Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

微软的AI方面的投资

Answer

微软在 AI 方面进行了大量投资。

首先,微软巨额投资了 OpenAI,但 GPT-4 并非微软完全自有。微软未将大部分投资的算力直接给 OpenAI 使用,且不久前完成了对 Inflection AI 的收购,准备利用其专业团队和数据集,加上自身合成数据,从头训练一个约五千亿参数规模的 MOE 模型 MAI-1。

其次,微软最初向 OpenAI 出资 10 亿美元,以服务器上的计算时间作为回报,随着双方信心增强,交易规模不断扩大,目前微软已向 OpenAI 投入 130 亿美元。

此外,在 2019 年,微软投资 10 亿美元给 OpenAI 成为其最大的机构股东。

Content generated by AI large model, please carefully verify (powered by aily)

References

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

在微软这边,虽然巨额投资了OpenAI,但GPT-4再强大也毕竟不是自己的。从Semi Analysis的内部消息了解到,微软也并没有将投资的大部分算力直接给到OpenAI使用;就在不久前,微软完成了对Inflection AI的收购,把Deepmind的前联合创始人穆斯塔法·苏莱曼(Mustafa Suleyman)纳入麾下,准备利用他们专业的预训练团队和数据集,再加上自己的合成数据,从头训练一个和GPT-4相当的大约五千亿参数规模的MOE模型MAI-1。配图1.01:Mega 7与OpenAI的竞争格局图另一方面是数据。因为起步早,OpenAI在收集使用数据方面一直处于领先地位。但现在情况已经发生了改变,公开的用于训练的文本数据几乎耗尽,所以大家都不约而同地采用合成数据。但文本之外的图像和视频,需要更直接地接触消费者,才能拿到新数据。Google与Meta各自的产品线都覆盖了超过三十亿的用户,这是最大的优势。所以,每次有人问OpenAI有没有拿Youtube的数据来训练,他们都避而不谈。。模型的竞赛,就是资本和用户的竞赛。OpenAI打响了第一枪,山姆·奥特曼四处游说,搞募资的同时,还得想方设法扩大ChatGPT的用户规模。现在Meta和Google全力以赴,他们从算力到模型再到用户,配置齐备,关键是资本充足;微软虽然投资最多,但和OpenAI纠结的关系,让自己不得不背地里另起炉灶;Amazon也有同样的问题,没法控制自己投资的AI联盟Anthropic,他们就像是在参加一场独臂搏斗。

OpenAI 真正想要什么 | WIRED

为了实现OpenAI的愿景,数十亿美元的风险投资甚至都不是赌注。创造大型语言模型的神奇Big Transformer方法需要大型硬件。GPT系列的每一次迭代都需要呈指数级增长的功率——GPT-2有超过10亿个参数,而GPT-3将使用1 750亿个参数。OpenAI现在就像《大白鲨》中的Quint,在鲨鱼猎人看到大白鲨的体型之后。Altman说:“事实证明,我们并不知道我们需要多大的船。”显然,只有少数几家公司拥有OpenAI所需的资源。“我们很快就锁定了微软,”Altman说。微软首席执行官Satya Nadella和首席技术官Kevin Scott的功劳在于,这家软件巨头能够克服一个令人不舒服的现实:在花费了20多年时间和数十亿美元建立了一个所谓的尖端AI研究部门之后,微软需要一家成立仅几年的小公司注入创新元素。Scott说,不仅仅是微软落伍了,“每个人都落伍了”。他说,OpenAI专注于追求AGI,这让它取得了类似于登月的成就,而那些大公司甚至都没有瞄准这个目标。这也证明,不追求生成式AI是微软需要解决的失误。Scott说:“你显然需要一个前沿模型。”微软最初出资10亿美元,以其服务器上的计算时间作为回报。但随着双方信心的增强,交易规模不断扩大。现在,微软已经向OpenAI投入了130亿美元。Scott说:“在前沿领域的投入是非常昂贵的。”

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

Google拥抱AI的方式非常学术,他们最早成立了Google Brain尝试大规模神经网络训练,点爆了这个领域的科技树,像GANs这样充满灵感的想法也是来自于Google(Ian Goodfellow同学当时任职于Google Brain)。在2015年前后Google先后推出了TensorFlow还有TPU(Tensor Processing Unit-张量芯片),同年还收购了DeepMind来扩张研究实力。Google AI更倾向于用云端的方式给大众提供AI/ML的算力和全流程工具,然后通过投资和收购的方式把智能融入到自己的产品线。现在几乎所有的科技巨头,都在完善自己的“智能”基础设施,Microsoft在2019年投资了10亿美金给OpenAI成为了他们最大的机构股东;Facebook也成立了AI研究团队,这个仅次于他们Reality Lab的地位,Metaverse里所需的一切和“智能”相关的领域他们都参与,今年底还和AMD达成合作,投入200亿美元并用他们的芯片来搭建新的“智能”数据中心;然后就是Tesla,在造电车之外不务正业搭建了世界上规模最大的超级电脑Dojo,它将被用来训练FSD的神经网络和为未来的Optimus(Tesla人形机器人)的大脑做准备。正如过去二十年见证了“云计算技术栈”的出现一样,在接下来的几年里,我们也期待着一个巨大的基础设施和工具生态系统将围绕着智能架构-Infrastructure 3.0建立起来。Google目前正处于这个领域的前沿,他们试图自己的大部分代码用软件2.0的范式重写,并在新的智能架构里运行,因为一个有可能一统江湖的“模型”的已经出现,虽然还非常早期,但机器智能对世界的理解很快将趋向一致,就像我们的大脑皮质层理解世界那样。

Others are asking
0基础,如何开始学习ai
对于 0 基础学习 AI 的朋友,以下是一份详细的学习指南: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是 0 基础还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。但请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-01-30
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 此外,您还可以参考《雪梅 May 的 AI 学习日记》,该日记适合纯 AI 小白。其学习模式是输入→模仿→自发创造,学习内容可根据个人兴趣在 waytoAGI 社区寻找最新的内容。学习时间较为灵活,且学习资源免费开源。
2025-01-30
能够制作工程预算单的AI推荐
目前在制作工程预算单方面,暂时没有特别突出的专门 AI 工具推荐。但您可以尝试使用一些通用的办公软件,它们可能具有相关的功能或模板,例如 Microsoft Excel 等,通过设置公式和参数来辅助您完成工程预算单的制作。
2025-01-30
我想要一个能够计算工程预算的软件或者AI,请问我推荐
目前市面上有一些能够计算工程预算的软件和具备相关功能的 AI 工具。例如广联达,它是一款在建筑工程领域广泛使用的预算软件,功能较为全面和专业。还有鲁班软件,也在工程预算计算方面有一定的优势。 此外,一些新兴的 AI 工具如某些基于大数据和机器学习算法的在线预算计算平台,能够根据您输入的工程参数和要求,快速生成较为准确的预算结果。但在选择时,您需要考虑软件的适用性、价格、操作便捷性等因素,以满足您的具体需求。
2025-01-30
想让ai帮助写一篇论文
在论文写作方面,AI 技术的应用能提供多方面的辅助。以下为您介绍一些相关的 AI 工具和利用 AI 写论文、课题的方法: 常用的论文写作 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 利用 AI 写论文的方法: 目前大多数人零碎使用 AI 工具,未系统应用到工作场景,可能导致整体效率不高。要形成适合自己的 AI 工作方法论和流程,比如在挑选和切换工具时避免浪费时间。 利用 AI 写课题的步骤和建议: 1. 确定课题主题:明确研究兴趣和目标,选择有价值和创新性的主题。 2. 收集背景资料:使用学术搜索引擎和文献管理软件等 AI 工具搜集相关文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 5. 撰写文献综述:借助 AI 工具确保内容准确完整。 6. 构建方法论:根据需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若涉及数据,用 AI 数据分析工具处理和解释。 8. 撰写和编辑:用 AI 写作工具写各部分,并检查语法和风格。 9. 生成参考文献:用 AI 文献管理工具生成正确格式。 10. 审阅和修改:用 AI 审阅工具检查逻辑性和一致性,根据反馈修改。 11. 提交前的检查:用 AI 抄袭检测工具确保原创性,做最后的格式调整。 请注意,AI 工具是辅助,不能完全替代研究者的专业判断和创造性思维,使用时要保持批判性思维,确保研究质量和学术诚信。
2025-01-30
学习AI技术从哪里开始
对于新手学习 AI ,可以从以下几个方面开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 如果您的学习方向偏向技术研究,需要掌握的知识包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您的学习方向偏向应用,需要掌握的知识包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-30
我想跟踪微软的动态
以下是微软的相关动态: 1 月 3 日: 微软研究团队利用合成数据训练 AI,减少成本和偏见,生成 100 种语言的文本数据提高训练效率,论文链接:https://arxiv.org/abs/2401.00368 ,https://x.com/xiaohuggg/status/1742473942252855795?s=20 。 微软推出 Microsoft 365 Copilot Chat 基础版支持 GPT4o,功能包括联网查询、文档处理、内容制作等;高级版支持创建 AI 代理,提升 CRM 和实时服务效率。无缝连接 Office 系列工具显著提高生产力。 。 1 月 17 日: 微软推出 Microsoft 365 Copilot Chat 基础版支持 GPT4o,功能包括联网查询、文档处理、内容制作等;高级版支持创建 AI 代理,提升 CRM 和实时服务效率。无缝连接 Office 系列工具显著提高生产力。 。 Microsoft Build 2024: 发布包括大杀器 Copilot Studio 在内的 50+项更新。 硬件层面:与英伟达、AMD 合作,推出新芯片 Cobalt 。 生态层面:与众多模型生态合作,推出 Phi3vision 多模态小模型,更新 Azure AI Studio 。 数据层面:Fabric 支持实时智能。 工具链层面:GitHub Copilot 迎来 Extension 。 应用层面:推出 Copilot Team 和 Copilot Studio 。
2025-01-25
微软自研的大模型是什么
微软自研的大模型包括 MAI1 大模型。MAI1 大模型由 Inflection CEO Mustafa Suleyman 负责,模型规模超过 5000 亿参数,远超微软之前的开源模型,使用 Inflection 技术和数据,但独立于原有项目 Pi。来源:https://t.co/aba77GFcnD 此外,微软还在 Microsoft Build 2024 大会上发布了包括 Phi3vision 多模态小模型等相关内容。
2024-12-13
微软 Sora 的论文
以下是关于微软 Sora 论文的相关信息: 论文标题:Sora:A Review on Background,Technology,Limitations,and Opportunities of Large Vision Models 作者:Yixin Liu,Kai Zhang,Yuan Li,Zhiling Yan,Chujie Gao,Ruoxi Chen,Zhengqing Yuan,Yue Huang,Hanchi Sun,Jianfeng Gao,Lifang He,Lichao Sun 期刊:arXiv 发表时间:2024/02/27 数字识别码:arXiv:2402.17177 摘要:Sora 是一个文本到视频生成的人工智能模型,由 OpenAI 于 2024 年 2 月发布。该模型经过训练,可以根据文本指令生成逼真或富有想象力的场景的视频,并显示出模拟物理世界的潜力。基于公开的技术报告和逆向工程,本文全面回顾了文本到视频人工智能模型的背景、相关技术、应用、剩余挑战和未来方向。我们首先追踪索拉的发展,并研究用于构建这个“世界模拟器”的底层技术。然后,我们详细描述了索拉在从电影制作、教育到营销等多个行业的应用和潜在影响。我们讨论了广泛部署索拉需要解决的主要挑战和局限性,例如确保安全、公正的视频生成。最后,我们讨论了索拉和视频生成模型的未来发展,以及该领域的进步如何能够实现人类人工智能交互的新方式,提高视频生成的生产力和创造力。 背景:Sora 是一项重大突破,类似于 ChatGPT 在 NLP 领域的影响。Sora 是第一个能够根据人类指令生成长达一分钟视频的模型,同时保持较高的视觉质量和引人注目的视觉连贯性,从第一帧到最后一帧都具有渐进感和视觉连贯性。这是一个里程碑,对生成式 AI 的研究和发展产生了深远影响。如图 2 所示,Sora 在准确解读和执行复杂的人类指令方面表现出非凡的能力。该模型可以生成包含多个角色的详细场景,这些角色在错综复杂的背景下执行特定的动作。研究人员认为,Sora 不仅能熟练处理用户生成的文本提示,还能辨别场景中各种元素之间复杂的相互作用。此外,Sora 的进步还体现在它能够生成具有细微运动和交互描绘的扩展视频序列,克服了早期视频生成模型所特有的短片段和简单视觉渲染的限制。这种能力代表了人工智能驱动的创意工具的飞跃,使用户能够将文字叙述转换成丰富的视觉故事。总之,这些进步显示了 Sora 作为世界模拟器的潜力,它可以提供对所描绘场景的物理和背景动态的细微洞察。为了方便读者查阅视觉生成模型的最新进展,研究者在论文附录汇编了近期的代表性工作成果。 您可以通过以下链接阅读论文原文:https://arxiv.org/abs/2402.17177
2024-08-08
微软AI证书考取的流程是什么
考取微软AI证书的流程通常包括以下几个步骤: 1. 选择证书:确定你想要考取的微软AI证书类型,例如"Azure AI Engineer Associate"(AI102)或"Azure AI Fundamentals"(AI900)。 2. 了解考试内容:访问微软官方网站,了解所选证书的考试大纲、测试的技能点以及考试要求。 3. 学习准备:根据考试大纲,通过官方或第三方提供的教材、在线课程、实验室练习和模拟考试进行学习。 4. 获取学习资源:利用微软提供的资源或参加微软官方认证的培训课程来准备考试。 5. 注册考试:在准备好之后,在微软认证的考试平台上注册并安排考试时间。 6. 参加考试:在预定的时间和地点参加考试,考试可能包括多种题型,如单选题、多选题、判断题等。 7. 考试通过:考试合格后,你将获得微软颁发的AI证书。 8. 认证续订:某些微软认证可能需要定期续订,以保持认证的有效性。 具体步骤可能会有所变化,建议访问微软官方认证页面或相关资源获取最新信息。以下是一些微软AI证书的官方链接,你可以访问了解更多详情: 此外,根据搜索结果,还有一些博客和论坛提供了关于微软AI证书考取的经验和指南,你可以作为参考:
2024-06-13
微软桌面端可以使用GPT-4o吗
微软最新推出的 AIPC 可以使用GPT4o。
2024-05-21
我想学会使用ai,该学习哪些方面的知识
如果您想学会使用 AI ,以下是一些您需要学习的方面: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 学习路径偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 学习路径偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-27
大学生学习ai的哪个方面更好
对于大学生学习 AI,以下几个方面是不错的选择: 1. 编程语言:从 Python、JavaScript 等编程语言入手,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下坚实基础。 2. 工具和平台:尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。也可以探索一些面向大学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目:参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养对 AI 的思考和判断能力。 在教育领域,AI 带来了很多新的可能性: 个性化学习:可以大规模部署个性化的学习计划,为每个学生提供“口袋里的老师”,理解其独特需求,回答问题或测试技能。 学科学习:有像 Speak、Quazel、Lingostar 这样的应用帮助学习语言,Photomath、Mathly 指导数学学习,PeopleAI、Historical Figures 辅助历史学习。 作业辅助:Grammarly、Orchard、Lex 等工具帮助学生解决写作难题,提升写作水平。还有 Tome、Beautiful.ai 协助创建演示文稿。
2025-01-27
ai在营销方面的应用
以下是 AI 在营销方面的应用: 1. 营销 AI 产品: Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,可用于制作营销视频、产品演示等。 HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。 2. 生成式人工智能在营销中的改变: DALLE 2 和其他图像生成工具已用于广告,如亨氏使用番茄酱瓶的图像论证“这就是人工智能眼中‘番茄酱’的样子”,雀巢使用维米尔画作的人工智能增强版销售酸奶品牌,Stitch Fix 服装公司使用 DALLE 2 根据客户偏好创建服装可视化,美泰使用该技术生成用于玩具设计和营销的图像。 3. 2025 年数字营销趋势中的 AI 驱动营销: AI 将继续成为未来数字营销的基石,但使用需要具备战略性和明确目的,以确保品牌真实性,应追求提升用户体验。 预计到 2025 年,全球 AI 在数字营销领域的市场规模将达到 1260 亿美元。采用 AI 技术的公司在广告点击率上提高了 35%,广告成本减少了 20%,显示出 AI 在提升效率和成本优化方面的作用。 以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
AI智能体对个人工作能力培养方面的启示
AI 智能体对个人工作能力培养有以下启示: 1. 工作方法方面: 彻底让自己变成一个“懒人”。 能动嘴的不要动手,用嘴说出想做的事远比打字快。 能动手的尽量用 AI,用 AI 远比苦哈哈手敲快。 把手上的工作单元切割开,建设属于自己的智能体。 根据结果反馈不断调整自己的智能体。 定期审视自己的工作流程,看哪个部分可以更多地用上 AI。 2. 个人素质方面: 技术层面之外,个人能力的提升是核心,尤其是学习能力和创造能力。 学习能力是通过持续阅读和实践来吸收、消化和积累知识的能力,是构建个人知识体系的基础和个人成长的动力源泉。 为保持竞争力,要培养并维持旺盛的好奇心和持续学习的习惯,广泛阅读,深入研究新领域,不断探索前沿知识,全方位、多角度学习和实践,以积累知识、提高适应能力和创新思维。 3. 技术应用方面: 迅速掌握生成式人工智能的基本概念和潜在影响,重点理解其如何革新工作方式和重塑行业格局。 深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中。 学习提示词技术,编写清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体,让其革新工作方式,多个虚拟伙伴和助手协同工作,提高工作效率和创新能力。 需要注意的是,AI 技术的出现能把大部分人的能力提升到及格线以上,人与人之间最大的差距在于认知差距。对创建 AI 智能体感兴趣的小伙伴,可前往 WaytoAGI 开源免费社区了解(里面有保姆级教程)。
2025-01-22
国内哪款AI应用在咨询解答方面比较好
以下是国内在咨询解答方面表现较好的一些 AI 应用: 1. 抖音搜索:是一个独立 App,增加了 AI 问答功能。字节旗下还有“豆包”这一国民级的 AI 应用入口。 2. 小红书: 点点:独立的 AI 搜索 App,基于小红书和少量外部数据,回答用户提出的攻略、美食、经验等问题。 问点点:小红书 App 内的 AI 问答页面,从检索框可以进入。 3. 作业帮智能辅导:为学生提供个性化学习辅导,使用机器学习、自然语言处理技术,市场规模百亿美元以上。 4. 法信智能法律咨询:解答法律问题提供法律咨询,使用自然语言处理、知识图谱技术,市场规模数亿美元。 此外,国内免费的大模型 APP 有 Kimi 智能助手(Moonshot AI 出品)、文心一言(百度出品)、通义千问(阿里云开发)。
2025-01-21
ai现在主要用于哪个方面
人工智能(AI)目前已广泛应用于多个领域,主要包括以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,辅助贷款决策。 投资分析,帮助投资者做出明智决策。 客户服务,提供 24/7 服务。 3. 零售和电子商务: 产品推荐,根据客户数据推荐感兴趣的产品。 搜索和个性化,改善搜索结果和购物体验。 动态定价,根据市场需求调整价格。 聊天机器人,回答客户问题。 4. 制造业: 预测性维护,避免机器故障停机。 质量控制,检测产品缺陷。 供应链管理,优化供应链提高效率。 机器人自动化,提高生产效率。 5. 交通运输: 自动驾驶技术,实现自主导航驾驶。 车辆安全系统,预防事故。 个性化用户体验,根据偏好调整车辆设置。 预测性维护,减少停机和维修成本。 生产自动化,提高制造效率和质量。 销售和市场分析,制定营销策略。 电动化和能源管理,优化电池使用和充电策略。 共享出行服务,提高服务效率和满意度。 语音助手和车载娱乐,方便控制和获取信息。 车辆远程监控和诊断,及时了解车辆状况。
2025-01-19
我需要专门进行金融投资项目研究,除了定性研究还很关注数据研究,我需要这样的智能体,哪一个智能体平台比较适合?
以下是一些可能适合您进行金融投资项目研究的智能体平台: 1. 蚂蚁的智能体。 2. Coze 的智能体。 3. 扣子平台:例如生物医药小助手就是基于扣子平台创建的,能为用户提供清晰的一步式回答。 4. Cursor 平台:可用于设计如卡密系统等商业化模式。 不过需要注意的是,不同的智能体平台可能具有不同的特点和适用场景,您需要根据自己的具体需求和使用习惯进行选择。
2024-12-26
我是一个投资人,我想针对每个项目建立知识库,类似一个个对话的形式,我把关于某个项目的材料全部丢进一个对话中,然后可以针对每个项目进行提问,或者要求AI帮我产出某种类型的文件。哪个App可以最好的满足我的需求?
以下是一些可能满足您需求的 App 选项: 1. WaytoAGI 网站: 提供和 AI 知识库对话的功能,您可以在此询问任何关于 AI 的问题。 集合了精选的 AI 网站,方便您按需求找到适合的工具。 有精选的 AI 提示词,可复制到 AI 对话网站使用。 会将每天知识库的精华内容呈现给大家。 2. 阿里千问模型:可以作为 AI 模型用于问答机器人的配置。 在配置问答机器人时,需要注意模型、提示词和知识库的协同作用。模型就像拥有无穷智慧的人,提示词能设定其角色和专注技能,知识库则如同工作手册,为其提供特定项目的详细信息。
2024-12-17
YC AI投资趋势
YC AI 投资呈现以下趋势: 消费型人工智能公司掀起浪潮,为 C 端产品带来更大想象空间。 投资领域分布: 65%:B2B SaaS/企业 11%:消费者产品 10%:医疗保健 8%:金融科技 4%:工业 1%:政府科技 1%:教育科技 几大趋势包括: 长尾效应正在延伸。 人工智能基础设施持续成熟。 自训练模型依然需要。 此外,随着 AI 在营销中的集成度不断提高,对 AI 技能的需求更加迫切,公司将继续投资于 AI 教育,打造能够适应技术变化的 AI 驱动团队,协作 AI 学习平台和 AI 导师计划可能会增长,促进跨行业的持续技能发展和知识共享。
2024-11-18
投资相关的AI应用场景有哪些
以下是一些投资相关的 AI 应用场景: 1. 金融服务中的风控和反欺诈:AI 可用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:帮助金融机构评估借款人的信用风险,辅助做出更好的贷款决策。 3. 投资分析:通过分析市场数据,协助投资者做出更明智的投资决策。 4. 智能理财助手:如蚂蚁财富智能理财助手,根据用户风险偏好和资产状况提供投资方案。 此外,还有一些具体的应用案例,比如 FundGuard 是 AI 投资会计系统,为金融领域提供服务。
2024-10-28
哪些AI模型可以帮助个人在股票投资
以下是一些可能有助于个人在股票投资的 AI 模型和相关信息: 目前,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 等是市场上备受瞩目的 AI 模型公司。 在投资领域,AI 将引领新的服务模式,如“智能即服务”,重塑工作和生活,为芯片、云计算等行业带来新的投资机会。企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业的投资额也在增长。 科技巨头通过资本控制 AI 模型公司的趋势明显,如 OpenAI 与微软、Anthropic 与 Google 等的合作。 个人投资者可以关注在温哥华启动的专注于 AI 领域的基金 Brilliant Phoenix,其投资了 OpenAI、Cohere 和 Anthropic 等公司。同时,也有跨境基金如在上海发起的进益安成的 QDLP 跨境基金,专注于为投资者提供合规的人民币出境通道以投资美股二级市场。
2024-10-10
哪些AI模型可以用于个人在股票投资中提高盈利
目前没有特定的 AI 模型被广泛认可能确保个人在股票投资中必然提高盈利。股票市场受到众多复杂且难以预测的因素影响,包括宏观经济状况、政治局势、公司财务状况、行业竞争等。 虽然一些 AI 技术和模型可能在数据分析和预测方面提供一定的帮助,但它们并不能完全准确地预测股票价格的走势和投资的盈利情况。 在股票投资中,依靠单一的模型或技术来获取稳定盈利是不现实的,需要综合考虑多种因素,并结合自身的风险承受能力和投资目标,做出谨慎的决策。
2024-10-10