Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

微软自研的大模型是什么

Answer

微软自研的大模型包括 MAI-1 大模型。MAI-1 大模型由 Inflection CEO Mustafa Suleyman 负责,模型规模超过 5000 亿参数,远超微软之前的开源模型,使用 Inflection 技术和数据,但独立于原有项目 Pi。来源:https://t.co/aba77GFcnD 此外,微软还在 Microsoft Build 2024 大会上发布了包括 Phi-3-vision 多模态小模型等相关内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

XiaoHu.AI日报

-效果堪比随机临床试验,能帮助理解治疗对患者健康的具体影响。-学习患者数据的模式,预测不同治疗方式可能的效果。🔗详细介绍:https://xiaohu.ai/p/73219️⃣🎨Logo Diffusion:快速创建Logo标志-利用AI几秒钟内生成Logo。🔗https://xiaohu.ai/p/7393🔟🦾微软推出MAI-1大模型:-由Inflection CEO Mustafa Suleyman负责。-模型规模超过5000亿参数,远超微软之前的开源模型。-使用Inflection技术和数据,但独立于原有项目Pi。🔗来源:https://t.co/aba77GFcnD

XiaoHu.AI日报

-效果堪比随机临床试验,能帮助理解治疗对患者健康的具体影响。-学习患者数据的模式,预测不同治疗方式可能的效果。🔗详细介绍:https://xiaohu.ai/p/73219️⃣🎨Logo Diffusion:快速创建Logo标志-利用AI几秒钟内生成Logo。🔗https://xiaohu.ai/p/7393🔟🦾微软推出MAI-1大模型:-由Inflection CEO Mustafa Suleyman负责。-模型规模超过5000亿参数,远超微软之前的开源模型。-使用Inflection技术和数据,但独立于原有项目Pi。🔗来源:https://t.co/aba77GFcnD

微软大会 Microsoft Build 2024

就在刚刚,微软召开了其年度发布会,Microsoft Build 2024,发布了包括大杀器Copilot Studio在内的50+项更新。如果让我用一句话来形容:微软下场,从系统和云的层面,尝试吃掉所有大的机会。留一些roi不高的事情,让生态玩家通过Extension的方式喝汤于是...在发布的最开始的时候是惊呼,后面就是掌声了(毕竟是开发者大会,然后把开发者的碗砸了)先给大家来一个速读版,标红的地方值得关注&蹲后续:硬件层面:与英伟达&AMD的合作,以及自己新出的新芯片Cobalt生态层面:与众多模型生态进行合作,推出了自己的Phi-3-vision多模态小模型,以及更新了Azure AI Studio数据层面:Fabric支持实时智能工具链层面:GitHub Copilot迎来了Extension应用层面:推出了Copilot Team和Copilot Studio,无比强大的Agent下面是具体信息:[heading2]发布了啥[heading1]硬件与云[content]与英伟达确认全面合作关系(Full-stack partnership),以及他们在Azure上搞的事情(见下图)与AMD是扩大合作关系(Expanded partnership),并宣布了其新产品ND MI300X V5(好长的名字...),也会在Azure上搞事情:微软自己搞了硬件:Maia&CobaltMaia(这东西去年就有发布),是首个由微软自己设计的AI加速芯片,放在Azure上跑的:新的芯片Cobalt基于Neoverse N系列(N2)Arm CPU设计,专为云端规模化应用性能优化。具体信息可以在aka.ms/AzureCobalt中找到:

Others are asking
微软认证AI工程师
以下是关于微软认证 AI 工程师的相关信息: MQ 老师是知乎的 AI 讲师,考过了国家工信部、微软、讯飞三个初级人工智能工程师证书,在教育行业工作 15 年以上,过去半年一直在探索教育场景中的 AI 实践。 胡凯翔是微软、讯飞认证提示词工程师,曾担任破局俱乐部企业培训和 AI+教育行动营教练,共创有约 10 万字 AI+教育手册。 韦恩是微软提示词工程师,智能体创业者,WayToAGI 共建者,多平台 Agent 开发者,企业级 AI Agent 定制专家,荣获多家 AI 开发平台的比赛奖项,有 12 年程序开发背景,是多家企业的 AI 落地顾问。
2025-03-02
微软的AI方面的投资
微软在 AI 方面进行了大量投资。 首先,微软巨额投资了 OpenAI,但 GPT4 并非微软完全自有。微软未将大部分投资的算力直接给 OpenAI 使用,且不久前完成了对 Inflection AI 的收购,准备利用其专业团队和数据集,加上自身合成数据,从头训练一个约五千亿参数规模的 MOE 模型 MAI1。 其次,微软最初向 OpenAI 出资 10 亿美元,以服务器上的计算时间作为回报,随着双方信心增强,交易规模不断扩大,目前微软已向 OpenAI 投入 130 亿美元。 此外,在 2019 年,微软投资 10 亿美元给 OpenAI 成为其最大的机构股东。
2025-01-25
我想跟踪微软的动态
以下是微软的相关动态: 1 月 3 日: 微软研究团队利用合成数据训练 AI,减少成本和偏见,生成 100 种语言的文本数据提高训练效率,论文链接:https://arxiv.org/abs/2401.00368 ,https://x.com/xiaohuggg/status/1742473942252855795?s=20 。 微软推出 Microsoft 365 Copilot Chat 基础版支持 GPT4o,功能包括联网查询、文档处理、内容制作等;高级版支持创建 AI 代理,提升 CRM 和实时服务效率。无缝连接 Office 系列工具显著提高生产力。 。 1 月 17 日: 微软推出 Microsoft 365 Copilot Chat 基础版支持 GPT4o,功能包括联网查询、文档处理、内容制作等;高级版支持创建 AI 代理,提升 CRM 和实时服务效率。无缝连接 Office 系列工具显著提高生产力。 。 Microsoft Build 2024: 发布包括大杀器 Copilot Studio 在内的 50+项更新。 硬件层面:与英伟达、AMD 合作,推出新芯片 Cobalt 。 生态层面:与众多模型生态合作,推出 Phi3vision 多模态小模型,更新 Azure AI Studio 。 数据层面:Fabric 支持实时智能。 工具链层面:GitHub Copilot 迎来 Extension 。 应用层面:推出 Copilot Team 和 Copilot Studio 。
2025-01-25
微软 Sora 的论文
以下是关于微软 Sora 论文的相关信息: 论文标题:Sora:A Review on Background,Technology,Limitations,and Opportunities of Large Vision Models 作者:Yixin Liu,Kai Zhang,Yuan Li,Zhiling Yan,Chujie Gao,Ruoxi Chen,Zhengqing Yuan,Yue Huang,Hanchi Sun,Jianfeng Gao,Lifang He,Lichao Sun 期刊:arXiv 发表时间:2024/02/27 数字识别码:arXiv:2402.17177 摘要:Sora 是一个文本到视频生成的人工智能模型,由 OpenAI 于 2024 年 2 月发布。该模型经过训练,可以根据文本指令生成逼真或富有想象力的场景的视频,并显示出模拟物理世界的潜力。基于公开的技术报告和逆向工程,本文全面回顾了文本到视频人工智能模型的背景、相关技术、应用、剩余挑战和未来方向。我们首先追踪索拉的发展,并研究用于构建这个“世界模拟器”的底层技术。然后,我们详细描述了索拉在从电影制作、教育到营销等多个行业的应用和潜在影响。我们讨论了广泛部署索拉需要解决的主要挑战和局限性,例如确保安全、公正的视频生成。最后,我们讨论了索拉和视频生成模型的未来发展,以及该领域的进步如何能够实现人类人工智能交互的新方式,提高视频生成的生产力和创造力。 背景:Sora 是一项重大突破,类似于 ChatGPT 在 NLP 领域的影响。Sora 是第一个能够根据人类指令生成长达一分钟视频的模型,同时保持较高的视觉质量和引人注目的视觉连贯性,从第一帧到最后一帧都具有渐进感和视觉连贯性。这是一个里程碑,对生成式 AI 的研究和发展产生了深远影响。如图 2 所示,Sora 在准确解读和执行复杂的人类指令方面表现出非凡的能力。该模型可以生成包含多个角色的详细场景,这些角色在错综复杂的背景下执行特定的动作。研究人员认为,Sora 不仅能熟练处理用户生成的文本提示,还能辨别场景中各种元素之间复杂的相互作用。此外,Sora 的进步还体现在它能够生成具有细微运动和交互描绘的扩展视频序列,克服了早期视频生成模型所特有的短片段和简单视觉渲染的限制。这种能力代表了人工智能驱动的创意工具的飞跃,使用户能够将文字叙述转换成丰富的视觉故事。总之,这些进步显示了 Sora 作为世界模拟器的潜力,它可以提供对所描绘场景的物理和背景动态的细微洞察。为了方便读者查阅视觉生成模型的最新进展,研究者在论文附录汇编了近期的代表性工作成果。 您可以通过以下链接阅读论文原文:https://arxiv.org/abs/2402.17177
2024-08-08
微软AI证书考取的流程是什么
考取微软AI证书的流程通常包括以下几个步骤: 1. 选择证书:确定你想要考取的微软AI证书类型,例如"Azure AI Engineer Associate"(AI102)或"Azure AI Fundamentals"(AI900)。 2. 了解考试内容:访问微软官方网站,了解所选证书的考试大纲、测试的技能点以及考试要求。 3. 学习准备:根据考试大纲,通过官方或第三方提供的教材、在线课程、实验室练习和模拟考试进行学习。 4. 获取学习资源:利用微软提供的资源或参加微软官方认证的培训课程来准备考试。 5. 注册考试:在准备好之后,在微软认证的考试平台上注册并安排考试时间。 6. 参加考试:在预定的时间和地点参加考试,考试可能包括多种题型,如单选题、多选题、判断题等。 7. 考试通过:考试合格后,你将获得微软颁发的AI证书。 8. 认证续订:某些微软认证可能需要定期续订,以保持认证的有效性。 具体步骤可能会有所变化,建议访问微软官方认证页面或相关资源获取最新信息。以下是一些微软AI证书的官方链接,你可以访问了解更多详情: 此外,根据搜索结果,还有一些博客和论坛提供了关于微软AI证书考取的经验和指南,你可以作为参考:
2024-06-13
微软桌面端可以使用GPT-4o吗
微软最新推出的 AIPC 可以使用GPT4o。
2024-05-21
谁是世界上最好的 ai 大模型?
目前很难确切地指出谁是世界上最好的 AI 大模型,不同的 AI 大模型在不同方面各有优势。 例如,OpenAI 的 GPT4 是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。Midjourney v5 模型在生成逼真的 AI 图像方面表现出色,具有极高的一致性,并支持高级功能。DALL·E 3 能轻松将想法转化为极其精准的图像。Mistral 7B 是一个具有 73 亿参数的模型,在多个基准测试上表现优秀。 在中国,阿里云的 Qwen 2 开源了模型,性能超越目前所有开源模型和国内闭源模型。同时,中国也有众多的大模型发布。 然而,对于“最好”的评判标准因应用场景和需求的不同而有所差异。在某些领域,某个模型可能表现出色,而在其他领域则可能是其他模型更具优势。
2025-03-02
企业部署本地AI模型管理
企业部署本地 AI 模型管理可以参考以下内容: 1. 使用 Ollama 框架: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于在本地环境(包括 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu)启动和运行。 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 支持自定义模型,可修改温度参数等设置特定系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用集成。 社区贡献丰富,有多种集成插件和界面。 先安装,访问 https://ollama.com/download/ 下载安装,安装完确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 2. 部署和训练自己的 AI 开源模型: 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署,根据自身资源、安全和性能需求选择。 准备训练所需的数据和计算资源,确保有足够训练数据覆盖目标应用场景,准备足够的计算资源,如 GPU 服务器或云计算资源。 选择合适的预训练模型作为基础,如使用开源的预训练模型如 BERT、GPT 等,也可自行训练基础模型。 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 注意安全性和隐私保护,重视大模型涉及的大量数据和隐私信息的安全性和合规性。 3. LangChain 携手 NVIDIA: NVIDIA NIM 是一系列加速企业内部生成式 AI 部署进程的用户友好微服务,支持广泛 AI 模型,开发者利用行业标准 API 数行代码即可构建企业级 AI 应用,基于 NVIDIA Triton Inference Server、NVIDIA TensorRT、NVIDIA TensorRTLLLLM 等强大推理引擎及 PyTorch 等技术构建,提供无缝 AI 推理体验,在本地服务器或云端环境中均是大规模、高性能生成式 AI 推理的最佳选择。 对 NVIDIA NIM 充满期待的原因:自托管特性,数据保留在服务器上不外传,适合处理敏感信息的 RAG 应用;提供一系列预构建容器,轻松选择使用最新生成式 AI 模型,无需复杂配置;具有可扩展性,解决服务部署的稳定性和可用性挑战。 开始使用 NIM 很简单,在 NVIDIA API 目录中可访问多种 AI 模型用于构建和部署生成式 AI 应用,NIM 是 NVIDIA AI Enterprise 的一部分,这是全面的基于云的软件平台,旨在简化生产级 AI 应用的开发和部署流程,可通过相关博客获取详细指南。
2025-03-02
有没有大模型识别 CAD图纸的技术
目前存在一些可以辅助或自动生成 CAD 图的 AI 工具和插件,特别是在设计和工程领域。以下为您列举部分相关工具: 1. CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具,涵盖图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,有助于用户创建复杂几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,能够帮助用户创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 生成设计工具:一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,能根据用户输入的设计目标和约束条件自动产生多种设计方案。 需要注意的是,这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。以上内容由 AI 大模型生成,请仔细甄别。
2025-03-01
Monica和Openai的记忆功能是如何让大模型产生记忆的?是什么原理?
大模型的记忆功能实现方式较为复杂,不同的模型可能有所不同。 OpenAI 的模型中,大模型 LLM 扮演了“大脑”的角色,其记忆功能可能通过“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构来实现。但需要注意的是,对于 ChatGPT 这类模型,实际上其本质上并没有直接的记忆功能。它能理解之前的交流内容,是因为每次将之前的对话内容作为新的输入重新提供给模型。这种记忆功能并非由大型模型直接实现,而是通过在别处进行存储来达成。 如果对话内容过长,可能会影响模型的整体性能。解决这个问题的一个简单方法是启动另一个对话框。对于之前的数据,通常只能进行总结。
2025-03-01
推理模型的技术原理
推理模型是一种新的范式,专注于解决复杂、多步骤的问题。其技术原理主要包括以下方面: 1. 思考输入意图:通过对输入内容的深入理解,明确问题的核心和需求。 2. 逐步提供答案:不像传统模型一次性给出结果,而是分步骤进行推理和回答。 3. 擅长领域:在解谜和高级数学等具有挑战性的任务中表现出色。 4. 与传统模型的区别:传统模型可能更倾向于直接给出结果,而推理模型会通过逐步思考来提供答案。 5. 成本和易错性:推理模型成本高昂且容易出错,适用场景有限。 6. 模型变体:如 DeepSeek 推出的多种变体(如 R1Zero 和 R1Distill)展示了不同的训练策略和性能表现。 7. 思考过程:类似于人类的慢思考过程,结合行业特点给出重要事项和先后顺序。 8. 运算原理:快思考是概率预测,脱口而出但不一定对;慢思考在概率预测基础上做二层逻辑,即链式思维,展开问题找多条路径并互相验证。 9. 适用场景:指令遵循领域 instruct 模型效果好,推理和创造性问题适合用慢思考的推理模型。
2025-03-01
如何建立一个行业的知识库,并建立这个行业的专属AI模型?
建立一个行业的知识库并建立专属 AI 模型可以参考以下步骤: 1. 明确行业需求和目标:确定知识库和 AI 模型要解决的具体问题和实现的功能。 2. 收集和整理数据:包括行业相关的各种信息、文档、案例等,为知识库提供素材。 3. 设计提示词:明确 AI 模型的角色和专注的技能,使其能够按照设定进行工作。 4. 构建知识库:将行业特定的规则、流程、案例等内容整理成工作手册,供 AI 模型参考。 5. 选择合适的 AI 模型:例如可以使用阿里千问模型等。 6. 进行模型训练和优化:根据收集的数据和设定的提示词、知识库对模型进行训练,并不断优化。 7. 融合实际场景:让人类专家配备可穿戴设备,收集现实世界的互动供 AI 学习,避免复制危险的偏见。 8. 持续评估和改进:根据实际应用效果,对知识库和 AI 模型进行评估和改进。 例如,在医疗保健领域,开发具有潜在空间层次结构的堆叠 AI 模型,反映对每个基本元素的理解或预测能力。创建专门从事医疗保健特定领域的 AI,让其接触到顶级从业人员的多样化视角。在财经领域,依托中央财经大学的资源优势,基于内容增强型知识插槽技术构建高质量知识库,与客户自有知识库结合,实现全业务场景的支撑,可实现快速的专家级 Agent 构建与管理维护。在文档处理领域,如上海普米智图智能科技有限公司,自主研发的数据框架 Ananke 和 Agent 框架 Moros,利用智能体技术提升工作流效率。
2025-03-01