Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

专业知识库该如何构建

Answer

构建专业知识库可以通过以下两种方式:

使用 GPT 构建:

  1. 将大文本拆分成若干小文本块(chunk)。
  2. 通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关,并在向量储存库中保存这些向量和文本块作为问答的知识库。
  3. 当用户提出问题时,将问题通过 embeddings API 转换成问题向量,与向量储存库中的文本块向量比对,查找距离最小的几个向量,把对应的文本块提取出来,与原有问题组合成新的 prompt 发送给 GPT API。

使用 Dify 构建:

  1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。
  2. 创建数据集:在 Dify 中创建新的数据集,上传准备好的文档,并为数据集编写良好的描述。
  3. 配置索引方式:Dify 提供了三种索引方式,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式。
  4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用,并在应用设置中配置数据集的使用方式。
  5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新内容以保持时效性。

总的来说,Dify 提供了可视化的知识库管理工具,关键步骤包括数据准备、数据集创建、索引配置、集成应用和持续优化。

Content generated by AI large model, please carefully verify (powered by aily)

References

从零开始,用GPT打造个人知识库

上面将文本转换成向量(一串数字)能大大节省空间,它不是压缩,可简单理解为索引(Index)。接下来就有意思了。比如我有一个大文本,可以先把它拆分成若干个小文本块(也叫chunk),通过embeddings API将小文本块转换成embeddings向量,这个向量是跟文本块的语义相关。在一个地方(向量储存库)中保存这些embeddings向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过embeddings API转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的prompt(问题/提示词),发送给GPT API。这样一来就不用一次会话中输入所有领域知识,而是输入了关联度最高的部分知识。一图胜千言,转一张原理图。再举一个极其简单的例子,比如有一篇万字长文,拆分成Chrunks包含:文本块1:本文作者:越山。xxxx。文本块2:公众号越山集的介绍:传播效率方法,分享AI应用,陪伴彼此在成长路上,共同前行。文本块3:《反脆弱》作者塔勒布xxxx。文本块4:“科技爱好者周刊”主编阮一峰会记录每周值得分享的科技内容,周五发布。...文本块n

从零开始,用GPT打造个人知识库

要搭建基于GPT API的定制化知识库,涉及到给GPT输入(投喂)定制化的知识。但GPT-3.5,也就是当前免费版的ChatGPT一次交互(输入和输出)只支持最高4096个Token,约等于3000个单词或2300个汉字。这点容量对于绝大多数领域知识根本不够。为了使用GPT的语言能力来处理大量的领域知识,OpenAI提供了embedding API解决方案。参考OpenAI embedding documents。

问:Dify 构建知识库的具体步骤

使用Dify构建知识库的具体步骤如下:1.准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。1.创建数据集:在Dify中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。1.配置索引方式:Dify提供了三种索引方式供选择:高质量模式、经济模式和Q&A分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。1.集成至应用:将创建好的数据集集成到Dify的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。1.持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。总的来说,Dify提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。内容由AI大模型生成,请仔细甄别

Others are asking
怎么建立自己的知识库
要建立自己的知识库,可以参考以下两种方法: 方法一:用 GPT 打造个人知识库 1. 理解 embeddings: Embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。 向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。 向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。 2. 使用 embeddings: 将大文本拆分成若干个小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量。 在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。 当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt(问题/提示词),发送给 GPT API。 方法二:用 Coze 免费打造自己的微信 AI 机器人 1. 设计你的 AI 机器人: 确定功能范围。 编写【prompt】提示词,设定 Bot 的身份和目标。 2. 创建知识库: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 创建知识库路径:个人空间 知识库 创建知识库。 知识库文档类型支持:本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库好不好用,跟内容切分粒度有很大关系,可以在内容中加上一些特殊分割符,比如“”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“”。最终的知识库结果中,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。
2025-02-14
知识库中是否有搭建在线RAG知识库的相关内容?
知识库中有搭建在线 RAG 知识库的相关内容。 RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型提供额外的、来自外部知识源的信息。 自顶向下,RAG 的流程分为离线数据处理和在线检索两个过程。离线数据处理的目的是构建知识库,知识按某种格式及排列方式存储在其中等待使用。在线检索是利用知识库和大模型进行查询的过程。 对于 RAG 来讲,检索的质量直接影响生成的结果,常见的检索方法有关键词检索和语义检索。关键词检索是最传统和基础的方法,基于查询词与文档中词语的精确或近似匹配,实现简单但难以处理同义词和上下文语义。语义检索将查询和文档映射到同一语义空间,通过计算向量相似度判断相关性,能捕捉深层语义但计算成本较高。 在构建知识库的流程中,在线检索各个流程的“是什么”与“为什么”同等重要。例如在检索环节,选择合适的检索方法或组合对系统性能至关重要。 大模型存在无法记住所有知识尤其是长尾知识、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高等缺点,而 RAG 具有数据库存储和更新稳定、数据更新敏捷且可解释、降低大模型输出出错可能、便于管控用户隐私数据、降低大模型训练成本等优点。
2025-02-14
建立本地AI知识库有什么意义
建立本地 AI 知识库具有以下重要意义: 1. 灵活掌控:通过使用像 AnythingLLM 这样的软件,可以对知识库进行更灵活的管理和操作。例如选择文本嵌入模型、向量数据库等。 2. 数据隔离:在 AnythingLLM 中创建独有的 Workspace,能与其他项目数据进行隔离,保障数据的独立性和安全性。 3. 多样对话模式:提供 Chat 模式和 Query 模式。Chat 模式综合大模型训练数据和上传文档数据给出答案,Query 模式仅依靠文档数据回答。 4. 深入理解技术:虽然大多数人不需要自行部署大模型,但通过本地部署和搭建知识库的实操,可以更深入地了解相关技术,如 RAG 技术,包括其文档加载、文本分割、存储、检索和输出等过程,以及文本加载器的作用。 5. 个性化定制:可以根据个人需求上传文档并进行文本嵌入,实现个性化的知识储备和应用。 6. 测试与优化:完成配置后可进行对话测试,不断优化和改进知识库的性能和回答质量。
2025-02-14
如何建立自己知识库
建立自己的知识库可以参考以下方法: 1. 利用 GPT 打造个人知识库: 给 GPT 输入(投喂)定制化的知识,但需注意 GPT3.5(即当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字,容量对于绝大多数领域知识可能不够。 OpenAI 提供了 embedding API 解决方案,embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是数学中表示大小和方向的一个量,通常用一串数字表示,在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。 可以先把大文本拆分成若干个小文本块(也叫 chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,这个向量跟文本块的语义相关。在一个地方(向量储存库)中保存这些 embeddings 向量和文本块,作为问答的知识库。当用户提出一个问题时,该问题先通过 embeddings API 转换成问题向量,然后将这问题向量与向量储存库的所有文本块向量比对,查找距离最小的几个向量,把这几个向量对应的文本块提取出来,与原有问题组合成为新的 prompt,发送给 GPT API。 2. 本地部署大模型以及搭建个人知识库: 利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用,在进行本地知识库的搭建实操之前,需要先对 RAG 有一个大概的了解。 RAG 应用包括文档加载(从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。 文本加载器就是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-02-13
怎样搭建本地ai知识库
搭建本地 AI 知识库的步骤如下: 1. 了解硬件要求:运行大模型需要较高的机器配置,例如生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型);生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM;生成音频大模型,最低配置为 8G VRAM 等。 2. 了解 RAG 技术:利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。RAG 技术包括文档加载、文本分割、存储、检索和输出等 5 个过程。其中,文档加载可从多种不同来源加载文档,文本分割将文档切分为指定大小的块,存储涉及将切分好的文档块进行嵌入转换成向量形式并存储到向量数据库,检索通过某种检索算法找到与输入问题相似的嵌入片,最后把问题以及检索出来的嵌入片一起提交给 LLM 生成答案。 3. 安装和配置 AnythingLLM:安装地址为 https://useanything.com/download 。安装完成后进入配置页面,主要分为三步,即选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库:在 AnythingLLM 中创建自己独有的 Workspace 跟其他的项目数据进行隔离。首先创建一个工作空间,然后上传文档并且在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后测试对话。 需要注意的是,虽然本地可以搭建知识库,但不一定能跑起来。如果想要更顺滑的体验知识库,可以参考文章 。
2025-02-13
如何用ai建立自己的知识库?
以下是用 AI 建立自己知识库的方法: 1. 使用 GPT 建立: 将大文本拆分成若干小文本块(chunk)。 通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成问题向量,与向量储存库中的文本块向量比对,提取距离最小的几个向量对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如,对于一篇万字长文,拆分成多个文本块,如“文本块 1:本文作者:越山。xxxx。”等,当提问“此文作者是谁?”时,通过比较 embeddings 向量,提取关联度高的文本块发送给 GPT API 回答问题。 2. 使用 Coze 建立: 确定功能范围,编写 prompt 提示词,设定 Bot 的身份和目标。 创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径为:个人空间 知识库 创建知识库。支持的文档类型包括本地文档、在线数据、飞书文档、Notion 等,本次可使用本地文档。按照操作指引上传文档、分段设置、确认数据处理。小技巧:在内容中加上特殊分割符“”,分段标识符号选择“自定义”,内容填“”,以便于自动切分数据。 创建工作流,告诉 AI 机器人按流程处理信息。创建工作流路径为:个人空间 工作流 创建工作流。工作流设计好后,先点击右上角“试运行”,测试无误后点击发布。如果任务和逻辑复杂,可以结合左边“节点”工具来实现,如调用大模型总结分析知识库内容、调用数据库存储用户输入信息、调用代码处理复杂逻辑等。个人建议:工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很重要。
2025-02-13
我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架,提供下prompt样例
以下是几种适用于在飞书上构建企业每日利润表分析与汇报助手的 prompt 框架及样例: 1. ICIO 框架: 指令:明确执行的具体任务,如“分析企业每日利润表并生成详细报告”。 背景信息:提供执行任务的背景信息,如“企业近期业务拓展,成本有所增加”。 输入信息:大模型需要用到的一些信息,如“利润表的各项数据”。 输出信息:明确输出的具体信息的要求,如“报告以表格形式呈现,包含各项利润数据的同比和环比变化,并给出简要分析”。 2. BROKE 框架: 背景:说明背景,如“公司处于业务增长阶段,需要密切关注利润情况”。 角色:设定特定的角色,如“利润表分析专家”。 目标:明确任务的目标,如“准确分析每日利润表,为管理层提供决策支持”。 关键结果:明确可以衡量的结果,如“报告中的分析结论能帮助管理层制定有效的成本控制策略”。 调整:根据具体的情况,来调整具体的结果,如“根据市场变化调整利润分析的重点”。 3. CRISPIE 框架: 能力和角色:期望大模型扮演的角色洞察,如“专业的财务分析师”,提供幕后洞察力、背景信息和上下文。 声明:简洁明了的说明希望完成的任务,如“对每日利润表进行全面深入分析”。 个性:回应的风格、个性或者方式,如“以简洁明了、数据准确为特点”。 实验:提供多个回答的示例。 4. 情境框架: 情境:描述当前的情况,如“企业面临市场竞争,利润波动较大”。 任务:明确要完成的任务,如“分析每日利润表,找出利润波动的原因”。 行动:说明采取的行动,如“对各项收入和成本进行详细比对”。 结果:阐述期望得到的结果,如“生成包含原因分析和建议的报告”。
2025-02-14
如何使用钉钉中的知识库构建智能问答机器人
以下是使用钉钉中的知识库构建智能问答机器人的步骤: 1. 纯 GPT 大模型能力的微信聊天机器人搭建: 配置极简未来(Link.AI)平台:按照官方教程操作,教程地址为 https://docs.linkai.tech/platform/createapp ,学习补充可参考 https://docs.linkai.tech/platform/quickstart 。 教程中的应用是创建一个具体的 AI 问答机器人应用。 教程中的知识库是给绑定到指定问答机器人的资料数据集,让机器人基于这些内容回答问题。 知识库应用中的应用设定是给 AI 机器人的提示词内容或者人设,关于提示词可查看教程 https://waytoagi.feishu.cn/wiki/OqJQwzq2wi9EIOkFtFkclM24nSe 。 创建成功的 AI 应用,记住应用的应用 ID,用于后续对接微信聊天机器人。 生成 API Key 用于后续功能对接,地址为 https://linkai.tech/console/interface ,点击创建 API Key 并记住。 2. 用 Coze 免费打造自己的微信 AI 机器人: 设计 AI 机器人: 开始节点和结束节点会自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将开始节点和知识库左侧节点连接,知识库输入引用开始节点的变量“Question”,点击“+”号选择之前创建好的知识库,将知识库右侧节点与结束节点左侧连起来。 结束节点配置:用于输出 AI 机器人的最终结果,回答格式设置为“您的问题:{{question}} 问题的答案:{{answer}}”,在输出变量那里定义“question”引用“开始节点的 Question”,“answer”引用“知识库节点的输出 output”,回答模式选择使用设定的内容直接回答。 试运行测试:点击右上角“试运行”,输入问题如“AIGC 课件”,点击右下角“运行”,查看工作流每一步的详细输入和输出。
2025-02-12
如何构建一个检查word文档格式的智能体
构建一个检查 word 文档格式的智能体可以参考以下步骤: 1. 考虑到对照精读环节适合批处理形式,使用“分段输入正文”将正文分割,用 LLM 节点批处理每一段的对照精读,最终“拼合精读结果”以输出完整文本。 2. 用户输入原文时,在 AI 对话窗口中通过开场白提示用户按格式输入文章,用“”符标记标题句。 3. 用 Python 脚本去掉标题句,并把剩下内容按照段落的换行逐段输出为 Array<String>格式。附上相关 Python 代码。 4. 试运行以验证节点是否按预期运作,分次输出每一段原文。 此外,在创建智能体的知识库方面: 1. 手动清洗数据可提高准确性,如创建画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以“”分割。 2. 对于本地 word 文件,注意不能一股脑将所有内容放入训练,应先放入大的章节名称内容,再按固定方式人工标注和处理章节内详细内容。 3. 完成后点击发布,确保在 Bot 商店中能搜到,否则无法获取 API。
2025-02-10
怎么构建本地知识库
构建本地知识库的步骤如下: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可解决依靠未包含在训练集中的数据的问题。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,包括非结构化、结构化和代码等。 文本分割将文档切分为指定大小的块。 存储包括将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出将问题和检索出的嵌入片提交给 LLM 生成答案。 2. 通过 Open WebUI 使用大模型: 访问相关网址,使用邮箱注册账号。 Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式。 3. 进阶搭建: 安装 AnythingLLM 软件,其包含 Open WebUI 的能力并支持选择文本嵌入模型和向量数据库,安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建工作空间,上传文档并进行文本嵌入,选择对话模式(Chat 模式会综合训练数据和上传文档数据给出答案,Query 模式仅依靠文档数据给出答案),最后测试对话。
2025-02-10
数据集构建
以下是关于数据集构建的相关信息: Panda70M 数据集: 构建过程:从 HDVILA100M 数据集中筛选高质量视频片段,使用多个跨模态教师模型生成描述,通过微调检索模型选择最佳描述作为注释。 模型结构:设计语义感知的视频分割算法,将长视频分割成语义一致的片段,使用包括图像描述模型和视频视觉问答(VQA)模型在内的教师模型生成候选描述,微调细粒度的视频到文本检索模型选择最佳描述。 实验结果:在视频描述任务中,使用 Panda70M 预训练的模型在 MSRVTT 和 MSVD 数据集上的性能显著优于官方权重;在视频和文本检索任务中,预训练的 Unmasked Teacher 模型在 MSRVTT、DiDeMo 和 MSVD 数据集上的零样本和微调检索性能也优于官方权重。 总结归纳:Panda70M 是创新的大规模视频数据集,结合多模态输入和先进模型训练技术,提高视频描述质量和准确性,为视频理解和生成任务提供资源并推动研究进展。 相关工作:提到了与 Panda70M 相关的如 HDVILA100M、HowTo100M 等工作,为视频数据集构建和注释提供基础。 RAG 提示工程中的数据集构建: 动手做一个 RAG 提示词:将主要提示词放到 System 中控制模型行为与设定,User 提示词预置提问的话,重点在于{Query}这种特殊变量形式写法。 准备数据集:可以上传自己的测试数据集,也可以使用 PromptLayer 提供的测试数据集,目前支持 Json 和 CSV 两种格式,注意上传中文数据集可能出现乱码。 开始测试:点击创建的数据集进行测试前配置,免费账户可一次性测试 4 个 Q&A 对,付费账户可进行大批量测试。 中文数据集: 文本匹配相关的中文数据集包括: :包括 88 万文本蕴含中文文本蕴含数据集的翻译与构建,基于深度学习的文本蕴含判定模型构建。 :给定问题答案,以及该答案是否是该问题的答案之一的标记。 :给定文本形式的技术需求和技术成果,以及需求与成果的关联度标签。 :中文自然语言推理数据集,通过翻译加部分人工修正的方法从英文原数据集生成。
2025-02-07
多模态是什么?如何使用多模态模型构建 AI 智能体
多模态是指对同一概念的多维度理解,例如人类可以边看、边交谈,还能同时听着背景音乐和察觉危险,而仅靠语言来描述和理解世界是远远不够的。拥有多模态能力的模型可以更全面地学习世界,理解人类的行为和需求,提高任务解决能力,并克服单一模态的局限性,是让 AI 能在现实世界中运行极为重要的一环。 2023 年 9 月 GPT4v 的发布把大语言模型的竞赛带入了多模态模型(LMM Large Multimodal Models)的时代,如 ChatGPT 可以看图说话,还能通过内置的 DallE 3 直接画图;几个月后 Google 的 Gemini 正式推出,直接支持了文本、视频和声音多种模态。今年 5 月,OpenAI 完成了 GPT4 的实时听说和视频模态输入,发布了 GPT4o,向智能体方向迈进了一大步。 多模态大模型由解码器、backbone、Generator 等部件组成,左侧多模态理解,右侧生成输出。其架构基于大圆模型,能识别页面组件结构和位置绝对值信息,并与组件、文本映射。 在应用方面,多模态模型有着广泛的用途。例如 Stable Diffusion 模型可用于带货商品图生成、模特服装展示、海报生成、装修设计等。吉梦 AI 提供 AI 视频生成等能力,吐司是类似的在线生成平台,具备多种 AI 能力。 关于模型训练,需要大量图像数据和标签化处理。AI 视频生成原理主要基于特定架构,如基于 Sara 的整体架构,采用 diffusion Transformer 架构,以扩散模型通过随机造点、加噪和去噪得到连续图像帧,输入视频可看成若干帧图片,经处理后生成视频。Meta 的视频生成模型能生成视频和声音,可替换视频中的物体和人脸,其把 diffusion 架构换成纯 transformer 架构,基于 LLAMA3 训练,与 diffusion 在 CLIP 等方面有区别。 要使用多模态模型构建 AI 智能体,需要考虑实时性,保持模型能力不变的情况下缩小参数规模,升级架构来提升性能,最好让终端也参与进来分担一部分模型的计算量。同时,让科技变简单,设计出从未有过的硬件产品或重新设计现有的产品,以适应这种毫无机械感、完全类人化的交互方式。
2025-02-06
coze专业版
扣子(Coze)是一款基于自然语言处理和人工智能技术的智能助手平台,具有丰富的插件生态,能帮助用户快速实现个性化智能应用,无需编写复杂代码。 扣子专业版的特点包括: 1. 经过一年多用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 2. 推出专业版服务,主要特性有企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)、更优惠的计费项。 关于 Coze 变现模板配置有以下 4 大步骤: 1. 免费获取模板:访问 Zion 无代码平台(zion.functorz.com)注册账号,并填写邀请码“coze”领取价值 229 元的一个月专业版代金券。老用户可在 Zion 公众号发送“coze”联系客服领取,通过 Coze 优惠券可解锁专业版 229 所有权益。 2. 创建模板并升级版本:Coze 变现模板提供 3 种版本,即极简版、一键配置版(此次教程介绍的版本)、多智能体版。可先创建模板体验,再根据需求选择合适模板,使用抵扣券升级以解锁更多功能。 3. 项目预发布:完成项目预发布后,通过点击生成的链接,进入智能体配置流程。目前链接为预发布链接,若要发布上线可点击“去发布”并继续“发布上线”,以完成项目上线流程。Zion 提供免费域名,也可配置自定义域名增强品牌可信度及提升搜索引擎排名。 Coze 今晚上线新功能,能直接“拖拉拽”做网页让 bot 交互可控,从一个玩具变得具有变现能力。进入该功能需有 Coze 账号(专业版或普通版均可),创建时选择“创建应用”,可选择模板或空白应用,正上方选择“用户界面”,大部分人可能没注意到该页面在右上角可调试。更多使用方法等待进一步教程。
2025-02-14
如何进入AI时代,如何寻找和使用AI工具来提高工作和学习效率,以及如何解决个性化和专业化需求的问题
进入 AI 时代并利用 AI 工具提高工作和学习效率、解决个性化和专业化需求问题,可参考以下要点: 1. 对于 AI 发展的态度:不盲目跟风(FOMO),也不消极对待(JOMO)。 2. 成功的 AI 公司可能需要打造自身的数据飞轮,尤其是在 ToC 场景中寻求突破,因为 C 端能带来的数据飞轮效应在 AI 早期可能是决胜关键。 3. 有专业壁垒的垂直模型可能是机会所在,很多高价值、特定领域的工作流程依赖于丰富的专有数据集。 4. 大模型产品的两个方向: 个性化:给 AI 装上“记忆”,使其成为工作助理或陪伴者。 场景化:给 AI 装上“手”和“眼睛”。 5. 在工作中使用 AI 工具的情况: 最常用的是通过自然语言对话完成一次性任务,90%的产品从业者用其辅助文本信息处理生成。 63%的用户用其辅助搜索,甚至优先用 AI 搜索信息。 45%的用户借助其生成图片以及音视频用于快速制作 demo 演示效果,也有少部分用于制作最终产品。 29%的用户将其作为工作创意助手以及数据报告的处理。 6. AI 工具的改进方向: 提高创新性和创新辅助能力,关注产品从业者的工作模式和思维习惯。 提升个性化和智能化程度,理解并适应用户的个性化需求。 更精准识别合适场景,满足不同场景的使用需求。 7. 使用 AI 完成任务时: 对于简单需求,给 AI 下达明确命令完成一次性任务。 了解 AI 编程的边界和限制。 遵循编程准则,能不编尽量不编。优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成开源工具,然后考虑付费服务,实在找不到才考虑自己编程,且编程要以终为始,聚焦目标。 总之,在 AI 时代,要积极拥抱 AI,用起来并有效迭代,形成正确的底层工作逻辑,设计合理流程,按节奏确定目标和复盘。同时,把握好融资节奏,适应对创始人更高、更全面的要求。
2025-02-11
你是一个专业的AI工具测评师,用过市场上的所有AI工具,请制作一个PPT,介绍一个如何使用AI进行办公提效,并根据你的经验,对使用过的AI工具进行分类对比和测评,对比结果以表格形式呈现,需要包括是否收费,国内是否可用,主要面向对象,优点和缺点,突出功能等
以下是为您制作的关于如何使用 AI 进行办公提效以及 AI 工具分类对比和测评的 PPT 内容: 幻灯片 1:封面 标题:AI 助力办公提效及工具测评 幻灯片 2:目录 AI 在办公中的应用场景 常用 AI 办公工具分类对比 各工具的详细测评 幻灯片 3:AI 在办公中的应用场景 辅助文档处理 自动生成会议记录 办公文件分类管理 语言学习纠错 幻灯片 4:常用 AI 办公工具分类对比(表格形式) |工具名称|是否收费|国内是否可用|主要面向对象|优点|缺点|突出功能| |||||||| |平安好医生 APP|部分功能收费|是|医疗工作者和患者|辅助医生诊断,提高准确性|可能存在误判|辅助疾病诊断| |腾讯会议|部分高级功能收费|是|企业和个人|自动生成会议记录,方便回顾|语音识别准确性有待提高|会议记录生成| |字体管家 APP|部分字体收费|是|设计和文字工作者|生成多种书法字体|字体版权问题|书法字体生成| |醒图 APP|部分功能收费|是|摄影爱好者|提供构图建议,提升照片质量|对复杂场景的建议有限|摄影构图建议| |游戏内商城推荐功能|部分游戏收费|是|游戏玩家|根据需求推荐道具|推荐的精准度因人而异|游戏道具推荐| |彩云天气分时预报|部分功能收费|是|出行人群|提供精准分时天气预报|天气变化的不确定性|分时天气预报| |医渡云病历分析系统|收费|是|医疗机构|分析病历辅助诊断|数据安全性|病历分析| |讯飞听见会议总结功能|部分功能收费|是|企业和个人|自动总结会议发言内容|对复杂语言理解有限|会议发言总结| |书法临摹软件|部分功能收费|是|书法爱好者|提供临摹指导和评价|对不同书法风格的适应性|临摹辅助| |下厨房口味调整功能|部分功能收费|是|烹饪爱好者|根据反馈调整菜谱口味|口味调整的局限性|菜谱口味调整| |英语流利说纠错功能|部分课程收费|是|语言学习者|帮助纠正错误|对口语表达的纠错有限|语言学习纠错| |豆瓣电影剧情分析工具|免费|是|电影爱好者|提供剧情深度解读|分析的主观性|剧情分析| |腾讯文档分类功能|部分高级功能收费|是|企业和个人|自动分类办公文件|分类准确性依赖数据|文件分类| |美丽修行定制方案功能|部分功能收费|是|美容护肤人群|定制个性化护肤方案|方案的普适性|护肤方案定制| 幻灯片 5:总结 强调 AI 在办公领域的重要性和潜力 鼓励根据实际需求选择合适的 AI 工具提升办公效率 以上 PPT 内容仅供参考,您可以根据具体需求进行修改和完善。
2025-02-10
我是科研人员,有什么方法能构建自己专业领域的知识库吗?请给出详细的操作步骤,并说明需要什么样的软硬件设备?预算多少?
构建自己专业领域的知识库可以按照以下步骤进行: 步骤一:明确知识库的目标和范围 首先,确定您想要涵盖的专业领域的具体范围和知识库的主要目标,例如是为了内部研究使用、对外分享知识还是其他特定用途。 步骤二:收集和整理资料 收集相关的文献、研究报告、实验数据、案例等各种资料,并对其进行分类和整理。 步骤三:选择合适的技术架构 1. 考虑使用数据库管理系统,如 MySQL、Oracle 等。 2. 或者采用知识图谱技术来构建更直观的知识关系。 步骤四:确定软硬件设备 1. 硬件方面,需要一台性能较好的计算机,具备足够的内存和存储空间。预算大约在 5000 10000 元,具体取决于配置要求。 2. 软件方面,需要操作系统(如 Windows 或 Linux)、数据库管理软件、文本编辑工具等。 步骤五:设计知识库的结构 规划好知识的分类体系、标签系统和索引方式,以便于快速检索和查找。 步骤六:数据录入和维护 将整理好的资料录入到知识库中,并定期更新和维护,确保知识的准确性和时效性。 步骤七:测试和优化 在初步构建完成后,进行测试,检查检索功能是否正常,知识的展示是否清晰,并根据测试结果进行优化。 需要注意的是,实际的预算和设备需求可能会因具体情况而有所不同,您可以根据自己的需求和资源进行调整。
2025-02-06
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
怎么做chatbot特定角色的专业知识rag优化?
以下是关于 chatbot 特定角色的专业知识 RAG 优化的方法: 1. 复制预置的 Bot: 访问,单击目标 Bot。 在 Bot 的编排页面右上角,单击创建副本。 在弹出的对话框中,设置 Bot 名称、选择 Bot 的所属团队,然后单击确定。 可以在新打开的配置页面修改复制的 Bot 配置。 点击 Bot 名称旁边的编辑图标来更改 Bot 名称。 在人设与回复逻辑区域,调整 Bot 的角色特征和技能。您可以单击优化使用 AI 帮您优化 Bot 的提示词,以便大模型更好的理解。 在技能区域,为 Bot 配置插件、工作流、知识库等信息。 在预览与调试区域,给 Bot 发送消息,测试 Bot 效果。 当完成调试后,可单击发布将 Bot 发布到社交应用中,在应用中使用 Bot。 2. 集成 Workflow 到 Bot 里: 选择 GPT4作为聊天模型。 添加实用的插件,丰富 Bot 的能力。 设计人设和提示词,例如: Your Persona Greetings,seeker of knowledge!I am Dr.Know,your guide to the vast expanse of information.In a world brimming with questions,I stand as a beacon of enlightenment,ready to illuminate the shadows of uncertainty.Whether you're in search of wisdom from ancient lore,keen on unraveling the mysteries of the cosmos,or simply wish to satiate your curiosity on matters both grand and mundane,you've come to the right place.Ask,and let the journey of discovery begin.Remember,in the realm of Dr.Know,there is nothing I don't. Your Capabilities search_and_answer Your most important capability is`search_and_answer`.When a user asks you a question or inquires about certain topics or concepts,you should ALWAYS search the web before providing a response.However,when a user asks you to DO SOMETHING,like translation,summarization,etc.,you must decide whether it is reasonable to use the`search_and_answer`capability to enhance your ability to perform the task. ALWAYS search the web with the exact original user query as the`query`argument.For example,if the user asks\"介绍一下 Stephen Wolfram 的新书 What Is ChatGPT Doing...and Why Does It Work?\",then the`query`parameter of`search_and_answer`should be exactly this sentence without any changes. How to Interact with the User
2025-01-26