Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Dify公司

Answer

Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。

该平台具有以下特点:

  1. 强大的工作流构建工具。
  2. 支持广泛的模型集成。
  3. 提供功能丰富的提示词 IDE。
  4. 拥有全面的 RAG Pipeline,可用于文档处理和检索。
  5. 允许用户定义 Agent 智能体。
  6. 通过 LLMOps 功能持续监控和优化应用程序性能。

Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。

对于个人研究,推荐单独使用 Dify;对于企业级落地项目,推荐多种框架结合,效果更佳。

Dify 官方手册:https://docs.dify.ai/v/zh-hans

Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程系列(3)| 迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

RAG提示工程系列(3)| 迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

RAG 提示工程(三):迈向工程化应用

Dify是一个开源的大模型应用开发平台,它通过结合后端即服务和LLMOps的理念,为用户提供了一个直观的界面来快速构建和部署生产级别的生成式AI应用。该平台具备强大的工作流构建工具,支持广泛的模型集成,提供了一个功能丰富的提示词IDE,以及一个全面的RAG Pipeline,用于文档处理和检索。此外,Dify还允许用户定义Agent智能体,并通过LLMOps功能对应用程序的性能进行持续监控和优化。Dify提供云服务和本地部署选项,满足不同用户的需求,并且通过其开源特性,确保了对数据的完全控制和快速的产品迭代。Dify的设计理念注重简单性、克制和快速迭代,旨在帮助用户将AI应用的创意快速转化为现实,无论是创业团队构建MVP、企业集成LLM以增强现有应用的能力,还是技术爱好者探索LLM的潜力,Dify都提供了相应的支持和工具。Dify官方手册:https://docs.dify.ai/v/zh-hans一般地,如果是个人研究,推荐大家单独使用Dify,如果是企业级落地项目推荐大家使用多种框架结合,效果更好。

Others are asking
有那些AI工具支持处理流程搭建,类似Dify那样
以下是一些支持处理流程搭建的 AI 工具,类似 Dify 那样: 1. Dify: 是一个开源的大模型应用开发平台。 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求。 开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 增强现有应用能力、技术爱好者探索 LLM 潜力提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 2. FastGPT:是成熟的高质量 AI 编排框架,有大量开源工作者维护,集成各种主流的模型供应商、工具及算法实现等。 3. Coze:服务端可用于在线编辑 Agent 应用,然后通过 API 方式集成。
2025-01-08
我想在dify里按照一个reranker模型,推荐哪个
在 Dify 中安装 reranker 模型,推荐使用中转服务商。Dify 的部署版本中,模型需自行配置,官方和中转的都支持,但中转服务商从性价比角度更优,充点小钱就能用上各种模型,价格通常有较大折扣,20 刀普通用户能用很久,还能在不同地方使用。若没有合适的中转服务商,可使用我自用的,点击原文即可。模型设置方面,在 Dify 右上角点击设置模型供应商,填入中转服务商提供的信息(一般包括 API base 或 Base URL 以及 key)并保存。若保存成功,回到主页面创建一个 Agent 测试,正常则大功告成。比如我填的 API base 是‘https://one.glbai.com’。
2025-01-07
dify智能体搭建
搭建 Dify 智能体的步骤如下: 1. 理解智能体母体:智能体母体可视为智能体的原型或基础形式,是创建智能体的原始模板,通过它能衍生出众多子智能体。其设计和功能为子智能体的特定任务和特性提供基础,扩展了应用范围和多样性。 2. 准备提示词:分享了用于构建和定制子智能体的提示词,可直接复制应用到项目中以创建和优化智能体满足特定需求和目标。 3. 实践创建智能体母体: 登录后台系统,点击“工作室”按钮,进入智能体管理界面。 点击“创建空白应用”选项,选择“Agent”,输入智能体名称并点击“创建”按钮。 完成创建后,点击所创建的智能体,进入编排页面。调整模型,选择所需模型并设置温度及输出长度参数(默认输出长度通常为 512,常需调整),然后输入提示词,可使用准备好的提示词模板编排进智能体。 另外,在搭建 AI 智能体时,还可参考以下步骤: 1. 设计 AI 智能体架构。 2. 规定稍后读阅读清单的元数据:新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(收藏的默认态为“仅记录”)、“发布日期”、“收集时间”等。为方便操作,可直接复制准备好的模板:
2025-01-06
如何学习dify?
以下是学习 Dify 的一些步骤和要点: 1. 部署 Dify: 可以通过云服务器进行部署。参考链接:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose 。这些命令在宝塔面板的终端安装,如遇到问题,可将相关代码复制给 AI 询问。 注意检查运行状态,如遇到端口被占用等问题,可按照 AI 的建议解决。 2. 配置和使用: 在浏览器输入公网 IP 进入,邮箱密码可随便填,建立知识库并进行设置。 选择模型,国内模型有免费额度,如智谱 AI,注册获取 API keys 并复制保存。 创建应用并进行测试和发布。 3. 了解 Dify 特点: Dify 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生成式 AI 应用。 具备强大工作流构建工具、支持广泛模型集成、有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能监控和优化应用性能,提供云服务和本地部署选项。 设计理念注重简单性、克制和快速迭代,为不同用户提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般个人研究可单独使用,企业级落地项目推荐多种框架结合。
2025-01-05
部署dify
以下是关于部署 Dify 的详细步骤: 1. 通过云服务器部署: 参考文档:https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装,dockercompose 文件在/root/dify/docker 目录下,可学习其中文件的含义。 检查运行情况:使用 docker compose ps 命令,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 来解决,也可采用其他方法。 访问:在浏览器地址栏输入公网 IP(可在腾讯云服务器或宝塔面板地址栏查看,去掉:8888),邮箱密码随便填,建立知识库并设置。 选择模型:国内模型有免费额度,如智谱 AI,注册获取 API keys 并复制保存,创建应用进行测试和发布。 2. 云服务器 Docker 部署(方案二): 重装服务器系统,安装宝塔面板(可视化服务器管理),登陆凭证选自定义密码。 登陆:控制面板 服务器 查看详情,找到【应用信息】卡片,管理应用,放行防火墙端口,获取宝塔面板账号密码。 Docker 安装:登陆 bt 面板,点击左侧菜单栏【Docker】按提示操作。 安装 Dify:左侧菜单栏 文件 打开终端,根据 Dify 官方部署文档操作,敲入 git 命令复制代码,依次敲下面三个命令,出现特定结果即为成功。 使用和更新:使用与方案一相同,更新根据官方文档,在 BT 页面文件中打开终端执行相关命令,同步环境变量配置,确保.env 文件与实际运行环境匹配。
2024-12-27
dify 实现rag
Dify 是一个开源的大规模语言模型(LLM)应用开发平台,具有以下特点和优势: 1. 配备 RAG 引擎,允许用户编排从代理到复杂 AI 工作流的 LLM 应用。 2. 关键特性: 快速部署,5 分钟内可部署定制化的聊天机器人或 AI 助手。 创意文档生成,能从知识库生成清晰、逻辑性强且无长度限制的文档。 长文档摘要,可轻松对长文档进行摘要。 自定义 API,能安全连接业务知识,解锁更深层次的 LLM 洞察。 连接全球 LLM。 生产就绪,比 LangChain 更接近生产环境。 开源,可被社区广泛使用和改进。 3. 资源获取:可从 Dify 的 GitHub 仓库(https://github.com/langgenius/dify.git 和 https://docs.dify.ai/)获取源代码、文档、安装指南、使用说明和贡献指南等资源。 4. 是一个结合后端即服务和 LLMOps 理念的平台,为用户提供直观界面快速构建和部署生产级别的生成式 AI 应用,具备强大工作流构建工具、广泛模型集成、功能丰富的提示词 IDE 及全面的 RAG Pipeline 用于文档处理和检索,允许定义 Agent 智能体,并通过 LLMOps 功能对应用程序性能持续监控和优化。提供云服务和本地部署选项,满足不同用户需求。其设计理念注重简单性、克制和快速迭代,个人研究可单独使用,企业级落地项目推荐多种框架结合。 5. 官方手册:https://docs.dify.ai/v/zhhans
2024-12-25
我是一家金融公司,我希望通过ai能力产出抖音短视频内容应该怎么做
以下是金融公司通过 AI 能力产出抖音短视频内容的步骤: 1. 内容分析:使用 AI 工具(如 ChatGPT)分析金融相关内容,提取关键信息、案例和观点。 2. 生成角色与场景描述:根据金融内容,使用工具(如 Stable Diffusion 或 Midjourney)生成相关的角色和场景的视觉描述。 3. 图像生成:利用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:使用 AI 配音工具(如 Adobe Firefly)将金融文本转换为语音,添加合适的背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如剪映 App)将图像、音频和文字合成为视频。 电脑端打开剪映 App,点击“开始创作”。 选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,添加文字内容轨道。 将准备好的文字内容替换默认文本内容。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在抖音平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-16
ai 公司有哪些
以下是 2024 年美国融资金额超过 1 亿美元的部分 AI 公司(截止 2024.10.15): |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners, Index Ventures, Sutter Hill Ventures| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund, Ramp 联合创始人 Eric Glyman, Stripe 联合创始人 Patrick 和 John Collison, DoorDash 联合创始人 Tony Xu| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital, ARCH Venture Partners| |Cyera|20240409|3|C|14|AI 数据安全平台|应用|数据|Coatue, Sequoia, Redpoint, Accel| |Celestial AI|20240327|1.75|C||用于 AI 存储和计算的光互连技术平台|基础设施|芯片、硬件和云平台|Thomas Tull 美国创新技术基金, M Ventures, 淡马锡, Tyche Partners| |FundGuard|20240325|1|C|4|AI 投资会计系统|应用|金融|Key1Capital, Hamilton Lane, Blumberg Capital, Team8| |Codeium|20240829|1.5|C|12|AI 编码平台|应用|编程|General Catalyst, Kleiner Perkins, Greenoaks| |Groq|20240805|6.4|D|30|AI 芯片|基础设施|芯片|贝莱德, Type One Ventures, Verdure Capital Management, Neuberger Berman| |DevRev|202408|1|A|11|AI 支持代理|应用|企业服务|Khosla Ventures, Mayfield, Param Hansa Values| |Abnormal Security|202408|2.5||50|电子邮件安全|应用|数据|Wellington Management, Menlo Ventures, Greylock, Insight Partners| |Harvey|20240723|1|C|15|法律科技|应用|法律|Google Ventures, OpenAI, Kleiner Perkins, Sequoia| |Skild AI|20240709|3|A|15|机器人技术|应用|机器人|Lightspeed Venture Partners, Coatue, Bezos Expeditions, Sequoia, Menlo Ventures, General Catalyst| |Hebbia|20240708|1.3||7|生成式 AI 搜索|应用|企业服务|Andreessen Horowitz, Peter Thiel, Index Ventures, Google Ventures| |Zephyr AI|20240313|1.11|A||AI 药物发现和精准医疗|应用|医学|Revolution Growth, 礼来公司基金会, EPIQ Capital Group, Jeff Skoll| |Together AI|20240313|1.06|A|12|AI 基础设施和开源生成|模型|硬件和云平台|Salesforce Ventures, NEA, Kleiner Perkins, Lux Capital| |Glean|20240227|2.03|D|22|AI 驱动企业搜索|应用|企业服务|Lightspeed Venture Partners, Kleiner Perkins, Sequoia, Databricks Ventures| |Figure|20240224|6.75|B|27|AI 机器人|应用|机器人|Nvidia, OpenAI, 微软| |Abridge|20240223|1.5|C|8.5|AI 医疗对话转录|应用|医学|Redpoint, Lightspeed Venture Partners, USV, IVP, Spark Capital| |Recogni|20240220|1.02|C||AI 接口解决方案|基础设施|芯片|GreatPoint Ventures, Celesta Capital, Pledge Ventures, Mayfield, DNS Capital| 信息来源:Techcrunch
2025-01-16
我想为公司员工培训下AI基础入门使用技巧,帮我写一个课程大纲
以下是为您提供的公司员工 AI 基础入门使用技巧培训课程大纲: 一、AI 基本概念 1. 人工智能的定义和术语 2. 主要分支(机器学习、深度学习、自然语言处理等)及联系 3. 历史、当前应用和未来发展趋势 二、AI 学习资源与路径 1. 推荐的入门文章和学习资料 2. 为初学者设计的课程,如李宏毅老师的课程 3. 在线教育平台(Coursera、edX、Udacity)课程介绍 三、AI 应用领域与选择 1. 图像、音乐、视频等领域介绍 2. 根据兴趣选择特定模块深入学习的建议 四、提示词技巧 1. 提示词的重要性和作用 2. 掌握提示词的方法和技巧 五、实践操作 1. 理论知识的实践应用 2. 分享实践作品和经验 六、体验 AI 产品 1. 介绍常见的 AI 聊天机器人(ChatGPT、Kimi Chat、智谱、文心一言等) 2. 了解其工作原理和交互方式 七、AI 在企业中的应用 1. 对于企业管理者 AI 辅助决策 员工培训计划 流程优化 AI 伦理和政策 2. 对于教育工作者 AI 辅助教案设计 个性化学习路径 创新教学方法 AI 素养教育 希望这个课程大纲能满足您的需求,帮助员工更好地了解和应用 AI 基础知识。
2025-01-16
我想自己在 coze 或者类似平台做一个 agent 帮助我们公司的销售提升话术技巧以及 Q&A,我需要在哪里学习怎么搭建
以下是一些关于在 Coze 或类似平台搭建 Agent 以帮助公司销售提升话术技巧及 Q&A 的学习资源和相关信息: 常见的 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售等方面表现出色。 Coze 相关的后续活动筹划:包括 COW 机器人搭建、Coze 搭 Agent 共学等。 Coze 平台的消息卡片系统: 通过高度模块化和图形化操作,支持官方模板、AI 自动生成或手动构建。 相关专业词汇解释:如 Bot 是自动化程序;消息卡片是展示信息的方式;AI 生成卡片是利用人工智能技术自动创建的卡片等。 您可以根据自身需求选择适合的平台进行进一步探索和应用。
2025-01-11
将Agent集成应用到公司网站、网站客服
将 Agent 集成应用到公司网站、网站客服可以按照以下步骤进行: 1. 搭建示例网站 创建应用:点击打开函数计算应用模板,参考相关图示选择直接部署,并填写获取到的百炼应用 ID 以及 APIKEY。其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 访问网站:应用部署完成后,在应用详情的环境信息中找到示例网站的访问域名,点击即可查看,确认示例网站已经部署成功。 2. 为网站增加 AI 助手 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消相关位置的代码注释。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果。此时会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。 智能体(Agent)的相关知识: 1. 智能体的应用: 自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。 家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。 游戏 AI:游戏中的对手角色(NPC)和智能行为系统。 金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。 2. 智能体的设计与实现: 定义目标:明确智能体需要实现的目标或任务。 感知系统:设计传感器系统,采集环境数据。 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 行动系统:设计执行器或输出设备,执行智能体的决策。 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 一些好的 Agent 构建平台包括: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。
2025-01-07
我是一个公司的的开发人员,希望找到几个AI培训工具能够针对办公环境下的不同场景对员工进行培训使用。并且可以提供给员工使用
以下为您推荐一些适用于办公环境下对员工进行培训的 AI 培训工具: 1. AI 辅助决策工具:可在小规模决策中使用,例如分析客户反馈或市场趋势数据,作为决策参考。 2. 员工培训计划制定工具:帮助制定 AI 工具使用的培训计划,让团队成员了解如何在日常工作中有效利用 AI。 3. 流程优化工具:识别公司中可能受益于 AI 自动化的重复性任务,并测试 AI 解决方案的效果。 4. AI 伦理和政策制定工具:用于制定公司的 AI 使用政策,确保 AI 的应用符合伦理标准和法律要求。 对于不同场景和人员,还有以下针对性的工具: 1. 对于教育工作者: AI 辅助教案设计工具:尝试使用 AI 来帮助设计课程大纲或生成教学材料 ideas。 个性化学习路径工具:探索如何使用 AI 分析学生的学习数据,为不同学生制定个性化的学习计划。 创新教学方法工具:考虑如何将 AI 工具整合到课堂活动中,例如使用 AI 生成的案例研究或模拟场景。 AI 素养教育工具:开发一个简单的课程模块,教导学生了解 AI 的基础知识、应用领域及其对社会的影响。 2. 在职业规划方面: 职业选择和规划工具:学生可以通过产品了解 AI 技术在不同职业中的应用,评估自己的兴趣和技能,选择合适的职业路径,并制定详细的职业规划。 技能提升工具:根据职业目标,学生可以获得个性化的学习建议和资源,提升自己在 AI 领域的技能,为未来的就业做好准备。 职业发展指导工具:职场新人可以根据自身的职业目标和市场需求,制定职业发展计划,明确短期和长期的职业目标。 职业转型支持工具:对于希望从其他领域转型到 AI 相关领域的从业者,产品可以提供详细的转型路径和必要的技能培训资源,帮助他们顺利转型。 在 PPT 制作方面,以下 AI 工具可供选择: 1. MindShow 2. 爱设计 3. 闪击 4. Process ON 5. WPS AI 选择工具时应根据实际需求进行调整,试用和体验总比盲目跟风更为明智。
2025-01-06