Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有那些AI工具支持处理流程搭建,类似Dify那样

Answer

以下是一些支持处理流程搭建的 AI 工具,类似 Dify 那样:

  1. Dify:
    • 是一个开源的大模型应用开发平台。
    • 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。
    • 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。
    • 允许定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。
    • 提供云服务和本地部署选项,满足不同用户需求。
    • 开源特性确保对数据完全控制和快速产品迭代。
    • 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 增强现有应用能力、技术爱好者探索 LLM 潜力提供支持和工具。
    • 官方手册:https://docs.dify.ai/v/zh-hans 。个人研究推荐单独使用,企业级落地项目推荐多种框架结合。
  2. FastGPT:是成熟的高质量 AI 编排框架,有大量开源工作者维护,集成各种主流的模型供应商、工具及算法实现等。
  3. Coze:服务端可用于在线编辑 Agent 应用,然后通过 API 方式集成。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 数字人-定义数字世界中的你

上述种种,如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此我们推荐借助开源社区的力量,现在开源社区已经有了像dify、fastgpt等等成熟的高质量AI编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了dify的框架,利用其编排和可视化交互任意修改流程,构造不同的AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时Dify的API暴露了audio-to-text和text-to-audio两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由Dify控制,从而低门槛做出来自己高度定制化的数字人(如下图),具体的部署过程参考B站视频:https://www.bilibili.com/video/BV1kZWvesE25。如果有更加高度定制的模型,也可以在Dify中接入XInference等模型管理平台,然后部署自己的模型。此外,数字人GUI工程中仍然保留了LLM、ASR、TTS、Agent等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加Geek的Agent实现也可以选择直接后端编码扩展实现。上述Dify接口使用注意事项:1.使必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。2.只有接入了支持TTS和SPEECH2TEXT的模型供应商,才会在功能板块中展示出来,Dify的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。

Inhai: Agentic Workflow:AI 重塑了我的工作流

复杂的工作流搭建怎么会如此麻烦...这似乎跟我我理想中的Agentic Workflow并不太一样!有没有一种更加方便高效的方式,让我能够在短时间内创作一个符合我预期的Agentic Workflow原型?有了,通过自然语言来构建DSL并还原工作流。我在之前就比较喜欢使用自然语言描述,然后使用Mermaid语法进行创建流程图表,其实DSL也是可以遵循一套约定俗成的规范进行创作。我认为可以通过口喷需求的方式,在0-1的时候辅助我快速生成一个看上去还不错的工作流程,然后我再修修改改,这会降低用户上手的门槛。一个小思考题,Agentic Workflow该给谁用?之前在讨论Agentic Workflow的可用性观点,有人给我说了这么一句话:“研发看不上,产品看不懂,小白不知所云。”目前我觉得Agentic Workflow拿来做MVP的产品测试是非常好的一个途径,能够在短时间内通过低代码或者零代码的方式进行创作一个小而美的应用。我的AI-Native应用就是这么玩的。Pailido|AI拍立得这是一款文案快速生成的AI-Naitive产品,各个场景由AI Agent驱动,仅需选中场景后点击拍摄即可快速生成对应文案。它的服务端可以是使用类似Dify.AI、Coze这种在线编辑好一个Agent应用,然后再通过API的方式进行集成,你仅仅需要关心你的前端、用户输入、你的输出反馈就可以了,打磨好一款小而美的产品。使用多模态模型,理解图片特征和输出场景期待,搞定小红书文案、外卖点评写作、闲鱼商品发布文案...真的太快了!所以有个问题要问问诸位了:Reshape your workflow with AI?orReshape your AI workflow?

RAG提示工程系列(3)| 迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

Others are asking
有免费生成PPT的ai吗
以下是为您推荐的免费生成 PPT 的 AI 工具: 1. Gamma:在各种交流群中被频繁推荐,免费版本能生成质量很高的 PPT,经过不断优化和改进,能满足大多数用户需求。个人使用体验良好,生成效果在内容组织、设计美观度和整体专业感上都表现出色。 2. 歌者 PPT(gezhe.com):是一款永久免费的智能 PPT 生成工具。具有一键生成 PPT 内容、支持多种文件格式转 PPT、多语言支持、海量模板和案例库、在线编辑和分享、增值服务等功能。其优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。 3. 讯飞智文:免费,引导较好。 此外,还有一些付费的 PPT 生成工具,如百度文库,付费但质量好。同时也为您提供了一些相关的 PPT 生成网站,如 http://Chatppt.com(付费,自动化程度高)、http://Mindshow.fun(Markdown 导入)、http://Gamma.app(Markdown 导入)、http://Tome.app(AI 配图效果好)。
2025-01-08
有没有能做PPT的ai
以下是一些能做 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 此外,国内的爱设计 PPT 也是值得推荐的选择。它背后拥有强大的团队,成功把握住了 AI 与 PPT 结合的市场机遇,已在国内 AI 生成 PPT 产品中确立了市场领先地位。 卓 sir 还分享了他使用 AI 制作 PPT 的经历,用到的 AI 工具包括 GPT4、WPS AI 和 chatPPT。
2025-01-08
如何想写论文,哪个ai app 更适合拿来使用呢
在论文写作方面,以下是一些适合使用的 AI 应用: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供相关文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:虽不是纯粹的 AI 工具,但结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,对于组会准备工作,Claude 和 Gamma.app 是不错的选择。Claude 能帮助快速寻找符合条件的论文、提取精炼论文信息、找到适合的 PPT 制作工具并教会使用。 在 AI 文章排版工具方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档可用 Grammarly 和 PandaDoc 等。
2025-01-08
stable diffusion和国内的这些AI绘画的模型有什么区别
Stable Diffusion 和国内的 AI 绘画模型主要有以下区别: 1. 数据集和学习方式: 在线的国内模型可以访问庞大且不断更新扩展的数据集,还能实时从用户的弱监督学习中获得反馈,从而不断调整和优化绘画策略。而 Stable Diffusion 通常受限于本地设备的计算能力,其数据集和学习反馈相对有限。 2. 计算能力: 在线的国内模型能利用云计算资源进行大规模并行计算,加速模型的训练和推理过程。Stable Diffusion 受本地设备计算能力限制,性能可能不如在线模型。 3. 模型更新: 在线的国内模型可以随时获得最新的版本和功能更新,更好地适应不断变化的绘画风格和技巧。Stable Diffusion 的模型更新相对较慢。 4. 协同学习: 在线的国内模型可以从全球范围内的用户中学习,更好地理解各种绘画风格和技巧。Stable Diffusion 则只能依赖于有限的本地模型,对绘画可能性的了解可能不够全面。 例如,Niji·journey 5 在二次元角色设计领域就展现出比 Stable Diffusion 更强大的性能和实用性。同时,国内还有 DeepSeek、阿里巴巴的 Qwen2 系列、清华大学的 OpenBMB 项目等在不同方面表现出色的模型。
2025-01-08
零基础如何学AI
对于零基础学习 AI,您可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,还有一些个人的学习经历供您参考: 二师兄来自上海,计算机零基础。2024 年 2 月在售后群接触到 AI 绘画,下载安装包和教学视频,迈出学习第一步。3 月啃完相关教程并开始炼丹。4 月与小伙伴探讨 AI 变现途径,5 月因工作变动在无硬件支持下继续学习。 参加「AI 编程共学」活动,包括 10 月 28 日麦橘的 0 基础做小游戏分享、10 月 29 日梦飞的 0 编程基础入门 Cursor 极简使用指南、10 月 30 日银海的 0 基础学做 AI 拍立得、10 月 31 日的 0 基础做小游戏分享等。
2025-01-08
AI前端开发
以下是关于 AI 前端开发的相关内容: 白九龄在 0 基础使用 Cursor 开发微信小程序时,遇到了诸多问题。如添加背景元素营造氛围、实现自适应和滑动效果、处理意图分析页面的信息展示和排版风格、生成海报时的字数显示和行数限制以及位置和视觉呈现的调整等。由于大模型自身的限制,无法很好地理解一些需求,导致开发过程中出错频繁。此外,还存在模型 token 费用和变现困难等问题。 Yeadon 以“Windsurf 学习共创社区”为例,演示了如何借助 AI 能力快速构建现代化 Web 应用。技术选型为 Vue + TypeScript,目标用户为零基础开发学习者,参考项目为 Cursor101。开发流程包括需求分析与代码生成、环境配置自动化、问题诊断与修复、界面优化与细节打磨、功能迭代与完善。在开发过程中,输入需求让 Windsurf 进行代码生成,可能会出现报错,将报错信息返回给 Cascade 进行自动检查和修复。之后对网页进行细节优化,如导航栏和首页。 齐码蓝开发一个可以承载离谱生物档案的网站,每个页面包含生物介绍、图片、头像、文字介绍,并支持打字和语音对话以及展示相关离谱事件。项目初始化与配置方面,推荐的技术栈包括前端的 React.js 或 Vue.js,后端的 Node.js 加上 Express.js,数据库选择 MongoDB,语音处理使用 Google Cloud SpeechtoText 和 TexttoSpeech API。开发环境配置方面,选择 Visual Studio Code 作为 IDE,安装 Node.js 时会一并安装 npm 用于管理项目依赖。项目目录结构可能如下所示。
2025-01-08
我想在dify里按照一个reranker模型,推荐哪个
在 Dify 中安装 reranker 模型,推荐使用中转服务商。Dify 的部署版本中,模型需自行配置,官方和中转的都支持,但中转服务商从性价比角度更优,充点小钱就能用上各种模型,价格通常有较大折扣,20 刀普通用户能用很久,还能在不同地方使用。若没有合适的中转服务商,可使用我自用的,点击原文即可。模型设置方面,在 Dify 右上角点击设置模型供应商,填入中转服务商提供的信息(一般包括 API base 或 Base URL 以及 key)并保存。若保存成功,回到主页面创建一个 Agent 测试,正常则大功告成。比如我填的 API base 是‘https://one.glbai.com’。
2025-01-07
dify智能体搭建
搭建 Dify 智能体的步骤如下: 1. 理解智能体母体:智能体母体可视为智能体的原型或基础形式,是创建智能体的原始模板,通过它能衍生出众多子智能体。其设计和功能为子智能体的特定任务和特性提供基础,扩展了应用范围和多样性。 2. 准备提示词:分享了用于构建和定制子智能体的提示词,可直接复制应用到项目中以创建和优化智能体满足特定需求和目标。 3. 实践创建智能体母体: 登录后台系统,点击“工作室”按钮,进入智能体管理界面。 点击“创建空白应用”选项,选择“Agent”,输入智能体名称并点击“创建”按钮。 完成创建后,点击所创建的智能体,进入编排页面。调整模型,选择所需模型并设置温度及输出长度参数(默认输出长度通常为 512,常需调整),然后输入提示词,可使用准备好的提示词模板编排进智能体。 另外,在搭建 AI 智能体时,还可参考以下步骤: 1. 设计 AI 智能体架构。 2. 规定稍后读阅读清单的元数据:新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(收藏的默认态为“仅记录”)、“发布日期”、“收集时间”等。为方便操作,可直接复制准备好的模板:
2025-01-06
如何学习dify?
以下是学习 Dify 的一些步骤和要点: 1. 部署 Dify: 可以通过云服务器进行部署。参考链接:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,如遇到问题,可将相关代码复制给 AI 询问。 注意检查运行状态,如遇到端口被占用等问题,可按照 AI 的建议解决。 2. 配置和使用: 在浏览器输入公网 IP 进入,邮箱密码可随便填,建立知识库并进行设置。 选择模型,国内模型有免费额度,如智谱 AI,注册获取 API keys 并复制保存。 创建应用并进行测试和发布。 3. 了解 Dify 特点: Dify 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生成式 AI 应用。 具备强大工作流构建工具、支持广泛模型集成、有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能监控和优化应用性能,提供云服务和本地部署选项。 设计理念注重简单性、克制和快速迭代,为不同用户提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般个人研究可单独使用,企业级落地项目推荐多种框架结合。
2025-01-05
部署dify
以下是关于部署 Dify 的详细步骤: 1. 通过云服务器部署: 参考文档:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装,dockercompose 文件在/root/dify/docker 目录下,可学习其中文件的含义。 检查运行情况:使用 docker compose ps 命令,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 来解决,也可采用其他方法。 访问:在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉:8888),邮箱密码随便填,建立知识库并设置。 选择模型:国内模型有免费额度,如智谱 AI,注册获取 API keys 并复制保存,创建应用进行测试和发布。 2. 云服务器 Docker 部署(方案二): 重装服务器系统,安装宝塔面板(可视化服务器管理),登陆凭证选自定义密码。 登陆:控制面板 服务器 查看详情,找到【应用信息】卡片,管理应用,放行防火墙端口,获取宝塔面板账号密码。 Docker 安装:登陆 bt 面板,点击左侧菜单栏【Docker】按提示操作。 安装 Dify:左侧菜单栏 文件 打开终端,根据 Dify 官方部署文档操作,敲入 git 命令复制代码,依次敲下面三个命令,出现特定结果即为成功。 使用和更新:使用与方案一相同,更新根据官方文档,在 BT 页面文件中打开终端执行相关命令,同步环境变量配置,确保.env 文件与实际运行环境匹配。
2024-12-27
dify 实现rag
Dify 是一个开源的大规模语言模型(LLM)应用开发平台,具有以下特点和优势: 1. 配备 RAG 引擎,允许用户编排从代理到复杂 AI 工作流的 LLM 应用。 2. 关键特性: 快速部署,5 分钟内可部署定制化的聊天机器人或 AI 助手。 创意文档生成,能从知识库生成清晰、逻辑性强且无长度限制的文档。 长文档摘要,可轻松对长文档进行摘要。 自定义 API,能安全连接业务知识,解锁更深层次的 LLM 洞察。 连接全球 LLM。 生产就绪,比 LangChain 更接近生产环境。 开源,可被社区广泛使用和改进。 3. 资源获取:可从 Dify 的 GitHub 仓库(https://github.com/langgenius/dify.git 和 https://docs.dify.ai/)获取源代码、文档、安装指南、使用说明和贡献指南等资源。 4. 是一个结合后端即服务和 LLMOps 理念的平台,为用户提供直观界面快速构建和部署生产级别的生成式 AI 应用,具备强大工作流构建工具、广泛模型集成、功能丰富的提示词 IDE 及全面的 RAG Pipeline 用于文档处理和检索,允许定义 Agent 智能体,并通过 LLMOps 功能对应用程序性能持续监控和优化。提供云服务和本地部署选项,满足不同用户需求。其设计理念注重简单性、克制和快速迭代,个人研究可单独使用,企业级落地项目推荐多种框架结合。 5. 官方手册:https://docs.dify.ai/v/zhhans
2024-12-25
dify-on-wechat如何接coze
要将 Dify 接入企业微信,您可以按照以下步骤进行操作: 1. 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 2. 下载 Dify on WeChat 项目:下载并安装依赖。 3. 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 4. 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可以选择源码部署或 Docker 部署。 5. 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 6. 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。 更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat 另外,CoW(chatgptonwechat)是一个基于大型语言模型的智能对话机器人项目,具有多端部署、基础对话、语音识别、图片生成、丰富插件、Tool 工具、知识库等特性和优势,支持在多个平台部署,包括微信公众号、企业微信应用、飞书、钉钉等。项目开源,GitHub 地址:https://github.com/zhayujie/chatgptonwechat ,Gitee 地址:https://gitee.com/zhayujie/chatgptonwechat 。 您还可以引入项目,在 bot/dify/新建一个 dify_image.py 的程序,将画图程序的调用过程写到 dify bot 中,如用 query“画”开头接提示来触发调用。
2024-12-24
什么是智能体,怎么搭建智能体,给我找一些课程,要那种从0起步的
智能体是建立在大模型之上,具有强大学习能力、灵活性和泛化能力,能够通过精确的提示词设计来控制和利用大型模型以达到设定目标的系统。 以下是一些从 0 起步搭建智能体的课程和步骤: 1. 智谱 BigModel 共学营第二期: 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 参与课程至少需要有 token 体验资源包,获取资源包的方式有: 新注册用户,注册即送 2000 万 Tokens 充值/购买多种模型的低价福利资源包,如直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;语言资源包:免费 GLM4Flash 语言模型/ ;所有资源包购买地址:https://bigmodel.cn/finance/resourcepack ;共学营报名赠送资源包 先去【财务台】左侧的【资源包管理】看看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 进入智能体中心我的智能体,开始创建智能体。 2. 提示词培训课——Part2: 了解智能体的概念和特点。 基于一些公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等)尝试开发属于自己的智能体: Step.1 点击“浏览 GPTs”按钮 Step.2 点击“Create”按钮创建自己的智能体 Step.3 使用自然语言对话进行具体设置或手工设置 Step.4 开始调试你的智能体并发布
2025-01-07
RAG工作流搭建
RAG(检索增强生成)工作流搭建主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如非结构化的 PDF 数据、结构化的 SQL 数据、代码等,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把文档切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 是一种结合了检索和生成的技术,其基本流程为:首先,给定用户输入,如问题或话题,从数据源中检索出相关文本片段作为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型,并包含提示指导模型生成期望输出。最后,从大模型输出中提取或格式化所需信息返回给用户。 此外,您还可以通过以下方式学习 RAG: 1. 观看视频演示,如: 2. 利用相关 Bot 进行学习,如: Query 改写效果对比 Bot:https://www.coze.cn/store/bot/7400553639514800182?panel=1&bid=6dkplh1r43g15 RAG 全流程学习 Bot:结合大模型,模拟 RAG 的离线存储和在线检索全流程。 您还可以参考如何使用 LangChain 开发一个简单的 RAG 问答应用。
2025-01-06
知识库搭建流程
搭建知识库的流程通常包括以下几种情况: 本地部署大模型及搭建个人知识库: 1. 了解 RAG 技术:RAG 是利用大模型能力搭建知识库的应用,在需要依靠不在大模型训练集中的数据时,通过检索增强生成。其过程包括文档加载(从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入转换为向量形式并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. 文本加载器:将用户提供的文本加载到内存中以便后续处理。 利用 Coze 搭建知识库: 1. 收集知识:确认知识库支持的数据类型,收集知识通常有三种方式,包括企业或个人沉淀的 Word、PDF 等文档,企业或个人沉淀的云文档(通过链接访问),互联网公开的一些内容(可安装 Coze 提供的插件采集)。 2. 创建知识库。 3. 创建数据库用以存储每次的问答。 4. 创建工作流。 5. 编写 Bot 的提示词。 6. 预览调试与发布。 信息管理与知识体系构建: 1. 信息源的选择:明确需求和兴趣点,选择相关信息源,保证信息质量和相关性。 2. 信息通路的建立:通过工具和方法,如浏览器插件、笔记应用等,建立稳定的信息获取和存储机制。 3. 知识结构化:使用笔记方法和工具,对收集的信息分类、标签化和链接,形成结构化知识体系,便于检索和应用。 4. 知识内化与应用:定期复习、思考和实践,将外部信息转化为个人知识,并在实际中应用解决问题。
2025-01-06
RAG工作流搭建
RAG(检索增强生成)工作流搭建主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如包括 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入(Embedding)转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。其基本流程为:首先,给定一个用户的输入,如问题或话题,RAG 会从数据源中检索出相关的文本片段作为上下文。然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型,并包含提示指导模型生成期望输出。最后,从大模型输出中提取或格式化所需信息返回给用户。 此外,还有相关的学习资源,如用 Coze 学习 RAG 的视频演示,包括 Query 改写效果对比 Bot 和 RAG 全流程学习 Bot 等。同时,也有关于如何使用 LangChain 开发简单 RAG 问答应用的介绍。
2025-01-06
RAG工作流搭建
RAG(检索增强生成)工作流搭建主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如非结构化的数据(包括 PDF)、结构化的数据(如 SQL)以及代码(如 Python、Java 等)。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入(Embedding)转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 RAG 是一种结合了检索和生成的技术,其基本流程为:首先,给定用户输入(如问题或话题),从数据源中检索出相关文本片段作为上下文。然后,将用户输入和检索到的上下文拼接成完整输入,并添加提示传递给大模型(如 GPT)。最后,从大模型的输出中提取或格式化所需信息返回给用户。 您还可以通过以下资源进一步学习 RAG: 视频演示: Query 改写效果对比 Bot:https://www.coze.cn/store/bot/7400553639514800182?panel=1&bid=6dkplh1r43g15 视频演示: RAG 全流程学习 Bot:
2025-01-06
Aigc国漫风格制作流程
以下是 AIGC 国漫风格的制作流程: 1. 主题与文案:确定国漫风格作品的主题,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 2. 风格与布局:选择想要的国漫风格意向,背景可根据文案和风格灵活调整画面布局。 3. 生成与筛选:使用相关的 AIGC 绘图平台,输入关键词,生成并挑选出满意的底图。 4. 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 相关的海报成果。 此外,还有一些相关的案例供您参考: 在制作海报方面,使用无界 AI 等软件,按照需求场景、大致流程进行操作。 在文旅视频制作中,如山西文旅宣传片,运用 Defense 及 SD 制作艺术字,通过 PS 处理和反复跑图提高画面完整度。 在游戏 PV 制作中,如《追光者》,结合多种 AI 工具,包括 chaGPT、MJ 绘图、SD 重绘等,进行前期脑暴拉片和风格参考情绪版的准备。
2025-01-08
如果用AI来画流程图、结构图的话,应该用哪款产品?
以下是一些可以用于使用 AI 来画流程图、结构图的产品: 1. Lucidchart: 简介:强大的在线图表制作工具,集成了 AI 功能,可自动化绘制多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 2. Microsoft Visio: 简介:专业的图表绘制工具,适用于复杂的流程图等,AI 功能可帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 3. Diagrams.net: 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 4. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 5. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建多种示意图。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 6. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 示例:假设需要创建一个项目管理流程图,可以按照以下步骤使用 Lucidchart: 1. 注册并登录:https://www.lucidchart.com/ 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-06
RAG技术路线知识库搭建流程
RAG 技术路线知识库搭建流程主要包括以下步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 在内的非结构化数据、SQL 在内的结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或者“文档片”。 3. 存储: 将切分好的文档块进行嵌入转换成向量的形式。 将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案。 在构建知识库的过程中,还涉及到文档解析环节,即将各种类型的资料(包括但不限于 Word、PDF、Excel 和图片等)转换成文字,为后续流程奠定基础。针对图片一般使用 OCR 图像识别技术,针对文档一般将其转换成 Markdown 格式。文档解析完成之后,要进行预处理。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片(Segment),但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。
2025-01-06
ChatGpt使用流程
以下是关于 ChatGPT 的使用流程: 1. 产品经理使用流程: 背景前提:非专业 BI 工程师,使用免费的 ChatGPT3.5 版本。 基本思路及步骤:整理与 GPT 交互的思路,包括旧代码输入、需求及现状问题输入、调试优化、结果输出验证。 实操过程: Step1:旧代码输入。将需要优化的旧代码输入模型,若代码过长可分次输入。分次输入的作用是让 GPT 理解旧代码实现的效果、熟悉查询表和字段,方便后续生成可直接在数据库中运行的优化代码。 2. 英文学习使用流程: 具体使用方法:先把特定的 prompt 喂给 ChatGPT(建议开新对话专门用于学习英文),然后 ChatGPT 会扮演美国好朋友,对输入的英文和中文表达返回更地道的表达,并对俚语部分加粗,还会针对发送的话题举一反三,结合欧美流行内容给出更多例子。输入特定语句,ChatGPT 会输出对话回顾,并建议 3 个推荐任务以强化记忆。建议使用方式包括开窗口复制 prompt、在手机端操作等,打电话既能练口语又能练听力,结束后看回顾可帮助阅读。 3. 助力数据分析使用流程: 逻辑流程图:包括 SQL 分析和个性化分析。 SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行并返回结果数据,再将数据传给 GPT(附带上下文)让其学习分析,最后输出分析结论和建议,与结果数据一起返回给前端页面渲染图表、展示分析结论,已实现两张表关联查询。 个性化分析:用户上传文件,如有需要可简单描述数据、字段意义或作用辅助分析,前端解析文件后传给 GPT 分析数据,后续步骤与 SQL 分析一致。
2024-12-29
可以绘图的AI工具,实现将我的一段话转换成流程图
以下是一些可以将一段话转换成流程图的 AI 绘图工具及使用步骤: 工具: 1. Lucidchart: 注册并登录: 选择模板:在模板库中搜索“项目管理流程图” 编辑图表:根据项目需求添加和编辑图形和流程步骤 优化布局:利用 AI 自动布局功能优化图表外观 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式 2. Creately: 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用 官网: 3. Whimsical: 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作 官网: 4. Miro: 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成 官网: 使用步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 此外,以下工具可以用于绘制逻辑视图、功能视图、部署视图: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本来自动生成序列图、用例图、类图等,从而帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-12-28