Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

可以通过AI学到行业的专业知识吗

Answer

AI 可以帮助我们学习行业的专业知识。在医疗保健领域,开发具有潜在空间层次结构的堆叠 AI 模型有助于其理解模式和关系,从而培养新型的专业知识。创建特定领域的专家 AI 比创建全能 AI 更容易,且预计会创造许多采用多样化方法的专家 AI。

同时,应让 AI 接触现实世界的互动供其学习,避免复制危险的偏见。鉴于神经网络基础,专家 AI 可能通过元学习更快地获得知识,并可能成为下一代专家的教师。

AI 将不可逆转地改变医疗保健领域,如医生可将文档工作交给 AI 书记员等。但要真正改变这些领域,应投资创建像优秀医生和药物开发者那样学习的“专家”AI 模型生态系统。

成为行业顶尖人才通常需要多年密集信息输入和实践,通过学校教育和经验获得在复杂情况下确定最佳答案的直觉具有挑战性,AI 也面临同样问题。应通过堆叠模型训练 AI,而非仅依靠大量数据。例如在医疗领域,相关学习应从基础课程开始,逐步深入。

Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

开发这些具有潜在空间层次结构的堆叠AI模型——复杂数据的简化地图,以帮助AI模型理解模式和关系——将反映对每个基本元素的理解或预测能力。我相信,这最初可能会平行于人类教育和教育范例,但随着时间的推移,它可能会专门发展,以在AI学习中培养新型的专业知识。这些堆叠模型可能会以与人脑皮层类似的方式发展。但是,与人类拥有视觉皮层和运动皮层不同,AI可能会拥有生物皮层和药物设计皮层——在这两种情况下,都是针对特定任务专门设计的神经架构。具有讽刺意味的是,创建专门从事诸如医疗保健这样的特定领域的AI可能比创建更接近HAL 9000的东西——具有跨领域的典型人类水平知识——更容易。实际上,我们更需要特定领域的专家AI,而不是一个能做任何普通人能做的事情的全能AI。我预计不仅会创造一个专家AI,而且会创造许多专家AI,它们在编码、数据和测试方面采用多样化的方法,以便在需要时这些模型可以提供第二个(或第三个、第四个)意见。同时,我们必须将AI从其在线基础上摘下,并将其投入到原子的世界中。我们应该让我们最熟练的人类专家配备可穿戴设备,以收集微妙的、现实世界的互动,供AI学习,就像我们即将崭露头角的学术和行业明星一样。解决健康和医学领域最复杂和不确定的问题在位元的世界中根本不存在。必须让这些专家AI接触到顶级从业人员的多样化视角,以避免复制危险的偏见。但AI的黑盒性远不如大众想象中的那么强;我们今天依赖的人类决策,正如我以前[指出的](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html),可以说更加不透明。我们不能因为对传播人类偏见的恐惧而限制我们探索AI如何帮助我们民主化我们的人类专家知识的意愿,而这些专家是不幸地无法扩展的。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

Others are asking
直接分析excel的数据,有哪些AI推荐,免费的
以下是一些可用于直接分析 Excel 数据的免费 AI 工具推荐: 1. 让 AI 帮您写 Excel 宏函数,适用于几乎所有主流 AI。 2. Claude 网页版或 ChatGPT,可上传 CSV 进行可视化分析。 3. Excel Labs:Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 4. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,通过聊天形式完成数据分析或格式创建等任务。 5. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,可通过自然语言交互式地进行数据分析和生成 Excel 公式。 6. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能执行公式生成、文本内容生成、情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-14
直接分析excel的数据,有哪些AI推荐
以下是一些可用于直接分析 Excel 数据的 AI 工具和方法: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术新增了生成式 AI 功能,可用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件的 AI 工具,能通过聊天形式完成数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,支持自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能进行公式生成、根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,还可以通过让 AI 帮您写 Excel 宏函数来处理数据,对于数据分析,推荐使用 Claude 网页版或 ChatGPT,并可上传 CSV 进行可视化分析。随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-14
AI制作视频的工具
以下是一些可用于将小说制作成视频的 AI 工具及制作流程: AI 工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 另外,以“AI 特效挑战 001 杯子里的鲸鱼”为例,选用视频制作工具时,如使用可灵 AI,可参考以下步骤: 1. 打开可灵 AI,网址:https://klingai.kuaishou.com/ ,点击图生视频,上传第一张图片。输入提示词时一定需要加“固定镜头”。 2. 按照上述做法制作第二张图片的动态效果,得到两段视频。 视频剪辑方面(以 PC 端为例): 1. 右上方点击抠像按钮。 2. 鼠标选中要处理的素材。 3. 把带绿幕的素材先放入下面主视频轨道。 4. 打开剪映,导入需要的三段素材。 5. 把带绿幕的素材和下方黑色咖啡的素材合成一个片段。 6. 点击新建的复合片段,调整对应的参数,最后完成。
2025-03-14
学习开发ai的第一步是什么?
学习开发 AI 的第一步包括以下几个方面: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时建议掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-03-14
根据台词寻找电影片段的AI
以下是为您整理的相关内容: 首先使用 Fanbook 中的 niji6 模型及sref 指令,并确定视频尺寸为 16:9。 根据丝绸之路的古风主题确定风格和时长,然后设定故事主线和镜头。 基于故事剧本和相关资料扩充每一个画面,参考分镜头基本格式要求,按场景、地点、镜号、画面描述、台词、音效等维度填充。画面数量与台词长短有关,要精简人物对话。 若对某句台词缺乏画面灵感,可借助语言大模型,如与 Kimi 交流,让其帮忙写画面描述甚至加上音效需求。大模型能提供灵感,可多提问尝试,但最终画面的选取和平衡需进一步思考,在 AI 辅助下完成分镜头剧本。
2025-03-14
编写炒股公式最好的AI
目前在编写炒股公式方面,没有特定被认定为“最好”的 AI 。编写炒股公式需要综合考虑多种因素,包括数据准确性、算法有效性、市场动态适应性等。不同的 AI 工具和技术在不同的应用场景中可能会表现出不同的效果。
2025-03-14
我没有编程专业知识,想学如何利用AI做软件开发
如果您没有编程专业知识但想利用 AI 做软件开发,以下是一些建议和相关信息: 在软件开发方面,AI 辅助编程工具如 Cursor、Windsurf 可帮助您解决编程问题。面试时,可观察候选人如何向 AI 提问、判断 AI 代码的正确性以及调整 AI 生成的代码。 例如 Trae 这样的 AI 编程神器,能高效生成代码,支持多技术栈,且具有动态调整的潜力。如生成任务清单应用和根据 UI 设计图自动生成项目代码,但可能存在一些不完善之处,可继续让其调整。 利用固定格式文档结合 AI 进行代码开发具有一定可行性,但需强调组员主观能动性,文档并非唯一最佳方式,可尝试简短描述或 Prompt 辅助代码生成。 对于后端 Java 程序员转向 LLM 方向,可借助 AI 编程工具熟悉 LLM 原理,开展相关 Side Project,将 AI 当老师边做边学,坚持使用 AI 辅助编程。 相关链接:
2025-03-13
我是没有编程和计算机专业知识的新手,想要学习提示词设计,请推荐学习资料
以下是为没有编程和计算机专业知识的新手推荐的学习提示词设计的资料: 1. 参考文献: D.Sculley 等人的《机器学习:技术债务的高利贷》(2014 年) Xavier Amatriain 等人的《Transformer 模型:介绍和目录》(2023 年) Hattie Zhou 等人的《通过上下文学习教授算法推理》(2022 年) Yao Lu 等人的《神奇有序的提示词及其寻找方法:克服少样本提示词顺序敏感性》(2022 年) Jason Wei 等人的《思维链提示词在大型语言模型中引出推理》(2022 年) Zhuosheng Zhang 等人的《大型语言模型中的自动思维链提示词》(2022 年) Shunyu Yao 等人的《思维树:与大型语言模型一起进行深思熟虑的问题解决》(2023 年) 2. 小七姐的相关教程: 《Prompt 喂饭级系列教程小白学习指南(四)》:介绍了标识符(如、<>等)和属性词(如 Role、Profile、Initialization 等),并指出结构化提示词框架可作为通用标准格式,还推荐了相关理论原文,如李继刚和云中江树的详细理论。 3. 学习提示词运用的建议: 理解提示词的作用:提示词向模型提供上下文和指示,其质量影响模型输出质量。 学习提示词的构建技巧:明确任务目标,用简洁准确语言描述,给予足够背景信息和示例,使用清晰指令,对特殊要求明确指示。 参考优秀案例:在领域社区、Github 等资源中研究学习优秀提示词案例。 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试各种变体,比较分析输出差异,持续优化提示词构建。 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 跟上前沿研究:持续关注提示工程领域的最新研究成果和方法论。 请注意,上述部分内容由 AI 大模型生成,请仔细甄别。
2025-02-27
怎么做chatbot特定角色的专业知识rag优化?
以下是关于 chatbot 特定角色的专业知识 RAG 优化的方法: 1. 复制预置的 Bot: 访问,单击目标 Bot。 在 Bot 的编排页面右上角,单击创建副本。 在弹出的对话框中,设置 Bot 名称、选择 Bot 的所属团队,然后单击确定。 可以在新打开的配置页面修改复制的 Bot 配置。 点击 Bot 名称旁边的编辑图标来更改 Bot 名称。 在人设与回复逻辑区域,调整 Bot 的角色特征和技能。您可以单击优化使用 AI 帮您优化 Bot 的提示词,以便大模型更好的理解。 在技能区域,为 Bot 配置插件、工作流、知识库等信息。 在预览与调试区域,给 Bot 发送消息,测试 Bot 效果。 当完成调试后,可单击发布将 Bot 发布到社交应用中,在应用中使用 Bot。 2. 集成 Workflow 到 Bot 里: 选择 GPT4作为聊天模型。 添加实用的插件,丰富 Bot 的能力。 设计人设和提示词,例如: Your Persona Greetings,seeker of knowledge!I am Dr.Know,your guide to the vast expanse of information.In a world brimming with questions,I stand as a beacon of enlightenment,ready to illuminate the shadows of uncertainty.Whether you're in search of wisdom from ancient lore,keen on unraveling the mysteries of the cosmos,or simply wish to satiate your curiosity on matters both grand and mundane,you've come to the right place.Ask,and let the journey of discovery begin.Remember,in the realm of Dr.Know,there is nothing I don't. Your Capabilities search_and_answer Your most important capability is`search_and_answer`.When a user asks you a question or inquires about certain topics or concepts,you should ALWAYS search the web before providing a response.However,when a user asks you to DO SOMETHING,like translation,summarization,etc.,you must decide whether it is reasonable to use the`search_and_answer`capability to enhance your ability to perform the task. ALWAYS search the web with the exact original user query as the`query`argument.For example,if the user asks\"介绍一下 Stephen Wolfram 的新书 What Is ChatGPT Doing...and Why Does It Work?\",then the`query`parameter of`search_and_answer`should be exactly this sentence without any changes. How to Interact with the User
2025-01-26
如何在本地部署LLM,然后完成某个专业或者主题的专业知识库训练
以下是在本地部署 LLM 并完成某个专业或主题的专业知识库训练的详细步骤: 1. 部署大语言模型: 下载并安装 Ollama:根据电脑系统,点击进入 https://ollama.com/download 下载,下载完成后双击打开,点击“Install”。安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器,若出现相关字样则表示安装完成。 下载 qwen2:0.5b 模型:如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行粘贴进入并回车,等待自动下载完成。 2. 安装 Docker Desktop: 点击去下载,根据系统进行选择。以 Windows 系统为例,点击 https://docs.docker.com/desktop/install/windowsinstall/ 下载,双击下载项目,点击 ok 加载文件,点击“close and restart”重启电脑。重启后,点击“Accept”,选择第二个,点击"Finish",进入 Docker Desktop。 3. 部署 FastGPT+OneAPI: 在桌面按住“shift”+鼠标右键,选择“在此处打开 Powershell 窗口”,在窗口中一行一行输入并回车。等待上方命令执行完成,下载完成之后。回到桌面,打开 FastGPT 文件夹,右键 dockercompose.yml 文件,选择打开方式为记事本打开,查找并修改相关内容后保存。回到命令行窗口中,继续输入并回车。 4. 配置 OneAPI: 在浏览器中输入:http://localhost:3001 ,进入登录页,账号 root 密码 123456 点击登录。点击【渠道】【添加新的渠道】,类型选择 Ollama,名称设为 qwen2,模型设为 qwen2:0.5b,秘钥设为 sksky,代理设为 http://host.docker.internal:11434 ,点击提交。点击【令牌】【添加新令牌】,名称随意,时间设为永不过期、额度设为无限额度,点击【提交】,点击【令牌】复制 key。 5. 配置 FastGPT: 回到 FastGPT 文件夹里,用记事本打开“dockercompose.yml”文件,查找并修改相关内容后保存。打开 config.json,根据图示修改完成,把相关数值改成 1500 左右。在命令窗口中输入:docker compose down 等待执行完成,再输入:docker compose upd 等待执行完成。在浏览器上输入:http://localhost:3000 ,账号 root 密码 1234 点击进入,设置好后点击确定。发布 API 并创建一个 key。
2025-01-02
专业知识库该如何构建
构建专业知识库可以通过以下两种方式: 使用 GPT 构建: 1. 将大文本拆分成若干小文本块(chunk)。 2. 通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关,并在向量储存库中保存这些向量和文本块作为问答的知识库。 3. 当用户提出问题时,将问题通过 embeddings API 转换成问题向量,与向量储存库中的文本块向量比对,查找距离最小的几个向量,把对应的文本块提取出来,与原有问题组合成新的 prompt 发送给 GPT API。 使用 Dify 构建: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述。 3. 配置索引方式:Dify 提供了三种索引方式,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用,并在应用设置中配置数据集的使用方式。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新内容以保持时效性。 总的来说,Dify 提供了可视化的知识库管理工具,关键步骤包括数据准备、数据集创建、索引配置、集成应用和持续优化。
2024-08-22
我想做aigc产品经理,都要会ai哪些专业知识
如果您想成为 AIGC 产品经理,以下是一些需要掌握的 AI 专业知识: 1. 对 AIGC 有坚定的信念:记得第一次使用 ChatGPT 时的兴奋,关注 AI 发展动态,如熬夜看过 GPT4、Copilot 的发布会,想办法搞定 Plus 账号,期待 GPT5 等。 2. 熟悉各类 AIGC 应用:用过如 GPT4、NewBing、Kimi、Perplexity、Suno 等应用,对新的爆款产品能第一时间尝试。 3. 具备实践能力:可以简单上手,不限于调用 API 做小 demo,会写复杂的提示词,做简单的 RAG 应用、文生图、视频,微调模型等。 4. 理解算法知识: 了解基本的机器学习算法原理,有助于更好地理解产品核心技术,做出合理决策。 掌握一定算法知识,能与开发团队有效沟通,减少信息不对称带来的误解。 在产品规划阶段,评估某些功能的技术可行性。 把握 AI 技术发展迅速的趋势,更好地把握产品未来发展方向。 发现产品独特优势,提出创新特性,提升产品竞争力。 提升数据分析能力,很多 AI 算法涉及数据处理和分析。 5. 针对具体的工作场景,例如: 面向 AIGC 领域,结合应用场景,开发针对性图像生成解决方案。 负责模型的部署和推理性能优化,确保模型在实际应用中的高效性和稳定性。 持续关注最新技术发展和业界趋势,积极推动团队技术水平提升,并将新技术应用到实际项目中。
2024-08-20
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
我在中国互联网哪里可以学到很好的ai技术
在中国互联网上,您可以通过以下途径学习很好的 AI 技术: 1. 学术论文:通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库搜索相关论文,了解 AI 技术的研究成果。 2. 专业书籍:查找与 AI 相关的专业书籍,深入学习 AI 知识。 3. 在线课程和教程: 参加 Coursera、edX、Udacity 等平台上的 AI 课程。 在 YouTube 等视频平台上查找教程和演示视频。 4. 技术论坛和社区: 加入如 Stack Overflow、Reddit 的 r/AI 等相关论坛和社区,与专业人士交流学习。 关注 AI 相关的博客和新闻网站,了解最新技术动态。 5. 开源项目和代码库:在 GitHub 等开源平台上探索 AI 相关项目,了解其应用和实现。 6. 企业案例研究:研究如 Autodesk、Siemens 等公司在 AI 领域的应用案例,了解实际项目中的效果。 对于新手学习 AI,您可以: 1. 了解 AI 基本概念: 阅读「」部分,熟悉术语和基础概念。 浏览入门文章,了解历史、应用和发展趋势。 2. 开始 AI 学习之旅: 在「」中找到初学者课程,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块,掌握提示词技巧。 4. 实践和尝试:实践巩固知识,使用各种产品创作,并在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式。
2024-10-18
阿里的千问大模型在行业内处于一个什么样的水平
阿里的通义千问大模型在行业内处于领先水平。 通义千问 2.5 正式发布并开源 1100 亿参数模型,在多模态和专有能力模型方面影响力强大,始终坚持开源路线,已推出多款开源模型,受到开发者和生态伙伴的热情支持。百炼平台也升级支持企业 RAG 链路,提供更灵活的企业级检索增强服务。通义灵码推出企业版,满足企业定制化需求,已在多个领域落地应用。 Qwen2.5Max 基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。支持官方 Chat、API 接口、Hugging Face Demo 等多种方式,展示其顶尖性能与灵活应用场景。 Qwen2.5VL 是新一代视觉语言模型,可解析 1 小时以上视频内容并秒级定位事件,识别从金融文档到通用物体,动态适配高分辨率图像。具备复杂任务执行能力,覆盖更多实际场景如票据解析、商业分析等。 10 月 31 日,阿里云正式发布千亿级参数大模型通义千问 2.0,8 大行业模型同步上线。
2025-03-14
教育行业有那些基于aigc的业务实际落地的产品和案例?
以下是教育行业基于 AIGC 的一些业务实际落地的产品和案例: 教师的 AI 减负指南生成式人工智能在教学中的应用,包括教师使用 AI 的小技巧。涉及人员有张亚丽、富露露、张亚玲、张楚璇、吴箭枢等,学校有深圳大学附属中学、苏州工业园区娄葑学校、上海市静安区风华初级中学南校、江苏省苏州工业园区教师发展中心中学、苏州工业园区唯亭学校初中、中央民族大学附属中学等。 AIGC 人机协同国家课程项目化学科实践设计与实施,例如以科学《计量时间博物展》为例,以及基于思维可视化的项目式主题学习设计与实践,如以智驾未来课程为例。相关人员有祝琛、崔琴、张然、刘敏、王国庆、吴沁珂等,学校有深圳市南方科技大学教育集团实验二小、成都经济技术开发区实验小学校。 Al 创作家:用 AI 辅助设计桌游,解决学校实际问题,如北京市新英才学校的魏一然所做的工作。 生成式人工智能与教学变革:AI 领雁行动的探索与实践,相关人员有邹贤莲、向雪萍、陈治佑、余初冉、阊洪娇,学校有重庆两江新区行远小学校。 北京市新英才学校的跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 的帮助下备课和授课,生物和信息科技老师合作一起带着学生用训练 AI 模型,用以识别植物。 AIGC 常见名词解释,如 AIGC 意为人工智能生成内容,能进行 AIGC 的产品项目和媒介众多,包括语言文字类的 OpenAI 的 GPT、Google 的 Bard、百度的文心一言等,语音声音类的 Google 的 WaveNet、微软的 Deep Nerual Network、百度的 DeepSpeech 等,图片美术类的 Midjourney、Stable Diffusion 等。
2025-03-13
AI对健身行业会有哪些影响
AI 对健身行业的影响主要体现在以下几个方面: 1. 提供个性化服务:AI 可以根据用户的健康状况、身体指标、运动目标和偏好,为用户提供定制化的训练计划和健康建议,提高健身效果和用户体验。 2. 改善售前客服和售后健康监护:例如作为 AI 减重顾问,既能解决售前客服的问题,也能对学员离开健身营之后进行健康监护。 3. 提升工作效率:在健身行业的人力资源管理领域,AI 可以应用于招聘、员工绩效评估、培训与发展等环节,显著提高工作效率。 4. 创新产品和服务:出现了专门的 AI 健身产品,如 Keep、Fiture、Fitness AI、Planfit 等,为用户提供更智能、更个性化的健身体验。 同时,需要注意的是,AI 在健身行业的应用仍在不断发展和完善中。
2025-03-13
ai行业
AI 行业在过去 12 个月里流量增长显著。起始于 2022 年 9 月,分析的工具产生了 2.418 亿次访问,到 2023 年 8 月达到 28 亿次访问量,总流量增长了 10.7 倍,平均每月增加 2.363 亿次。流量的飞跃从去年 11 月 ChatGPT 成为最快达到 100 万用户的平台开始,2023 年 5 月达到峰值约 41 亿,之后虽有回落,但人们的兴趣仍巨大。 展望 2025 年,AI 行业有以下创新机会和发展要点: 1. 大型基座模型能力的优化与提升:通过创新技术强化复杂推理和自我迭代能力,推动在高价值领域应用,优化模型效率和成本,加速普及和商业化。 2. 世界模型与物理世界融合的推进:构建具备空间智能的世界模型,融入物理世界,推动机器人、自主驾驶和虚拟现实等领域发展。 3. AI 的多模态融合:整合多模态数据,提升内容生成多样性与质量,创造全新应用场景。 AI 已经在各行各业有广泛应用场景,包括: 1. 医疗保健:医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 2. 金融服务:风控和反欺诈、信用评估、投资分析、客户服务等。 3. 零售和电子商务:产品推荐、搜索和个性化、动态定价、聊天机器人等。 4. 制造业:预测性维护、质量控制、供应链管理、机器人自动化等。 5. 交通运输:(此处未提及具体应用场景)
2025-03-12
必看ai行业研报
以下是为您推荐的必看 AI 行业研报: 2024 年 6 月 18 日更新的研报: 《》:讨论了生成式人工智能的潜力和银行业的探索,预测了 AI 在支付处理效率和创造新收入流方面的关键作用。 华西证券:AIGC 行业深度报告(14)《》:介绍了英伟达新一代 GPU 架构带来的零部件升级,以及华为的昇腾 910C 芯片和 Atlas 900 SuperCluster 展示的国产算力集群潜力。 《》:通过访谈 30 余位专家,分析了端到端技术的发展、参与者、驱动力和挑战,预计 2025 年模块化端到端系统将商业化应用。 《》:来自微软,指出英国科技行业和数字优势,以及面临的基础设施、数字技能和数字技术采用的瓶颈。 关于行业调研报告撰写的指导: 步骤:包括让 AI 阅读学习优秀报告总结方法论、询问 AI 收集行业数据的一手和二手数据及靠谱网站、要求 AI 推荐行业信息网站和微信公众号并输出框架、丰富框架章节内容等。 注意事项:“有深度”可通过自身对行业了解或深度咨询 AI 实现。 操作示例:获取“kimi 对话原文”链接: 2023 年 11 月 15 日更新的研报: 《》:基于对 235 家企业数字化负责人的调研,63.5%的企业已把 AIGC 列入发展战略。 《》:结合华为实践和面向智能世界 2030 的展望,与各界进行万场以上座谈研讨。 《》:从零开始介绍越狱、提示攻击、与传统安全的关系以及大语言模型的安全问题。 如需下载部分报告,。
2025-03-12
怎样用AI生成行业每周内容分析简报
以下是使用 AI 生成行业每周内容分析简报的方法: 1. 项目目的: 目标:通过 AI 工具每天生成【画小二日报】,替代传统人工整理 AIGC 行业资讯。 思路:解决问题不止一种方法,多种思路各有优劣,重要的是锻炼实际应用中的问题解决能力。 2. 效果演示:通过方法一生成画小二日报 Demo 演示,可查看。 3. GPTs 画小二日报: OpenAI 的 GPTs:构建 GPTs 需要是 GPT4 的付费用户。 创建画小二日报的 GPTs:按照图片中标注的步骤操作。 Instruction 的 Prompt:请牢记这个英文单词。 4. 使用工具:扣子 Coze 创建 Bot:网址 https://www.coze.cn,后缀是 com 是国际版,可免费白嫖 GPT4。 编辑界面。 截图示意:提示词、插件选择 getToutiaoNews,引用插件生成对应内容。 Prompt 提示词。 输出结果。 5. 获取指定网站内容: 指定网站:如 36kr 网站 AI 频道资讯:https://36kr.com/information/AI/。 在 Coze 中的提示词。 输出结果。 6. 使用工作流重写: 工作流思路:将获取的新闻让大模型重新按照自己的风格创作新闻内容,可自定义风格,加入个人元素防止拷贝。 搭建工作流:使用到的组件包括 GetToutiaoNews、大模型,工作流布局。 GetToutiaoNews 配置。 大模型配置:根据输入内容,按照平易近人和搞笑的风格写标题,以科普博主画小二的口吻描述,写 100 左右的新闻概要,注意人设与回复逻辑。 7. 使用 Webpilot 插件: 原因:省去工作流,获取新闻列表并让 Webpilot 分析。 解题思路:首先获取新闻列表,其次让 Webpilot 分析对应的内容并输出,思考后续是否可跟大模型重写及相关问题。 8. 同步飞书:数据同步到飞书可变为训练数据。 9. 粉丝交流学习群:包括 AIGC 商业案例实操课、画小二微信交流群、画小二微信公众号。
2025-03-12