Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何建立个人领域的个人知识库

Answer

以下是建立个人领域个人知识库的方法:

  1. 使用 embeddings:
    • 将文本转换成向量(一串数字),可理解为索引,能节省空间。
    • 把大文本拆分成若干小文本块(chunk),通过 embeddings API 将其转换成 embeddings 向量,与文本块语义相关。
    • 在向量储存库保存 embeddings 向量和文本块,作为问答的知识库。
    • 当用户提问时,将问题转换成向量,与向量储存库的向量比对,提取关联度高的文本块,与问题组合成新的 prompt 发送给 GPT API。
    • 例如,对于“此文作者是谁?”的问题,可提取关联度高的文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。”
  2. 理解 embeddings:
    • embeddings 是浮点数字的向量(列表),向量之间的距离衡量关联性,小距离表示高关联度,大距离表示低关联度。
    • 向量是用一串数字表示大小和方向的量,在计算机科学中常用列表表示。
    • 常见的计算向量距离的方法是欧几里得距离。
    • 在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。
  3. GPT 模型索引库 LlamaIndex:
    • LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。
    • 它简化了 LangChain 对文本分割和查询的接口,提供了更丰富的 Data Connector。
    • LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。

需要注意的是,GPT-3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。随着技术发展,AI 的开发和使用门槛会降低,垂直领域知识库的搭建和优化更多是业务问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

从零开始,用GPT打造个人知识库

上面将文本转换成向量(一串数字)能大大节省空间,它不是压缩,可简单理解为索引(Index)。接下来就有意思了。比如我有一个大文本,可以先把它拆分成若干个小文本块(也叫chunk),通过embeddings API将小文本块转换成embeddings向量,这个向量是跟文本块的语义相关。在一个地方(向量储存库)中保存这些embeddings向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过embeddings API转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的prompt(问题/提示词),发送给GPT API。这样一来就不用一次会话中输入所有领域知识,而是输入了关联度最高的部分知识。一图胜千言,转一张原理图。再举一个极其简单的例子,比如有一篇万字长文,拆分成Chrunks包含:文本块1:本文作者:越山。xxxx。文本块2:公众号越山集的介绍:传播效率方法,分享AI应用,陪伴彼此在成长路上,共同前行。文本块3:《反脆弱》作者塔勒布xxxx。文本块4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。...文本块n如果提问是”此文作者是谁?“。可以直观的看出上面的文本块1跟这个问题的关联度最高,文本块3次之。通过比较embeddings向量也可以得到这结论。那最后发送给GPT API的问题会类似于”此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。“这样一来,大语言大概率能回答上这个问题。

从零开始,用GPT打造个人知识库

要搭建基于GPT API的定制化知识库,涉及到给GPT输入(投喂)定制化的知识。但GPT-3.5,也就是当前免费版的ChatGPT一次交互(输入和输出)只支持最高4096个Token,约等于3000个单词或2300个汉字。这点容量对于绝大多数领域知识根本不够。为了使用GPT的语言能力来处理大量的领域知识,OpenAI提供了embedding API解决方案。参考OpenAI embedding documents。[heading2]理解embeddings[content]embeddings(直译为嵌入)是一个浮点数字的向量(列表)。两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。进一步解释:向量(列表):向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。列表是一种数据结构,它包含一组有序的元素。例如,一个二维向量可以表示为[2,3],这意味着沿着两个轴的分量分别为2和3。在这里,"list"是一种编程术语,意味着一系列有序的数据。向量之间的距离:向量之间的距离是一种度量两个向量相似性的方法。有多种方式可以计算两个向量之间的距离,最常见的是欧几里得距离。欧几里得距离计算方法是将两个向量的对应元素相减,然后取平方和,再开平方。例如,向量A=[1,2]和向量B=[4,6]之间的欧几里得距离为sqrt((4-1)^2+(6-2)^2)=5。较小距离意味着高相关性,因为向量间相似度高。在OpenAI词嵌入中,靠近向量的词语在语义上相似。例如,“猫”和“狗”距离近,它们都是宠物,与“汽车”距离远,相关性低。文档上给了创建embeddings的示例上面的命令访问embeddings API接口,将input语句,转化成下面这一串浮点数字。

从零开始,用GPT打造个人知识库

LlamaIndex是更高一层LangChain的抽象,之前叫GPT Index。之前的文章[基于GPT3.5搭建定制化知识库](http://mp.weixin.qq.com/s?__biz=MzIyNDAzMzYxNQ==&mid=2652028778&idx=1&sn=985a386f915dea0d4dc97186af7c50b6&chksm=f3f3314ac484b85ce64579538987cea764181f92a4bb953724b055f0f2b9c73c03b109cfbe27&scene=21#wechat_redirect)中的例子就是使用的LlamaIndex包。它简化了LangChain对文本分割,查询这块的接口,提供了更丰富的Data Connector。LlamaIndex只针对GPT Model做Index,而LangChain是可以对接多个LLMs,可扩展性更强。参考https://gpt-index.readthedocs.io/en/latest/[heading2]写在最后[content]最近各家大厂接连放大招,AI技术和应用突飞猛进,GPT-4接口已经支持最大32K输入,AI的开发和使用门槛肯定会越来越低,就像当年的Windows,Office。垂直领域知识库的搭建和优化可能更多的是一个业务问题,而不是一个技术问题。欢迎关注公众号”越山集“,多交流。让我们保持好奇心,不断探索,共同进步。

Others are asking
如何用AI工具做一个个人工作知识库
以下是使用 AI 工具创建个人工作知识库的方法: 1. 使用 AnythingLLM 软件: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间,上传文档并在工作空间中进行文本嵌入,选择对话模式。 AnythingLLM 提供了两种对话模式:Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案)。 完成配置后即可与大模型进行对话。 2. 基于 Coze 免费打造: 确定功能范围,编写 prompt 提示词,设定 Bot 的身份和目标。 创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间 知识库 创建知识库。知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。按照操作指引上传文档、分段设置、确认数据处理。小技巧:在内容中加上一些特殊分割符,比如“”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“”。 创建工作流,告诉 AI 机器人应该按什么流程处理信息。创建工作流路径:个人空间 工作流 创建工作流。工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布。如果任务和逻辑复杂,可以结合左边“节点”工具来实现。 私人知识库中的内容一般有两种:日常从互联网收集的优质信息和个人日常的思考以及分享。如果想基于这套知识库打造个人专属的 ChatGPT,常见的有两种技术方案:训练专有大模型和利用 RAG(检索增强生成)技术。训练专有大模型效果虽好,但存在高成本、更新难度大等缺陷,并非当下主流方案。
2025-02-04
lmstudio可以支持联网搜索和本地知识库rag吗?如何实现?
LMStudio 能否支持联网搜索和本地知识库 RAG 以及如何实现的问题如下: 实现本地知识库 RAG 需加载所需的库和模块,如用于解析 RSS 订阅源的 feedparse,用于在 Python 程序中跑大模型的 ollama(使用前需确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,通过特定函数从指定的 RSS 订阅 URL 提取内容,若需接收多个 URL 稍作改动即可。然后用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回用于后续处理或提取。 为文档内容生成向量,可使用文本向量模型 bgem3(从 hf 下载好模型假设放置在某个路径,通过函数利用 FAISS 创建高效的向量存储)。 实现 RAG 包括文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块嵌入转换成向量形式并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、Output(把问题及检索出的嵌入片提交给 LLM 生成答案)。 基于用户问题从向量数据库中检索相关段落,根据设定阈值过滤,让模型参考上下文信息回答,从而实现 RAG。 还可创建网页 UI 并进行评测,对于同样的问题和上下文,基于不同模型进行多次测试,其中 GPT4 表现最好,Mixtral 次之,Qwen7b 第三,Gemma 和 Mistral 表现一般。总结来说,本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人,结合 RSSHub 处理和提供资讯,上下文数据质量和大模型性能决定 RAG 系统性能上限,RAG 能提升答案质量和相关性,但不能完全消除大模型幻觉和信息滞后问题。
2025-02-04
飞书文档如何作为知识库输入到coze平台
要将飞书文档作为知识库输入到 Coze 平台,主要有以下步骤: 1. 在线知识库: 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 选择飞书文档,选择自定义的自定义,输入。 飞书的文档内容会以区分开来,可以点击编辑修改和删除。 点击添加 Bot,添加好可以在调试区测试效果。 2. 本地文档: 注意如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面。 画小二这个课程 80 节课程,分为了 11 个章节,不能一股脑全部放进去训练。 正确的方法是首先将 11 章的大的章节名称内容放进来,章节内详细内容按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用: 点击发布,确保在 Bot 商店中能够搜到。 此外,创建知识库并上传文本内容有以下方式: 1. 在线数据: 自动采集方式:适用于内容量大,需要批量快速导入的场景。 在文本格式页签下,选择在线数据,然后单击下一步。 单击自动采集。 单击新增 URL。在弹出的页面完成输入要上传的网站地址、选择是否需要定期同步网站内容及周期等操作。 当上传完成后单击下一步,系统会自动根据网站的内容进行内容分片。 手动采集方式:适用于需要精准采集网页上指定内容的场景。 安装扩展程序,详情请参考。 在文本格式页签下,选择在线数据,然后单击下一步。 点击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 Coze 的知识库功能不仅支持上传和存储外部知识内容,还提供了多样化的检索能力,主要包括两大核心能力:一是能够存储和管理外部数据;二是增强检索能力。Coze 支持从多种数据源,如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。上传后,系统会自动将知识内容切分成多个片段进行存储,并允许用户自定义内容分片规则。Coze 还提供了多种检索方式来对存储的内容片段进行高效检索,例如全文检索可以通过关键词快速找到相关的内容片段并召回。基于这些召回的内容片段,大模型将生成最终的回复内容。Coze 支持上传文本内容及结构化表格数据,以适应各种使用场景。
2025-02-04
构建自己的知识库
构建自己的知识库可以通过以下方式实现: 1. 利用 GPT 打造个人知识库: GPT3.5 免费版的 ChatGPT 一次交互支持的 Token 有限,对于多数领域知识容量不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 参考 OpenAI embedding documents 了解更多。 2. 本地部署大模型以及搭建个人知识库: 若要更灵活掌控知识库,可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案),配置完成后可进行测试对话。 3. 了解 RAG 技术: 利用大模型搭建知识库是 RAG 技术的应用。 在进行本地知识库搭建实操前,需对 RAG 有大概了解。 RAG 应用可抽象为 5 个过程:文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(包括将文档块嵌入转换成向量形式和将向量数据存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 文本加载器是将用户提供的文本加载到内存中以便后续处理。
2025-02-03
大模型搭建知识库的逻辑是什么
大模型搭建知识库的逻辑主要包括以下几个方面: 1. 理解 RAG 技术:利用大模型搭建知识库本质上是 RAG 技术的应用。在大模型训练数据有截止日期或不包含所需数据时,通过检索增强生成(RAG)来解决。RAG 可抽象为 5 个过程: 文档加载:从多种来源加载包括非结构化、结构化和代码等不同类型的文档。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片一起提交给大模型,生成更合理的答案。 2. 构建知识库各个流程: 从用户提出问题开始,经历用户问题的理解、路由、初步检索、重排序等环节,最终将重排序后的结果和用户的查询意图组合成上下文输入给大模型生成输出结果。需要注意重排序结果的使用限制,如设置阈值进行截断或筛选相关性分数等。 后置处理包括敏感内容检测和移除、格式化输出等。 3. 知识库的需求:大模型并非 100%准确,存在数据日期限制和无法感知公司内部私有数据等问题,知识库的出现就是为解决大模型的数据准确性问题。例如在客服系统中,公司将用户问题及答案记录在文档中以知识库形式投喂给大模型,使其能更准确回答用户自然语言询问的问题。
2025-02-03
怎么把通往AGI之路的网站加入飞书知识库当中?
要将通往 AGI 之路的网站加入飞书知识库,您可以参考以下步骤: 1. 请填写下面问卷进群,群内会分享最新 AI 信息、社区活动。 2. 加入群后,欢迎大家积极分享,我们也会吸收进知识库,因为有您的参与才让知识库更加完善。 3. 飞书群内置 AI 智能机器人,可以回复任何与 AI 相关的问题,欢迎加入。 4. 如果您对「飞书」这款效率工具感兴趣,或者您希望结交各行各业志同道合的朋友和他们交流企业/个人效率的提升,诚邀您访问「飞书官方社区——飞行社」。 5. 如需下载研究报告,我们诚邀您加入知识星球:数百份涵盖 AI 各个方面的报告,并提供内容概要。自 2023 年上半年建立以来,保持长期活跃更新。扫码右侧二维码,加入知识星球。更多合作与咨询,请访问:https://waytoagi.feishu.cn/wiki/Wj77wBWjbi0yUAkyJWdc2TKFnmd 。 此外,关于 WaytoAGI 还有以下相关信息: 我是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是一款由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。 WaytoAGI 知识库就像一位 24 小时在线的 AI 老师、一个永不嫌烦的知识管家、一个不断成长的智慧宝库。里面有 AI 工具的“傻瓜式说明书”、大神们的“踩坑经验分享”、实用的“一招制胜”秘籍等。开启宝藏的步骤:第一步,点击飞书链接(对,就是那个网址啦:)。里面的界面就像一张藏宝图,左边的导航栏是您的指南针,上面的搜索框是您的探宝雷达,中间的内容区是知识的海洋。
2025-02-01
个人如何通过AI获取收入
个人通过 AI 获取收入的方式主要有以下几种: 1. 学习 AI 技术,从事相关高薪工作,如成为数据科学家、机器学习工程师等,在金融、医疗、制造业等行业找到工作机会,获得不错的收入。但能否赚钱取决于个人的学习能力、实际应用能力、对市场和商业的理解等,需要持续学习和实践。 2. 在公司给自己贴“AI 大神”标签,提升个人影响力。 3. 在社交网络分享相关成果,扩大影响力。 4. 承接项目开发,例如通过增加画板节点,结合公司 Logo 生成一系列公司主题的产品邮票,或者承接类似需求,扩充工作流以适应更复杂的业务。 5. 对于内容创作,利用生成式 AI 进行艺术创作,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。
2025-02-05
一个人如何开发ai应用
以下是关于一个人如何开发 AI 应用的指导: 首先,进行规划 POC 和开发路径。设计 POC 的小项目,比如“我是技术小白。我想要开发的项目功能如下。这里有哪些技术点?能否为我一一列举。请尽可能细化,帮我选择合适的技术方案,并为我设计 POC 项目。每个 POC 都应该是一个独立的项目,我好先通过完成 POC 来学会相关技术。”POC 即实验性小项目,其优点是足够小,AI 能直接生成。通过研究小项目、搞明白特定技术点的工作方式,便于后续在大项目中添加功能。这一步中,AI 可能会选取不合适的技术栈、拆分粒度不够细、开发路径设计不合理、没有循序渐进。如有可能,请老师傅把关。 接下来就是真正的实践。按照项目规划,学习一个 POC,并将其应用到大项目中;再学一个 POC,再运用。当遇到错误时,复制错误信息、相关代码,扔给 AI 让其找错误并修复。若使用可以识图的 claude 或 GPT4o,截图+错误信息+代码三件套会很好用。但可能会遇到一些问题,如开发 chrome 插件时,即便强调要用 manifest v3 的版本,AI 仍可能给出 v2 的代码及错误修复方案。此时,更有效的方式是找文档(可让 GPT 提供文档链接,或问 perplexity),或去 stackoverflow 上找答案(注意回答和评论的日期),然后把文档或找到的答案提供给 AI,让其基于这些信息修复,此时它给的指引会更正确且详细。当然,这一步如有老师傅支援更好。 另外,以证件照为例的 90 分钟从 0 开始打造第一个 Coze 应用的教学中,提到了 Code AI 应用的背景、现状以及学习过程,包括创建 AI 应用,学习操作界面、业务逻辑和用户界面,重点熟悉桌面网页版的用户界面等。
2025-02-03
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23
AI智能体对个人工作能力培养方面的启示
AI 智能体对个人工作能力培养有以下启示: 1. 工作方法方面: 彻底让自己变成一个“懒人”。 能动嘴的不要动手,用嘴说出想做的事远比打字快。 能动手的尽量用 AI,用 AI 远比苦哈哈手敲快。 把手上的工作单元切割开,建设属于自己的智能体。 根据结果反馈不断调整自己的智能体。 定期审视自己的工作流程,看哪个部分可以更多地用上 AI。 2. 个人素质方面: 技术层面之外,个人能力的提升是核心,尤其是学习能力和创造能力。 学习能力是通过持续阅读和实践来吸收、消化和积累知识的能力,是构建个人知识体系的基础和个人成长的动力源泉。 为保持竞争力,要培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识,全方位、多角度学习和实践,以积累知识、提高适应能力和创新思维。 3. 技术应用方面: 迅速掌握生成式人工智能的基本概念和潜在影响,重点理解其如何革新工作方式和重塑行业格局。 深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中。 学习提示词技术,编写清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体,让其革新工作方式,多个虚拟伙伴和助手协同工作,提高工作效率和创新能力。 需要注意的是,AI 技术的出现能把大部分人的能力提升到及格线以上,人与人之间最大的差距在于认知差距。对创建 AI 智能体感兴趣的小伙伴,可前往 WaytoAGI 开源免费社区了解(里面有保姆级教程)。
2025-01-22
AI智能体对个人工作及职业规划的启示
AI 智能体对个人工作及职业规划具有多方面的启示: 在职业规划方面: 1. 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来趋势。 2. 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 3. 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化建议。 4. 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 在个人工作方面: 1. 掌握基本概念和潜在影响:对于生成式人工智能,应迅速了解其基本概念和潜在影响,无需深入技术细节,重点在于理解其对工作方式和行业格局的革新。 2. 应用现有产品和工具:深入了解市场上的人工智能产品和工具,并积极应用于实际工作,通过实践学习其优势和局限性。 3. 学习提示词技术:掌握提示词技术,编写清晰、精确的指令,引导 AI 工具产生所需结果,提升工作效率和产出质量。 4. 探索构建智能体:构建智能体,赋予其特定角色和任务,协同工作,提高工作效率和创新能力。 总之,AI 智能体为个人提供了提效的可能,如同拥有数字员工,在职业规划和工作中都能发挥重要作用。
2025-01-22
企业财经领域落地AI怎么落地
企业财经领域落地 AI 可以考虑以下几个方面: 1. 采用创新和迭代的监管方法: 考虑如何利用可信 AI 的工具,如保证技术和技术标准,来支持监管合规。 积极主动地与政府对框架的监测和评估进行合作。 2. 关注行业发展趋势: 例如,生成式 AI 在金融服务业有巨大潜力,能催生个性化客户解决方案、更高效的运营、更好的合规和风险管理,以及更动态的预测和报告。 3. 应对挑战: 使用金融数据训练大型语言模型(LLMs):新进入者可先使用公开金融数据微调模型,现有参与者可利用专有数据,但现有金融服务公司可能过于保守,这给新进入者带来竞争优势。 确保模型输出准确性:金融问题答案影响重大,新的 AI 模型需尽可能准确,初期人类常作为最终验证环节。 同时,随着技术的发展,如大型语言模型的进步,为企业财经领域带来了更多的机遇,但也需要注意当前生成式 AI 输出的局限性,特别是在需要判断或精确答案的领域,不能完全依赖其准确性,至少需要人工审查。随着模型的改进、额外训练数据的加入和与数学模块的整合,其应用将有新的可能。
2025-01-27
我是一个AI小白,想系统学习AI,实现的目标是成为AI领域小能手,如果能用于变现则更好,我需要从什么开始学习,周期大概是多少?适合做哪些变现的项目呢
对于您这样的 AI 小白,想要系统学习 AI 并实现成为领域小能手甚至变现的目标,以下是一些建议: 1. 学习模式:可以采用输入→模仿→自发创造的模式。先广泛输入知识,然后进行模仿,最后尝试自发创造。 2. 学习内容:去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。但要注意,一些旧的学习材料可能已经不适用。 3. 时间安排:学习时间不必每天依次进行,可以在有空的时候学习。 4. 学习状态:保持良好的学习状态,有意愿和动力去学。 5. 费用方面:学习资源大多是免费开源的。 新手学习 AI 可以这样做: 1. 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,浏览入门文章了解其历史、应用和发展趋势。 2. 开始学习之旅:在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台按自己节奏学习并获取证书。 3. 选择感兴趣模块深入:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 4. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品,在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 学习周期因人而异,取决于您的学习时间投入、学习效率和理解能力等因素。 关于变现项目,比如可以尝试用 GPT 和 SD 制作图文故事绘本、小说推文等,但要注意项目可能存在的不确定性。
2025-01-23
AI在土木工程领域的应用
AI 在土木工程领域有以下应用: 1. 绘图方面:存在一些 AI 工具和插件可以辅助或自动生成 CAD 图,例如 CADtools 12(Adobe Illustrator 插件,添加 92 个绘图和编辑工具)、Autodesk Fusion 360(集成 AI 功能的云端 3D CAD/CAM 软件)、nTopology(基于 AI 的设计软件,帮助创建复杂 CAD 模型)、ParaMatters CogniCAD(基于 AI 的 CAD 软件,根据输入自动生成 3D 模型),一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等也提供基于 AI 的生成设计工具。但使用这些工具通常需要一定的 CAD 知识和技能,初学者建议先学习基本建模技巧。 2. 交通方面:可用于交通管理,优化交通信号灯和交通流量,缓解交通拥堵。 3. 物流配送方面:能够优化物流路线和配送计划,降低运输成本。 4. 教育方面:用于个性化学习,为学生提供定制化学习体验。 5. 农业方面:分析农田数据,提高农作物产量和质量。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
ai快速发展在教育领域的应用
AI 在教育领域的应用十分广泛,主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来冲击,教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等问题成为 AI 教育创新面临的重要挑战。
2025-01-22
ai在教育领域的应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也带来了一些挑战,如教育体系内部的惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2025-01-21
推荐几张ai领域图片
以下为您推荐几张 AI 领域的图片: 1. 节目单: 图片主题:风景,祖国河山 描述:AI 还原的中国自然景观,一些前所未有的角度,带来视觉震撼。 图片主题:AI 与画手的对话 描述:展示 AI 作为艺术创作工具,表明 AI 不是只会抄袭,而是画手的好工具。 图片主题:搞笑图/扩图轮播 描述:全网搞笑图片的二创。 图片主题:诗与远方 描述:诗词与 AI 结合的视觉艺术,呈现唯美画面。 图片主题:AI 红包 描述:直播制作红包封面并分发,炒热气氛。 2. 摊位信息: 摊位主题:乐易科学院 描述:通过 AI 技术,结合量子、暗物质、天体运行规律等能量形式,从科学、物理学、天文学、心理学等方面讲解国学和传统文化,可进行批八字、调风水、性格色彩分析。 摊位主题:AIGC 策划程序美术(3AI 简称 3A 游戏)应用独立游戏开发 摊位主题:AI 人像摄影绘画 摊位主题:B2B AI 营销与 AI 落地项目快速落地 描述:涵盖 AI 训练 to b 出应用、智能体 agent、文生图生视频等,以及美国独立站搭建、Google seo 与 AI 结合等,展示相关技术尝试和工具。 3. 他山之石|如何防止 AI 取代人类思考一切: 原文主要探讨了手写笔记和手绘对于学习和思考的重要性,认为在学习新技能时应先依靠人类自身,不应过早使用 AI,还提到了与朋友 Trevor Muir 关于此问题的交流。
2025-01-21
我想建立一个知识库,有什么工具可以使用吗
以下是一些可用于建立知识库的工具及相关步骤: 使用 Dify 构建知识库的步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 使用扣子创建并上传文本内容到知识库的方式: 1. 在线数据: 自动采集方式:适用于内容量大,需要批量快速导入的场景。 在文本格式页签下,选择在线数据,然后单击下一步。 单击自动采集。 单击新增 URL。在弹出的页面完成以下操作: 输入要上传的网站地址。 选择是否需要定期同步网站内容,如果需要选择内容同步周期。 单击确认。 当上传完成后单击下一步。系统会自动根据网站的内容进行内容分片。 手动采集:适用于需要精准采集网页上指定内容的场景 安装扩展程序,详情请参考。 在文本格式页签下,选择在线数据,然后单击下一步。 点击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 使用 Coze 智能体创建知识库: 1. 手动清洗数据: 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。知识库的飞书在线文档,其中每个问题和答案以分割。选择飞书文档、自定义的自定义,输入,然后可编辑修改和删除。点击添加 Bot,添加好可以在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。将海报的内容训练的知识库里面。画小二这个课程 80 节课程,分为了 11 个章节,不能一股脑全部放进去训练。正确的方法是首先将 11 章的大的章节名称内容放进来,章节内详细内容依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。
2025-01-13
现在智算非常火热,大家都在建立智算中心,提供大量的算力,请问一下,这些算力,都是哪些行业,哪些企业在消耗这些算力?
目前消耗大量算力的行业和企业主要包括以下方面: 1. 科技巨头:如 Google 拥有大量的 GPU 和 TPU 算力,用于复杂的推理任务和模型训练。 2. 云计算公司:例如 Amazon 和 Microsoft,其 AI 云计算收入主要来自模型托管。 3. 从事 AI 研发的公司:像 xAI 计划用十万块 H100 连成巨大集群,OpenAI 拉上微软打造算力中心 StarGate。 4. 特定领域的企业:如 Apple 利用自身优势发展边缘和远端混合的组合模型。 对于小公司而言,直接参与基础设施建设机会较小,但为当地企业提供 AI 训练的算力支持,并配备服务团队帮助整理知识、寻找业务场景、做垂直训练和微调等,可能存在一定机会。
2025-01-02
ai建立网站
以下是关于使用 AI 建立网站的相关信息: 如何选择合适的 AI 网站制作工具: 1. 明确目标和需求:确定您的网站用途(如个人博客、商业网站、在线商店)以及所需功能。 2. 考虑预算:部分工具提供免费计划或试用版,高级功能可能需付费订阅。 3. 注重易用性:选择符合自身技术水平的工具,确保能轻松使用和管理网站。 4. 查看自定义选项:检查工具是否提供足够的自定义功能,以满足设计和功能需求。 5. 关注支持和资源:了解是否有充足的客户支持和学习资源(如教程、社区论坛)来协助解决问题。 一些流行的 AI 驱动的网站制作工具: 1. Wix ADI 网址:https://www.wix.com/ 特点:基于用户提供的信息自动生成定制化网站;提供多个设计选项和布局,可进一步调整和自定义;集成了 SEO 工具和分析功能,有助于优化网站表现。 2. Bookmark 网址:https://www.bookmark.com/ 特点:AIDA通过询问几个简单问题快速生成网站;提供直观的拖放编辑器,方便自定义网站内容和布局;包含多种行业模板和自动化营销工具。 3. Firedrop 网址:https://firedrop.ai/ 特点:Sacha 是 Firedrop 的 AI 设计助手,能根据用户指示创建和修改网站设计;提供实时编辑和预览功能,随时查看网站效果;包含多种现代设计风格和自定义选项。 4. The Grid 网址:https://thegrid.io/ 特点:Molly 是 The Grid 的 AI 设计助手,可自动调整网站设计和布局;基于内容和用户互动进行优化,提供个性化网站设计体验;支持多种内容类型,如博客、商店和画廊等。 第一天 AI 辅助从 0 开始搭建网站: 在生成式 AI 大爆发前,IT 领域已积累大量基础设施,AI 使这些设施的使用更轻松。对于编程有抵触的人,在 AI 帮助下,全栈工程师和超级个体的实现变得简单。此次共学案例是一个写剧本的网站,通过 2 天时间探索完整搭建过程,为后续学习实践打基础。导入现有代码可打开 github 仓库 https://github.com/iaiuse/NovelListAI 并点击 fork,这样可省去复杂的代码获取步骤。
2024-12-30
工作流怎么建立
建立工作流的方式有多种,以下为您分别介绍: 1. 【拔刀刘】自动总结公众号内容,定时推送到微信的工作流搭建: 工作流全貌:双击画板可查看高清大图,结合后边具体细节反复查看。 开始节点:用户在开始节点输入 server 酱的 sendkey 和 rss 列表。其中,server 酱的 sendkey 获取方式参看文档「相关资源」部分;rss_list 没有的可以先白嫖提供的测试数据。 分割 RSS 列表:使用「文本处理」节点,处理输入的 rss 列表为一行一个,输出为数组,方便后边节点批处理。 读取 RSS 内容:在插件中找到链接读取节点,配置节点选择批处理,批处理输入参数选择「分割 rss 列表」的 output,下方输入参数中 url 选择当前节点中的 item1。 汇总 RSS 中所有文章内容:承接上一步所有文章内容,格式化输出。代码使用「代码」节点,左侧节点选择代码,输入项选择上一步中输出的 outputList,在 IDE 中编辑选择「Python」并输入相应代码。配置输出项类型选择「Array<Object>」,分别输出 title、url、author。 2. 智谱 BigModel 共学营第二期把微信变成超级 AI 助理的工作流搭建: 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 。参与课程至少需要有 token 体验资源包,获取资源包的方式有新注册用户注册即送 2000 万 Tokens、充值/购买多种模型的低价福利资源包(直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;语言资源包:免费 GLM4Flash 语言模型/ ;所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ;共学营报名赠送资源包。 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 3. 【ComfyUI】本地部署 ComfyUI 上手指南的工作流搭建: 清空所有节点,从零开始。先加载一个模型选择器的节点,右键点击空白处选择【add node】,生成节点后可选择安装好的大模型,后面还有三个连接点可指向下一个模块。 按住 clip 后面的点进行拖拽,点击【CLIPTextEncode】,得到一个提示词输入框。同理,再加一个提示词框,形成正向提示词和负向提示的架构。 为方便管理,可右键给节点添加颜色,如正向提示词为绿色,负向提示词为红色。还可以添加一个组,组里的节点可一起移动。 使用采样器给提示词内容添加噪声,从提示词节点后面再次拉出一根线,选择【KSampler】,里面有熟悉的参数:种子数、迭代步数、CFG、采样器等。 设置输出图片尺寸,从【latent image】中拉出一个节点,选择【EmptyLatentImage】,在节点里填写想要输出的尺寸和一次性生成的数量。 使用 VAE 对之前的噪声进行解码,从【LATENT】中拉出一个节点,选择【VAEDecode】,建立好之后将最开始的 VAE 节点与之相连。
2024-12-27
想建立个人知识库使用什么AI工具更好一些
以下是为您推荐的用于建立个人知识库的 AI 工具: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型、选择向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后即可进行对话测试。 2. LlamaIndex:是更高一层 LangChain 的抽象,简化了 LangChain 对文本分割、查询的接口,提供了更丰富的 Data Connector。只针对 GPT Model 做 Index,参考 https://gptindex.readthedocs.io/en/latest/ 。 3. ExoBrain 的集成软件 Maimo.ai:作为外脑的主要记忆空间,能捕获多种数字内容并随时随地访问,可挂接和导入外部记忆,能快速理解捕获内容、灵活创作笔记、生成创作建议,可与外脑知识库对话并自动做外部检索完善答案。今年十一月将开放第一个体验版,关注获取最新信息。
2024-12-24
假设我建立一个针对中小企业的Ai落地赋能服务中心,结合目前中国市场比较成熟的Ai产品、技术、服务、培训等等内容,应该怎么设计这个中心
目前中国市场上成熟的 AI 产品、技术、服务和培训内容丰富多样。要设计针对中小企业的 AI 落地赋能服务中心,以下是一些建议: 产品方面: 引入适合中小企业业务流程的自动化软件,如智能客服系统、智能办公软件等。 提供基于 AI 的数据分析工具,帮助企业进行市场预测和客户洞察。 技术方面: 配备专业的技术团队,能够为企业提供 AI 技术的集成和定制化开发服务。 关注前沿的 AI 技术,如机器学习、深度学习、自然语言处理等,并将其转化为可应用的解决方案。 服务方面: 提供一站式的服务,包括需求评估、方案设计、实施部署和后续维护。 建立快速响应机制,及时解决企业在使用 AI 过程中遇到的问题。 培训方面: 设计针对不同层次员工的培训课程,涵盖基础知识普及、操作技能提升和高级应用开发等。 采用线上线下相结合的培训方式,满足企业员工的多样化学习需求。 同时,服务中心还需要建立良好的沟通渠道,与中小企业保持密切联系,了解他们的实际需求和反馈,不断优化和完善服务内容和方式。
2024-12-19