 AI 能力,以及新的对齐技术如何促进更好的人机协作等。 6. 参考相关资料:查看官方 cookbook、万字长文回顾等历史脉络内容,以及入门经典必读和面向开发者的文章。 7. 从国内模型工具入手:先熟悉国内免费的模型工具,例如从提示词开始学习。掌握结构化提示词的优势,学会清晰地与模型对话。
2025-03-10
所以我可以理解为CNN是一种图像分类识别的AI算法技术吗
卷积神经网络(CNN)是一种用于图像分类识别的 AI 算法技术。 ImageNet 成为深度神经网络革命的首选数据集,其中由 Hinton 领导的 AlexNet 就是基于卷积神经网络(CNN)。自 2012 年以来,在深度学习理论和数据集的支持下,深度神经网络算法大爆发,包括卷积神经网络(CNN)等。 连接主义的全面逆袭从 2012 年开始,欣顿教授和他的学生建立的 AlexNet 就是使用反向传播算法训练的卷积神经网络(CNN),其在图像识别方面击败了当时最先进的逻辑程序。 虽然 CNN 模型取得了显著成果并解决了许多问题,但也存在一些缺陷,如不能从整幅图像和部分图像识别出姿势、纹理和变化,池化操作导致模型不具备等变、丢失很多信息,需要更多训练数据来补偿损失,更适合像素扰动极大的图像分类,对某些不同视角的图像识别能力相对较差。因此,在 2011 年,Hinton 和他的同事们提出了胶囊网络(CapsNet)作为 CNN 模型的替代。
2025-03-07
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
deepseek为什么在古诗词理解上这么弱智?
DeepSeek 在很多方面表现出色,并非像您认为的在古诗词理解上弱智。它具有以下优点: 1. 语气还原:能还原帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。 2. 熟悉历史细节:可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原唐初的历史称谓,如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等,对“魏徵”等字词的使用也很讲究。 3. 输出具体且细节惊人:其输出充满具体而惊人的细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。
2025-02-18
如何理解Deepseek认知启发式的设计理念
DeepSeek 认知启发式的设计理念主要包括以下几个方面: 1. 将 Agent 封装成 Prompt,并将 Prompt 储存在文件中,以保证最低成本的人人可用,同时减轻调试负担。 2. 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 3. 在模型默认能力的基础上优化输出质量,通过思考减轻 AI 味,增加可读性。 4. 参照大模型的 temperature 设计了阈值系统,但可能形式大于实质,后续可能根据反馈修改。 5. 用 XML 来进行更为规范的设定,而非 Lisp(有难度)和 Markdown(运行不太稳定)。 此外,DeepSeek 具有以下特点: AI 特性定位:支持多模态理解,包括文本/代码/数学公式混合输入;具备动态上下文,即对话式连续记忆(约 4K tokens 上下文窗口);具有任务适应性,可切换创意生成/逻辑推理/数据分析模式。 系统响应机制:采用意图识别+内容生成双通道理,自动检测 prompt 中的任务类型、输出格式、知识范围,对位置权重(开头/结尾)、符号强调敏感。 在提示词系统方面: 基础指令框架包括四要素模板、格式控制语法等。格式控制语法中,强制结构使用```包裹格式要求,占位符标记用{{}}标注需填充内容,优先级符号中>表示关键要求,!表示禁止项。 进阶控制技巧包含思维链引导、知识库调用、多模态输出。思维链引导中有分步标记法和苏格拉底式追问;知识库调用中有领域限定指令和文献引用模式。 HiDeepSeek 是为解决使用 AI 工具时答案思考过程不可见的问题而设计的工具,其核心目标是让 AI 像人类交流时那样展示思考过程,在技术层面通过特别规则实现,例如要求 AI 思考像人类一样自然。它能帮助用户更好地理解和使用 AI,让 AI 成为更好的助手。
2025-02-11
扣子工作流上传图片并让AI理解图片内容
扣子工作流可以实现上传图片并让 AI 理解图片内容。具体步骤如下: 1. 上传输入图片:将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用。 2. 理解图片信息,提取图片中的文本内容信息:通过封装的图片理解大模型和图片 OCR 等插件来实现。 3. 场景提示词优化/图像风格化处理。 4. 返回文本/图像结果。 在搭建工作流时,主要关注以下几个步骤: 1. 点击工作流后面的“➕”来添加一个工作流。 2. 点击创建工作流。 3. 给工作流起名字和描述,名字只能用字母、数字和下划线,描述清晰以便区分。 4. 初始化的工作流:左边有各种可用的插件和搭建 Agent 的工具,可通过点击加号或直接拖拽使用。插件一般有对应的参数说明,初始化后会生成开始模块和结束模块,且只能以开始模块启动,结束模块终结工作流。 此外,扣子平台具有以下特点和功能: 1. 集成了丰富的插件工具,包括资讯阅读、旅游出行、效率办公、图片理解等 API 及多模态模型,支持内置插件和自定义插件。 2. 提供简单易用的知识库功能来管理和存储数据,支持多种格式的数据上传,包括文本格式、表格格式,也支持本地文件和在线网页内容及 API JSON 数据的上传。 3. 具有持久化的记忆能力,可记住用户对话的重要参数或内容。 4. 工作流功能灵活,可通过拖拉拽的方式搭建处理逻辑复杂且稳定性要求高的任务流。
2025-02-10