以下是为您推荐的用于建立个人知识库的 AI 工具:
如果想要对知识库进行更加灵活的掌控,我们需要一个额外的软件:AnythingLLM。这个软件包含了所有Open WebUI的能力,并且额外支持了以下能力选择文本嵌入模型选择向量数据库[heading2]AnythingLLM安装和配置[content]安装地址:https://useanything.com/download当我们安装完成之后,会进入到其配置页面,这里面主要分为三步1.第一步:选择大模型1.第二步:选择文本嵌入模型1.第三步:选择向量数据库[heading2]构建本地知识库[content]AnythingLLM中有一个Workspace的概念,我们可以创建自己独有的Workspace跟其他的项目数据进行隔离。1.首先创建一个工作空间1.上传文档并且在工作空间中进行文本嵌入1.选择对话模式AnythingLLM提供了两种对话模式:Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案Query模式:大模型仅仅会依靠文档中的数据给出答案1.测试对话当上述配置完成之后,我们就可以跟大模型进行对话了[heading1]六、写在最后[content]我非常推崇的一句话送给大家:看十遍不如实操一遍,实操十遍不如分享一遍如果你也对AI Agent技术感兴趣,可以联系我或者加我的免费知识星球(备注AGI知识库)
LlamaIndex是更高一层LangChain的抽象,之前叫GPT Index。之前的文章[基于GPT3.5搭建定制化知识库](http://mp.weixin.qq.com/s?__biz=MzIyNDAzMzYxNQ==&mid=2652028778&idx=1&sn=985a386f915dea0d4dc97186af7c50b6&chksm=f3f3314ac484b85ce64579538987cea764181f92a4bb953724b055f0f2b9c73c03b109cfbe27&scene=21#wechat_redirect)中的例子就是使用的LlamaIndex包。它简化了LangChain对文本分割,查询这块的接口,提供了更丰富的Data Connector。LlamaIndex只针对GPT Model做Index,而LangChain是可以对接多个LLMs,可扩展性更强。参考https://gpt-index.readthedocs.io/en/latest/[heading2]写在最后[content]最近各家大厂接连放大招,AI技术和应用突飞猛进,GPT-4接口已经支持最大32K输入,AI的开发和使用门槛肯定会越来越低,就像当年的Windows,Office。垂直领域知识库的搭建和优化可能更多的是一个业务问题,而不是一个技术问题。欢迎关注公众号”越山集“,多交流。让我们保持好奇心,不断探索,共同进步。
人类的需求是多样性的,永远不会有一种服务能满足所有人的不同,构建外脑的方案也是如此。科技巨头和AI先锋都希望占领最通用的市场,满足绝大多数人的需求,但一款流畅的能够服务Pro User的外脑工具,也显得十分必要。让专业人士的效率更高,也是一种在巨头垄断市场下的生成手段。我们综合这篇文章提到的所有的概念、方法论还有工作流,这样一款工具的核心特点是什么?能帮助大家解决那些现在效率低下,需要很多工具组合才能解决的问题?作为外脑的主要记忆空间,能够帮助捕获所有的数字内容,网页、视频、播客、PDF以及各种复杂的数据格式,而且能够随时随地访问;可以挂接和导入外部记忆,例如Google Drive、Notion以及Read It Later工具;能帮助快速理解捕获的内容,我们直接在内部问答提取需要的知识,无需使用外部的智能对话服务,这样能极大提高效率;可以灵活在里面创作笔记,也能够根据以前的笔记和捕获的信息,来生成创作建议,这是非常重要的想法连接器;可以和自己的外脑知识库对话,代替简单的搜索,因为语言模型强化了搜索,我们能获得更多生成的准确信息,还能自动做外部检索来完善答案;这款集成软件的目标是让信息无需组织,能够自己思考,帮助我们提升生物大脑的记忆和智能。今年成立的[Hallid.ai](https://hallid.ai/?ref=indigox.me)Lab就正在开发一款这样的工具Maimo.ai,希望我们小小的团队能够逐步实现自己写下的这些需求,第一个体验版会在今年十一月开放,关注[@hallidaiHQ](https://twitter.com/HallidaiHQ?ref=indigox.me)获取最新信息,欢迎届时体验。配图10:Maimo ExoBrain Preview