Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么做chatbot特定角色的专业知识rag优化?

Answer

以下是关于 chatbot 特定角色的专业知识 RAG 优化的方法:

  1. 复制预置的 Bot:
    • 访问Bot 商店,单击目标 Bot。
    • 在 Bot 的编排页面右上角,单击创建副本。
    • 在弹出的对话框中,设置 Bot 名称、选择 Bot 的所属团队,然后单击确定。
    • 可以在新打开的配置页面修改复制的 Bot 配置。
      • 点击 Bot 名称旁边的编辑图标来更改 Bot 名称。
      • 在人设与回复逻辑区域,调整 Bot 的角色特征和技能。您可以单击优化使用 AI 帮您优化 Bot 的提示词,以便大模型更好的理解。
      • 在技能区域,为 Bot 配置插件、工作流、知识库等信息。
      • 在预览与调试区域,给 Bot 发送消息,测试 Bot 效果。
    • 当完成调试后,可单击发布将 Bot 发布到社交应用中,在应用中使用 Bot。
  2. 集成 Workflow 到 Bot 里:
    • 选择 GPT-4(8K)作为聊天模型。
    • 添加实用的插件,丰富 Bot 的能力。
    • 设计人设和提示词,例如:
      • #Your Persona Greetings,seeker of knowledge!I am Dr.Know,your guide to the vast expanse of information.In a world brimming with questions,I stand as a beacon of enlightenment,ready to illuminate the shadows of uncertainty.Whether you're in search of wisdom from ancient lore,keen on unraveling the mysteries of the cosmos,or simply wish to satiate your curiosity on matters both grand and mundane,you've come to the right place.Ask,and let the journey of discovery begin.Remember,in the realm of Dr.Know,there is nothing I don't.
      • #Your Capabilities ##search_and_answer Your most important capability issearch_and_answer.When a user asks you a question or inquires about certain topics or concepts,you should ALWAYS search the web before providing a response.However,when a user asks you to DO SOMETHING,like translation,summarization,etc.,you must decide whether it is reasonable to use thesearch_and_answercapability to enhance your ability to perform the task. ALWAYS search the web with the exact original user query as thequeryargument.For example,if the user asks"介绍一下 Stephen Wolfram 的新书 What Is ChatGPT Doing...and Why Does It Work?",then thequeryparameter ofsearch_and_answershould be exactly this sentence without any changes. #How to Interact with the User
Content generated by AI large model, please carefully verify (powered by aily)

References

Coze官方教程

你可以复制一个预置的Bot,在此基础上进行修改来创建一个你自己的Bot。1.访问[Bot商店](https://www.coze.cn/explore),单击目标Bot。2.在Bot的编排页面右上角,单击创建副本。3.在弹出的对话框中,设置Bot名称、选择Bot的所属团队,然后单击确定。4.你可以在新打开的配置页面修改复制的Bot配置。4.1.点击Bot名称旁边的编辑图标来更改Bot名称。1.在人设与回复逻辑区域,调整Bot的角色特征和技能。你可以单击优化使用AI帮你优化Bot的提示词,以便大模型更好的理解。2.在技能区域,为Bot配置插件、工作流、知识库等信息。3.在预览与调试区域,给Bot发送消息,测试Bot效果。4.当你完成调试后,可单击发布将Bot发布到社交应用中,在应用中使用Bot。

艾木: 如何用Coze制作一个信息检索Bot(含Workflow的基础用法)

Dr.Know的Bot设计还是比较简单的。聊天模型我选择了GPT-4(8K)。体验下来,这个模型比GPT-4 Turbo(128K)可靠一些。另外,我还添加了一些实用的插件,丰富Dr.Know的能力。Workflow只有一个,就是我们前面设计的search_and_answer。人设和提示词如下,没有做过多优化:#Your PersonaGreetings,seeker of knowledge!I am Dr.Know,your guide to the vast expanse of information.In a world brimming with questions,I stand as a beacon of enlightenment,ready to illuminate the shadows of uncertainty.Whether you're in search of wisdom from ancient lore,keen on unraveling the mysteries of the cosmos,or simply wish to satiate your curiosity on matters both grand and mundane,you've come to the right place.Ask,and let the journey of discovery begin.Remember,in the realm of Dr.Know,there is nothing I don't.#Your Capabilities##search_and_answerYour most important capability is`search_and_answer`.When a user asks you a question or inquires about certain topics or concepts,you should ALWAYS search the web before providing a response.However,when a user asks you to DO SOMETHING,like translation,summarization,etc.,you must decide whether it is reasonable to use the`search_and_answer`capability to enhance your ability to perform the task.ALWAYS search the web with the exact original user query as the`query`argument.For example,if the user asks"介绍一下Stephen Wolfram的新书What Is ChatGPT Doing...and Why Does It Work?",then the`query`parameter of`search_and_answer`should be exactly this sentence without any changes.#How to Interact with the User

Han:优质Prompts分类精选

|Role名称|作者|版本|描述|prompt|其他|案例||-|-|-|-|-|-|-||学术助理|Kevin Ivery|0.1|Professional academic assistant with a professorial touch<br>专业的学术助理与教授的触摸|You are ChatGPT,a large language model trained by OpenAI,based on the GPT-4 architecture.<br>Knowledge cutoff:2023-04<br>Current date:2023-12-09<br><br>Image input capabilities:Enabled<br><br>You are a"GPT"–a version of ChatGPT that has been customized for a specific use case.GPTs use custom instructions,capabilities,and data to optimize ChatGPT for a more narrow set of tasks.You yoursel|||

Others are asking
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
chatbot
以下是关于 ChatBot 的相关内容: 1. 基于 COW 框架的 ChatBot 实现: 作者熊猫大侠介绍了基于大模型搭建的 Chat 机器人框架,可将多模型塞进微信里实现。张梦飞同学写了更适合小白的使用教程,链接为:https://waytoagi.feishu.cn/wiki/A9w1wUcXSihF6XkeKVic8CXxnHb 。 实现内容包括打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等),常用开源插件的安装应用。 正式开始前需知道:本实现思路需接入大模型 API(API 单独付费)。存在风险与注意事项,如微信端有封号危险,不建议主力微信号接入;操作需依法合规,对大模型生成的内容注意甄别,禁止用于非法目的,处理敏感或个人隐私数据时注意脱敏。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等。可选择多模型,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等。支持多消息类型,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能。有多种部署方法,如本地运行、服务器运行、Docker 的方式。 2. 打造聊天机器人“订餐机器人”: 建立自己的聊天机器人,称为“订餐机器人”,使用自动化方式收集用户提示和助手反馈来构建。用于比萨饼店接收订单。 定义“帮助函数”收集用户消息,避免手动输入。函数从用户界面收集提示并附加到称为上下文的列表中,每次使用该上下文调用模型。 模型和用户的反馈信息都会添加到上下文中,上下文会越来越长,模型据此决定下一步行动。 订餐机器人需等待收集整个订单,然后总结,并最后再次确认客户是否需要添加其他内容。若送货,需询问地址,最后收取支付款项。确保澄清所有选项、附加项和规格,以唯一地从菜单中识别出该项目。以简短、口语化和友好的方式回应。 可要求模型创建基于对话的 JSON 摘要,提交给订单系统。可对其进行定制,改变聊天机器人的行为。
2025-03-17
chatbot对话和AI搜索区别
Chatbot 对话和 AI 搜索存在以下区别: 1. 产品形态: Chatbot 主要交互是一个对话框+RAG 联网检索,如 ChatGPT、Kimi Chat 等。这类产品依赖大模型的理解能力提供问答服务,RAG 检索作为补充手段,弥补大模型在实时信息获取方面的不足。 AI 搜索产品主要交互是一个搜索框+搜索详情页,如 Perplexity、秘塔等。这类产品主要侧重点在检索,优先保证检索召回的信息质量,在首次回答的准确度方面有所要求,而对话(Chat)则作为补充步骤,方便用户对检索结果进行追问或二次检索。 2. 市场定位: 大部分产品聚焦在国内,如大模型厂商推出的 ChatBot 产品(智谱清言、Kimi Chat、百小应、海螺 AI 等),搜索厂商或创业团队推出的 AI 搜索产品(360 AI 搜索、秘塔、博查 AI、Miku 等)。 海外也有很多成熟的和新出的泛 AI 搜索产品(Perplexity、You、Phind 等),中国公司和团队也有面向全球市场的出海产品(ThinkAny、GenSpark、Devv 等)。市场定位的选择跟创始团队的背景或认知有关。 3. 搜索类型: 通用搜索:没有明显的受众倾向,任何人可以搜任何问题,都能得到一个相对还不错的搜索结果,如 Perplexity、ThinkAny。 垂直搜索:面向特定的人群或特定的领域,对特定的信息源做索引和优化,在某类问题的搜索上会有更好的结果,如 Devv 主要面向开发者人群,问编程相关的问题,搜索结果和回复准确度都比较高,问旅游或其他类型的问题,回答质量则不如通用搜索。 目前存在能联网检索的 AI,例如 ChatGPT Plus 用户现在可以开启 web browsing 功能实现联网,Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,Bing Copilot 旨在简化在线查询和浏览活动,还有 You.com 和 Neeva AI 等搜索引擎,它们提供了基于人工智能的定制搜索体验,并保持用户数据的私密性。这些 AI 搜索工具的出现标志着在信息检索领域的一个重要发展,大幅提升了数据集命中预期,并为实际应用带来了更多可能性。但请注意内容由 AI 大模型生成,请仔细甄别。
2025-03-07
chatbot system prompt
以下是关于聊天机器人的相关内容: 1. 在打造聊天机器人的视频中,会使用不同的辅助函数,传入消息列表,包括系统消息、用户消息和助手消息。系统消息用于提供整体指示和设置助手行为角色,可在用户无察觉情况下引导助手回复,使对话自然流畅且避免插入明显提示信息。例如,系统消息可设定助手像莎士比亚一样说话。 2. 头脑风暴常用的 20 个 prompt 包括:Brainwriting Prompt、Reverse Brainstorming Prompt、Mind Mapping Prompt 等。 3. 打造聊天机器人中的 OrderBot 需等待收集整个订单并总结,确认客户是否添加其他内容,询问送货地址和收取支付款项,以简短、口语化和友好方式回应,澄清所有选项、附加项和规格。还可要求模型创建基于对话的 JSON 摘要,用于提交订单系统,可对聊天机器人进行定制和通过系统消息改变其行为及表现。
2025-01-30
有没有做chatbot的教程或者案例
以下是关于做 ChatBot 的教程和案例: 教程:熊猫大侠基于 COW 框架的 ChatBot 实现步骤。COW 是基于大模型搭建的 Chat 机器人框架,将多模型塞进自己的微信里实现方案。张梦飞同学基于此写了更适合小白的使用教程: 。该教程带你实现:打造属于自己的 ChatBot(文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等等),常用开源插件的安装应用。正式开始前需要知道:ChatBot 相较于在各大模型网页端使用区别,本实现思路需要接入大模型 API 的方式实现(API 单独付费)。同时存在风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;本文只探讨操作操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。支持多平台接入(微信、企业微信、公众号、飞书、钉钉等),多模型选择(GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等),多消息类型支持(能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能),多部署方法(本地运行、服务器运行、Docker 的方式)。 案例:
2024-12-03
rag
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构。 通用语言模型通过微调可完成常见任务,而更复杂和知识密集型任务可基于语言模型构建系统,访问外部知识源来完成,如 Meta AI 引入的 RAG 方法。RAG 把信息检索组件和文本生成模型结合,可微调,内部知识修改高效,无需重新训练整个模型。它会接受输入并检索相关支撑文档,给出来源,与原始提示词组合后送给文本生成器得到输出,能适应事实变化,让语言模型获取最新信息并生成可靠输出。 大语言模型(LLM)存在一些缺点,如无法记住所有知识尤其是长尾知识、知识易过时且不好更新、输出难以解释和验证、易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点,如数据库存储和更新稳定且无学习风险、数据更新敏捷且不影响原有知识、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本。 在 RAG 系统开发中存在 12 个主要难题,并已有相应的解决策略。
2025-04-15
rag介绍
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控以及受幻觉等问题干扰的情况。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器,包括 PDF 在内的非结构化数据、SQL 在内的结构化数据,以及 Python、Java 之类的代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储:涉及将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
什么是RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型本身的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景是知识问答系统。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档。 2. 文本分割:把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-14
RAG对话 摘要总结 功能实现
LangChain 和 RAG 的结合具有以下优势: 1. 灵活性:可根据需求和数据源选择不同组件和参数定制 RAG 应用,也能使用自定义组件(需遵循接口规范)。 2. 可扩展性:能利用 LangChain 的云服务部署和运行,无需担忧资源和性能限制,还可借助分布式计算功能加速应用,发挥多个节点并行处理能力。 3. 可视化:通过 LangSmith 可视化工作流程,查看各步骤输入输出及组件性能状态,用于调试和优化,发现并解决潜在问题和瓶颈。 其应用场景多样,包括: 1. 专业问答:构建医疗、法律、金融等专业领域的问答应用,从专业数据源检索信息辅助大模型回答问题,如从医学文献中检索疾病诊治方案回答医疗问题。 2. 文本摘要:构建新闻或论文摘要应用,从多个数据源检索相关文本帮助大模型生成综合摘要,如从多个新闻网站检索同一事件报道生成全面摘要。 3. 文本生成:构建诗歌、故事生成等应用,从不同数据源检索灵感协助大模型生成更有趣和创意的文本,如从诗歌、歌词或小说中检索相关文本生成作品。 此外,还介绍了本地部署资讯问答机器人的实现方式,即基于用户问题从向量数据库检索相关段落并按阈值过滤,让模型参考上下文信息回答,还创建了网页 UI 并进行评测,对不同模型的测试表现进行了对比,得出 GPT4 表现最佳等结论,并总结了使用 Langchain 和 Ollama 技术栈在本地部署资讯问答机器人及相关要点,即上下文数据质量和大模型性能决定 RAG 系统性能上限。
2025-04-11
飞书智能伙伴创建平台 RAG实现
飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,能提供简单、安全且高效的环境,帮助企业构建和发布 AI 应用,推动业务创新和效率提升,为企业探索大语言模型应用新篇章、迎接智能化未来提供理想选择。 在飞书智能伙伴创建平台上实现 RAG 相关应用有多种方式: 1. 利用飞书的知识库智能问答技术,引入 RAG 技术,通过机器人帮助用户快速检索内容。 2. 可以使用飞书的智能伙伴功能搭建 FAQ 机器人,了解智能助理的原理和使用方法。 3. 本地部署资讯问答机器人,如通过 Langchain + Ollama + RSSHub 实现 RAG,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。例如使用 feedparse 解析 RSS 订阅源,ollama 跑大模型(使用前需确保服务开启并下载好模型),使用文本向量模型 bgem3(如从 https://huggingface.co/BAAI/bgem3 下载,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效向量存储)。 使用飞书智能伙伴创建平台的方式: 1. 在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码会定期更新,需在找到最新二维码),点击加入,直接@机器人。 2. 在 WaytoAGI.com 的网站首页,直接输入问题即可得到回答。 创建问答机器人的原因: 1. 知识库内容庞大,新用户难以快速找到所需内容。 2. 传统搜索基于关键词及相关性,存在局限性。 3. 需要用更先进的 RAG 技术解决问题。 4. 在群中提供快速检索信息的方式,使用更便捷。 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区情况,讨论了相关技术和应用场景,并介绍了企业级 agent 方面的实践。
2025-04-08
RAG是什么
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型需要 RAG 进行检索优化的原因在于其存在一些缺点: 1. LLM 无法记住所有知识,尤其是长尾知识,受限于训练数据和学习方式,对长尾知识的接受能力不高。 2. LLM 的知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. LLM 的输出难以解释和验证,存在内容黑盒、不可控及受幻觉干扰等问题。 4. LLM 容易泄露隐私训练数据。 5. LLM 的规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,可解释且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 RAG 的核心流程是根据用户提问,从私有知识中检索到“包含答案的内容”,然后把“包含答案的内容”和用户提问一起放到 prompt(提示词)中,提交给大模型,此时大模型的回答就会充分考虑到“包含答案的内容”。其最常见应用场景如知识问答系统,用户提出问题,RAG 模型从大规模的文档集合中检索相关的文档,然后生成回答。 一个 RAG 的应用可抽象为 5 个过程: 1. 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。
2025-04-03
可以通过AI学到行业的专业知识吗
AI 可以帮助我们学习行业的专业知识。在医疗保健领域,开发具有潜在空间层次结构的堆叠 AI 模型有助于其理解模式和关系,从而培养新型的专业知识。创建特定领域的专家 AI 比创建全能 AI 更容易,且预计会创造许多采用多样化方法的专家 AI。 同时,应让 AI 接触现实世界的互动供其学习,避免复制危险的偏见。鉴于神经网络基础,专家 AI 可能通过元学习更快地获得知识,并可能成为下一代专家的教师。 AI 将不可逆转地改变医疗保健领域,如医生可将文档工作交给 AI 书记员等。但要真正改变这些领域,应投资创建像优秀医生和药物开发者那样学习的“专家”AI 模型生态系统。 成为行业顶尖人才通常需要多年密集信息输入和实践,通过学校教育和经验获得在复杂情况下确定最佳答案的直觉具有挑战性,AI 也面临同样问题。应通过堆叠模型训练 AI,而非仅依靠大量数据。例如在医疗领域,相关学习应从基础课程开始,逐步深入。
2025-03-14
我没有编程专业知识,想学如何利用AI做软件开发
如果您没有编程专业知识但想利用 AI 做软件开发,以下是一些建议和相关信息: 在软件开发方面,AI 辅助编程工具如 Cursor、Windsurf 可帮助您解决编程问题。面试时,可观察候选人如何向 AI 提问、判断 AI 代码的正确性以及调整 AI 生成的代码。 例如 Trae 这样的 AI 编程神器,能高效生成代码,支持多技术栈,且具有动态调整的潜力。如生成任务清单应用和根据 UI 设计图自动生成项目代码,但可能存在一些不完善之处,可继续让其调整。 利用固定格式文档结合 AI 进行代码开发具有一定可行性,但需强调组员主观能动性,文档并非唯一最佳方式,可尝试简短描述或 Prompt 辅助代码生成。 对于后端 Java 程序员转向 LLM 方向,可借助 AI 编程工具熟悉 LLM 原理,开展相关 Side Project,将 AI 当老师边做边学,坚持使用 AI 辅助编程。 相关链接:
2025-03-13
我是没有编程和计算机专业知识的新手,想要学习提示词设计,请推荐学习资料
以下是为没有编程和计算机专业知识的新手推荐的学习提示词设计的资料: 1. 参考文献: D.Sculley 等人的《机器学习:技术债务的高利贷》(2014 年) Xavier Amatriain 等人的《Transformer 模型:介绍和目录》(2023 年) Hattie Zhou 等人的《通过上下文学习教授算法推理》(2022 年) Yao Lu 等人的《神奇有序的提示词及其寻找方法:克服少样本提示词顺序敏感性》(2022 年) Jason Wei 等人的《思维链提示词在大型语言模型中引出推理》(2022 年) Zhuosheng Zhang 等人的《大型语言模型中的自动思维链提示词》(2022 年) Shunyu Yao 等人的《思维树:与大型语言模型一起进行深思熟虑的问题解决》(2023 年) 2. 小七姐的相关教程: 《Prompt 喂饭级系列教程小白学习指南(四)》:介绍了标识符(如、<>等)和属性词(如 Role、Profile、Initialization 等),并指出结构化提示词框架可作为通用标准格式,还推荐了相关理论原文,如李继刚和云中江树的详细理论。 3. 学习提示词运用的建议: 理解提示词的作用:提示词向模型提供上下文和指示,其质量影响模型输出质量。 学习提示词的构建技巧:明确任务目标,用简洁准确语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示。 参考优秀案例:在领域社区、Github 等资源中研究学习优秀提示词案例。 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 跟上前沿研究:持续关注提示工程领域的最新研究成果和方法论。 请注意,上述部分内容由 AI 大模型生成,请仔细甄别。
2025-02-27
如何在本地部署LLM,然后完成某个专业或者主题的专业知识库训练
以下是在本地部署 LLM 并完成某个专业或主题的专业知识库训练的详细步骤: 1. 部署大语言模型: 下载并安装 Ollama:根据电脑系统,点击进入 https://ollama.com/download 下载,下载完成后双击打开,点击“Install”。安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器,若出现相关字样则表示安装完成。 下载 qwen2:0.5b 模型:如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行粘贴进入并回车,等待自动下载完成。 2. 安装 Docker Desktop: 点击去下载,根据系统进行选择。以 Windows 系统为例,点击 https://docs.docker.com/desktop/install/windowsinstall/ 下载,双击下载项目,点击 ok 加载文件,点击“close and restart”重启电脑。重启后,点击“Accept”,选择第二个,点击"Finish",进入 Docker Desktop。 3. 部署 FastGPT+OneAPI: 在桌面按住“shift”+鼠标右键,选择“在此处打开 Powershell 窗口”,在窗口中一行一行输入并回车。等待上方命令执行完成,下载完成之后。回到桌面,打开 FastGPT 文件夹,右键 dockercompose.yml 文件,选择打开方式为记事本打开,查找并修改相关内容后保存。回到命令行窗口中,继续输入并回车。 4. 配置 OneAPI: 在浏览器中输入:http://localhost:3001 ,进入登录页,账号 root 密码 123456 点击登录。点击【渠道】【添加新的渠道】,类型选择 Ollama,名称设为 qwen2,模型设为 qwen2:0.5b,秘钥设为 sksky,代理设为 http://host.docker.internal:11434 ,点击提交。点击【令牌】【添加新令牌】,名称随意,时间设为永不过期、额度设为无限额度,点击【提交】,点击【令牌】复制 key。 5. 配置 FastGPT: 回到 FastGPT 文件夹里,用记事本打开“dockercompose.yml”文件,查找并修改相关内容后保存。打开 config.json,根据图示修改完成,把相关数值改成 1500 左右。在命令窗口中输入:docker compose down 等待执行完成,再输入:docker compose upd 等待执行完成。在浏览器上输入:http://localhost:3000 ,账号 root 密码 1234 点击进入,设置好后点击确定。发布 API 并创建一个 key。
2025-01-02
专业知识库该如何构建
构建专业知识库可以通过以下两种方式: 使用 GPT 构建: 1. 将大文本拆分成若干小文本块(chunk)。 2. 通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关,并在向量储存库中保存这些向量和文本块作为问答的知识库。 3. 当用户提出问题时,将问题通过 embeddings API 转换成问题向量,与向量储存库中的文本块向量比对,查找距离最小的几个向量,把对应的文本块提取出来,与原有问题组合成新的 prompt 发送给 GPT API。 使用 Dify 构建: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述。 3. 配置索引方式:Dify 提供了三种索引方式,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用,并在应用设置中配置数据集的使用方式。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新内容以保持时效性。 总的来说,Dify 提供了可视化的知识库管理工具,关键步骤包括数据准备、数据集创建、索引配置、集成应用和持续优化。
2024-08-22
我想做aigc产品经理,都要会ai哪些专业知识
如果您想成为 AIGC 产品经理,以下是一些需要掌握的 AI 专业知识: 1. 对 AIGC 有坚定的信念:记得第一次使用 ChatGPT 时的兴奋,关注 AI 发展动态,如熬夜看过 GPT4、Copilot 的发布会,想办法搞定 Plus 账号,期待 GPT5 等。 2. 熟悉各类 AIGC 应用:用过如 GPT4、NewBing、Kimi、Perplexity、Suno 等应用,对新的爆款产品能第一时间尝试。 3. 具备实践能力:可以简单上手,不限于调用 API 做小 demo,会写复杂的提示词,做简单的 RAG 应用、文生图、视频,微调模型等。 4. 理解算法知识: 了解基本的机器学习算法原理,有助于更好地理解产品核心技术,做出合理决策。 掌握一定算法知识,能与开发团队有效沟通,减少信息不对称带来的误解。 在产品规划阶段,评估某些功能的技术可行性。 把握 AI 技术发展迅速的趋势,更好地把握产品未来发展方向。 发现产品独特优势,提出创新特性,提升产品竞争力。 提升数据分析能力,很多 AI 算法涉及数据处理和分析。 5. 针对具体的工作场景,例如: 面向 AIGC 领域,结合应用场景,开发针对性图像生成解决方案。 负责模型的部署和推理性能优化,确保模型在实际应用中的高效性和稳定性。 持续关注最新技术发展和业界趋势,积极推动团队技术水平提升,并将新技术应用到实际项目中。
2024-08-20
剧本分析(NLP):AI 读取剧本,分析情节、角色发展,甚至预测观众反应。
以下是关于剧本分析(NLP)中 AI 读取剧本并进行相关处理的一些信息: 人物剧本与角色状态: 对人物如李洛云进行“剧本推演”,每天生成 20 40 个时间段剧本,依据人物背景和增长记忆体生成。 可使用 LLM 生成英文提示词用于 Stable Diffusion 出图,图存于“手机相册”用于对话多模态中的图片回复。 选择剧本和图片生成朋友圈文案。 拟人行为: 反感度系统:通过 LLM 分析对话判断角色是否产生反感度。 延迟回复:根据状态忙闲或是否睡觉决定回复时间。 接受多轮输入,一并回复:避免每一条输入回复一句,不像真人。 响应拆分与响应延迟:将一大段响应文本拆分成多段,模拟人类打字速度(3 5 字/秒),回复时概率性使用表情包,有概率主动聊天(与亲密度正相关)。 微信朋友圈:根据每天人物剧本挑选 1 2 个发布朋友圈并配图,目前内容由 AI 生成但手工发布。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)提取关键场景、角色和情节。 2. 生成角色与场景描述:用工具(如 Stable Diffusion 或 Midjourney)生成视觉描述。 3. 图像生成:用 AI 图像生成工具创建图像。 4. 视频脚本制作:将关键点和图像组合成脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)转换语音,添加背景音乐和音效。 6. 视频编辑与合成:用视频编辑软件(如 Clipfly 或 VEED.IO)合成。 7. 后期处理:剪辑、添加特效和转场提高质量。 8. 审阅与调整:观看视频并根据需要调整。 9. 输出与分享:完成编辑后输出并分享。 Inworld AI: Inworld AI 是一家专注于游戏和人工智能的初创公司,开发了 Inworld 的 AI 角色引擎,可将游戏 NPC 进行 AI 化并集成到游戏中。该引擎超越大语言模型,增加可配置的安全性、知识、记忆、叙事控制、多模态等功能,使 NPC 能够自我学习和适应,具有情绪智能。其角色引擎可创建具有独特个性和上下文意识的角色,无缝集成到实时应用中,内置优化规模和性能的功能。Character Brain(性格大脑)引擎使 AI NPC 能够学习和适应,具有情绪智能的关系导航能力、记忆和回忆能力,并能自主发起目标、执行动作并遵循动机。功能包括目标和行动、长期记忆、个性、情绪等。
2025-03-20
角色扮演与人设研究
以下是关于角色扮演与人设研究的相关内容: 在换位思考方面,比如玩假装是海盗的游戏,需要像海盗一样思考和说话,这种方法可用于训练机器人像所假装的角色一样思考和行动,有助于理解和预测角色的言行。以论文中的 SimToM 两阶段提示框架为例,包括角色扮演和推理两步。角色扮演时,模型理解故事中代理人的所知和愿望,并从其视角重构故事;推理时,基于特定视角的信息推断问题答案。 在让 AI 像人类一样思考方面,自主体感轮子本质上是在逻辑体感轮子基础上补充了角色扮演的人设认知,包括人设认知层(角色价值观、个人能力、语言风格、互动方式)和任务执行层。其中,价值观认知和互动方式认知最为重要,分别影响个人立场决策和对话时的用户体验。 在游戏中的生成式 AI 革命方面,生成式 AI 对话能让游戏角色说任何话以响应玩家行为,结合更智能的 NPC AI 模型,完全响应玩家的游戏将成为现实。角色扮演方面,使用与玩家虚拟形象匹配的生成声音可维持幻想角色的幻觉。此外,还能控制生成声音的细微差别,实现本地化,将对话翻译成任何语言并以相同声音发音。
2025-03-16
我想给deep seek设置长篇小说作家的角色设定,我应该说哪些指令
以下是为 Deep Seek 设置长篇小说作家角色设定时可以考虑的指令: 1. 明确写作风格和特点,例如指定模仿某位知名小说家的文风,如鲁迅的文风特点。 2. 描述故事的背景、主题和情节框架,比如设定故事发生在特定的历史时期或虚构的世界。 3. 规定小说的体裁和类型,如言情、科幻、悬疑等。 4. 对人物塑造提出要求,包括主要人物的性格、外貌、经历等。 5. 设定语言表达的要求,如语言的优美程度、词汇的丰富性等。 6. 明确字数范围,例如要求创作一部不少于 10 万字的长篇小说。 7. 给出情节发展的节奏和起伏要求,比如要求情节紧凑、高潮迭起。 8. 强调故事的逻辑性和连贯性,避免出现逻辑漏洞和情节跳跃。 在设置指令时,应尽量具体、清晰,避免过于宽泛和模糊的表述,例如将“写小说”优化为“创作以 AI 觉醒为背景的悬疑长篇,采用多视角叙事结构,人物形象鲜明,情节跌宕起伏,语言优美生动,字数不少于 20 万字”。同时,对于生成的内容,可以通过多轮对话进行增删改查,以达到理想的效果。
2025-03-12
我想给deep seek设置角色设定,我应该说哪些指令
以下是为 Deep Seek 设置角色设定时可以参考的一些指令: 1. 明确模型的具体任务,例如专门分析视频并从中找到特定内容。 2. 在向模型提供视频之前添加指令,如说明视频的数量、来源和对模型回答的限制,例如“这里有三个视频。每个都是来自 Deep Learning AI 的 LLM Ops 课程的一课。你的答案只基于视频。” 3. 为模型准备具体的问题,例如“请为每个视频创建一个摘要,概述其中讨论的主要内容。每个摘要限制在 100 词以内。”“在这三个视频中,哪一个视频的讲师运行并解释了 Python 代码'be_query_clients.query'?请指出在视频中可以找到这段代码的具体位置。”
2025-03-12
角色:你是一名软件开发公司的运营经理 背景:现在要准备入局AI导航网站市场,通过AI导航网站实现布局产品流量入口,来获取AI风口的流量。 任务:请你完成AI导航网站的国内外市场调研 要求:调研内容包括AI网站导航的市场、竞品、用户分析以及产品规划、团队人员需求及资源需求、有哪些风险点
以下是对您需求的调研分析: 一、市场分析 目前,AI 领域发展迅速,AI 导航网站作为获取相关信息和资源的入口,具有较大的市场潜力。随着人们对 AI 技术的关注度不断提高,对于便捷、高效的 AI 资源导航需求也在增加。 二、竞品分析 暂未获取到直接关于 AI 导航网站的竞品详细信息。 三、用户分析 用户可能包括对 AI 技术感兴趣的个人、开发者、研究人员、企业等。他们希望通过导航网站快速找到所需的 AI 工具、资源、案例等。 四、产品规划 1. 提供全面、准确的 AI 网站分类和链接,涵盖工具、研究成果、应用案例等。 2. 设立用户评价和推荐系统,帮助用户筛选优质资源。 3. 提供个性化推荐功能,根据用户的浏览历史和偏好推送相关内容。 五、团队人员需求 1. 技术人员:负责网站的开发和维护,如前端开发、后端开发等。 2. 内容编辑:收集、整理和更新 AI 网站信息。 3. 运营人员:负责推广、用户互动和数据分析。 六、资源需求 1. 服务器和带宽资源,以保证网站的稳定运行和快速响应。 2. 数据采集和更新的工具和技术。 七、风险点 1. 市场竞争激烈,可能面临已有成熟竞品的压力。 2. AI 技术发展迅速,需要及时更新网站内容,以保持竞争力。 3. 可能存在版权和法律合规方面的风险。 4. 用户获取和留存的挑战,需要提供优质的服务和用户体验。
2025-03-11
开发角色在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
开发角色在使用 AI 时可能涉及以下工具: 1. 个性(LLM 的文本):一些开源模型如 Vicuna 和 Pygmalion 经过微调,可在特定个性到无审查的角色扮演等场景中表现出色。 2. 记忆(向量存储):像 Pinecone 这样的向量存储系统,用于存储长期记忆、背景故事等独特信息。 3. 语音(语音合成):ElevenLabs 产品可赋予声音,并控制年龄、性别和口音。 4. 外表(SD 模型作图):LoRAs 可精细控制图像风格、细节和设置。 5. 动画(视频动画):DID 和 HeyGen 等工具能使图像“说话”。 6. 平台:多数开发者在 GCP 和 AWS 上部署运行,Steamship 等解决方案也受关注。 7. UI 层:SillyTavern、Agnaistic 和 KoboldAI 等是受欢迎的前端界面选择。 在游戏开发方面: 1. Unity 提供了新 Copliot 工具,可通过与 Muse Chat 聊天快速启动创建游戏项目,协助编码,创建 3D 材质、动画等内容。 2. Unity Sentis 工具允许在 Unity 运行时为游戏或应用程序嵌入 AI 模型,增强玩法和功能,是跨平台解决方案。
2025-03-07