Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

国内coze调用api的例子

Answer

以下是国内 Coze 调用 API 的一些例子:

  1. 通过已有服务 API 创建插件:
    • 进入 Coze 个人空间,选择插件,新建一个插件并命名,如 api_1。
    • 在插件的 URL 部分,填入 Ngrok 随机生成的 https 链接地址。
    • 按照 Coze 的指引配置输出参数,测试后发布插件。
  2. 手捏简单的 Bot 并接入创建的插件:创建测试 API 的 Bot,将创建的 api_1 插件接入,在 prompt 里让其调用插件。
  3. 测试 AI Bot 时可能遇到的情况:Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定,可能出现回答不完整的情况,但相信官方会尽快解决。
  4. 获取 Coze 的 accessToken 和 botid:
    • 获取 accessToken:在 Coze 界面右侧扣子 API - 授权,或者打开链接 https://www.coze.cn/open/oauth/pats,添加令牌,设置名称、过期时间和权限,完成后点击确定按钮并复制下拉令牌。
    • 获取 botid:通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮查看地址栏中的数字即为 botid。
    • 发布为 bot api:注意在前端使用 bot 必须发布成为 API,点击发布并选择 API,等待审核通过后可按上述方法拿到 botid。
    • 获取空间 id:进入 Coze 后,左边打开工作空间,找到 url 中的 id 并复制。
Content generated by AI large model, please carefully verify (powered by aily)

References

CT: coze插件---通过已有服务api创建

饶了一大圈,终于到了coze。为啥要用Ngrok(泥脑壳),不是吃饱没事干,纯属coze要你干。进入coze,个人空间中,选择插件。新建一个插件,起个名字api_1(这名字就是这么随意,连描述都叫test)在插件的URL部分,填入刚才ngrok(泥脑壳)随机生成的https的链接地址。刚才开着服务的朋友,你的terminal应该还没关吧,关了的话,请重新从上一步开始。服务还开着的请继续。有一说一,coze的指引做的真不错,输出参数配置你的message输出就行。测试后发布插件[heading2]捏个简单的bot[content]手捏插件搞定之后,就开始搓bot。不过这个bot简单到手都没搓热就好了。创建了一个测试api的bot。将自己创建的api_1的插件接进来。prompt里面简单粗暴让它一定要调用我们的插件。然后就大功告成。[heading2][heading2]后续说明[content]这个整体过程仅仅为了说明coze的插件指引挺好用的。如果生产环境中已经有准备好的https的api,直接就可以接上来。PS:本案例中用的是coze国内版,反正是玩插件,对模型没啥要求。PPS:ngrok本案例中仅供娱乐,生产环境中勿用。PPPS:果然不会写代码,做个案例都这么简单。PPPPS:动手干,哪怕再简单,都是踏出去的第一步。(给自己菜也找个台阶下.......)Read in,Bot out.

安仔:Coze 全方位入门剖析 - 免费打造自己的 AI Agent (国内版)

接下来,我们来测试下我的AI Bot:你会发现这里的回答只回答了大模型帮我们生成的结果,而其他航班信息以及天气相关的信息是没有给到我们结果的,究其原因是Coze国内版目前还是刚发布不久,有些官方和第三方插件的API调用和返回结果还是不太稳定,导致这里的结果不能完全显示出来,以下是我实际遇到的一些调用报错情况:不过这个问题我相信官方会尽快解决的,毕竟Coze这个平台的功能其实是挺完善和强大的,也做得很符合国情和本土化。最后我们再试几次,来看看最终的成功效果:可以看到成功的回答了我们的问题,这个回答是根据我们的提示词和插件+工作流的组合回答,所以回答的结果是非常详细的。如果之后加上自己的知识库甚至是可以根据用户定制化来使用数据库功能的话,那么我相信这个AI Bot的使用场景会更加符合一个APP该有的产品化功能。你可以想象一下,这个AI Bot的MVP我只用了一个晚上就完成了,出来的效果真的相当不错了,换作是传统开发的话,这个功能至少需要一个月的时间,而且还不一定能做得这么好。最后再说一句,如果是有条件使用国外版的小伙伴,我相信效果一定会更加好,因为国外版有免费的GPT4大模型的使用,插件和工作流功能更加丰富和稳定,而且还有更多的自定义插件和工作流功能,这样就可以更加灵活的根据自己的需求来定制化自己的AI Bot了。这个是我演示上述步骤后发布的AI Bot,其ID是:7333630516673167394,有兴趣的可以直接在Coze平台上搜索这个ID来体验一下我的AI Bot。

大雨:获取coze的accessToken和botid

coze在一直在快速更新迭代,如果页面有变化,请留言本文档[heading2]在coze界面右侧扣子API-授权[content]或者打开链接https://www.coze.cn/open/oauth/pats[heading2]添加令牌[content]找到“个人访问令牌”,添加令牌设置这个token的名词,和过期时间,过期以后这个token就无法在使用coze的功能了。这里的名称方便我们自己记忆就可以了。简单理解就是个人能使用coze的一个钥匙,只不过这个钥匙是有时效的。为了安全起见,最多是1个月。也就是说,我们一个月就要换个token下面设置权限,我们这次是打算使用自己做的网站去访问bot,选择会话管理和对话就可以了。如果拿不准全部都选上也可以,以后熟悉了再调整完成以后,点击“确定”按钮。[heading2]获取令牌[content]最后完成了,记得一定要点按钮复制下拉,这个令牌(token)只会出现一次。[heading1]获取botid[heading2]通过工作空间获取[content]这里的botid是指我们发布到商店以后的链接,比如从“工作空间”打开一个bot点击打开以后,找到商店按钮看一下地址栏,里面这串数字就是botid这里就是7446721044808810522[heading2]发布为bot api[content]注意:我们如果在前端要使用bot,它必须发布成为是API点击发布选择这里的API等它审核通过了,就可以按上面的方法拿到botid了[heading1]获取空间id[content]进入coze以后,左边打开工作空间。找到url,里面有个id,复制出来比如我的是https://www.coze.cn/space/7439012204332711970/library对于的space的id就是7439012204332711970

Others are asking
deepseek api
Jina DeepSearch 是一项基于推理大模型的深度搜索服务,其 API 已上线且开源。它可以在搜索时进行不断推理、迭代、探索、读取和归纳总结,直到找到最优答案为止。与 OpenAI 和 Gemini 不同,Jina DeepSearch 专注于通过迭代提供准确的答案,而不是生成长篇文章。它针对深度网络搜索的快速、精确答案进行了优化,而不是创建全面的报告。 使用入口:官方深度搜索 API 与 OpenAI API 架构完全兼容,您可以前往官网(jina.ai/deepsearch)了解详情;或者前往应用页面(search.jina.ai)体验。 此外,北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调。DeepSeekV3 降至原价的 50%,DeepSeekR1 低至 25%,鼓励用户在夜间空闲时段调用 API,以更低成本享受服务。
2025-03-30
api
以下是关于 API 的相关信息: ComfyUI GeminiAPI: 用于在 ComfyUI 中调用 Google Gemini API。 安装说明: 手动安装:将存储库克隆到 ComfyUI 的 custom_nodes 目录,安装所需依赖(根据使用的 ComfyUI 版本有所不同)。 通过 ComfyUI Manager 安装:在 ComfyUI 中安装并打开 ComfyUI Manager,搜索“Gemini API”并点击安装按钮,安装完成后重启 ComfyUI。 节点说明: Gemini 2.0 image:通过 Gemini API 生成图像的节点。输入参数包括必填的 prompt、api_key,可选的 model、width、height、temperature、seed、image 等。输出包括生成的图像和 API Respond。使用场景包括创建独特的概念艺术、基于文本描述生成图像、使用参考图像创建风格一致的新图像、基于图像的编辑操作。 API 与速率限制: 速率限制是 API 对用户或客户端在指定时间内访问服务器的次数施加的限制。 速率限制的原因包括防止滥用或误用 API、确保公平访问、管理基础设施负载等。 OpenAI 的 API 提供商在 API 使用方面有限制和规定,不同用户类型可获得不同的速率限制,若请求超过限制将返回错误响应。 关于 API 的一般性描述: API 就像是一个信差,接受一端的请求,告诉系统用户想要做的事情,然后把返回的信息发回。 学习使用 GPT 的 Action 工作流包括:确定想要的 GPT 及是否需要外部数据,寻找 API 文档或开发 API 以及编写 Action 里的 Schema 和 Prompt。 对 Action 感兴趣可以从系统了解和学习 API 相关知识、在网上寻找可用的 API 练习、发掘 GPT Action 更多潜力等方向继续前进。
2025-03-29
API是什么意思有什么用
API 是应用程序编程接口(Application Programming Interface)的缩写。它是软件之间进行交互和数据交换的接口,使得开发者能够访问和使用另一个程序或服务的功能,而无需了解其内部实现的详细信息。 API 就像是一个信差,接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。 APIKey 是一种实现对 API 访问控制的方法,通常是一串字符串,用于身份验证和访问控制。当开发者或应用程序尝试通过 API 与另一个程序或服务交互时,APIKey 作为请求的一部分被发送,以证明请求者具有调用该 API 的权限。APIKey 帮助服务提供商识别调用者身份,监控和控制 API 的使用情况,以及防止未经授权的访问。 要使用 API,通常需要去官网寻找 API 文档,API 的规则一般会写在网站的开发者相关页面或 API 文档里。例如,TMDB 的搜索电影 API 文档的网址是:https://developer.themoviedb.org/reference/searchmovie 。在 API 文档中,会详细告知如何使用相应的 API,包括请求方法、所需的查询参数等。您可以在文档中进行相关配置和操作。 登录网站寻找 Apikeys 创建新的密钥(记得保存好、不要泄露)。使用 APIKEY 可能需要单独充值,一共有两种模式可以使用: 1. 使用官方的 key 网站:https://platform.openai.com/apikeys 创建好您的 key 后记得复制保存。 2. 如果觉得充值比较麻烦可以考虑用第三方的网站:https://www.gptapi.us/register?aff=WLkA ,这个充值起来方便一些,模型选择也可以多一些。
2025-03-29
哪个大模型的API接口免费?
以下是一些提供免费 API 接口的大模型: 1. Silicon 硅基接口:有众多开源模型(Yi、Qwen、Llama、Gemma 等)免费使用,还赠送 14 元体验金,有效期未知。注册和使用地址为,邀请码:ESTKPm3J。注册登录后,单击左边栏的 API 密钥,单击新建 API 密钥,单击密钥即可完成 API 密钥的复制。它支持多种大模型,也支持文生图、图生图、文生视频。 2. 智普 GLM4 接口:在 BigModel.cn 上通过专属邀请链接注册即可获得额外 GLM4Air 2000 万 Tokens 好友专属福利。进入个人中心,先完成实名认证,再单击左边栏 API KEYS 或右上角的 API 密钥,进入后单击右上角的添加 API,鼠标移至密钥上方,单击复制即可得到智普的 API key。 3. 阿里的通义千问大模型:打开链接,创建个 API key。 4. 智谱 AI(ChatGLM):有免费接口。 5. 科大讯飞(SparkDesk):有免费接口。 此外,谷歌的 Gemini 大模型(gemini 1.5)和海外版 Coze 的 GPT4 模型是免费的,但需要给服务器挂梯子。
2025-03-28
扣子api的调用流程
扣子 API 的调用流程如下: 1. 传递请求的相关部分: Body:用于传递请求的主体部分,可以是 JSON、XML 或其他类型的数据。在 GET 方法中通常不用于传递参数,因为 GET 方法的 URL 已包含必要参数。 Path:用于定义请求的路径部分,通常以“/”开头,后面跟着一系列段落。在 GET 方法中可传递参数,但常编码为 URL 一部分。 Query:用于定义请求的查询部分,通常以“?”开头,后跟一系列键值对。在 GET 方法中是常用的参数传递方式。 Header:用于定义 HTTP 请求的头信息部分,包括各种头部字段。在 GET 方法中通常不用于传递参数,而是定义请求头部信息。 2. 配置输出参数: 如果填写无误,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 例如填入汉字“张”,点击自动解析。解析成功会显示成功,输出参数填好后点击保存并继续。参数描述可根据需求填写。 3. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,创建扣子的令牌步骤如下: 在扣子官网左下角选择扣子 API,在 API 令牌中选择“添加新令牌”,为令牌起名,选择过期时间(如永久有效),选择指定团队空间(个人空间或团队空间),勾选所有权限,保存好令牌的 Token,切勿向他人泄露。 让 Coze 智能体机器人连上微信和微信群的配置: 1. 获取机器人 ID:在个人空间中找到要接入微信的机器人,如画小二智能小助手,点击进入编辑界面,浏览器地址栏 bot/之后的数据即为机器人的 Bot ID。 2. API 授权:点击右上角发布,会出现 Bot as API,勾选并确定应用已成功授权 Bot as API。
2025-03-25
什么是API
API 是应用组件之间进行交互和数据交换的接口。简单来说,它是软件之间相互交流的方式,使得开发者能够在不了解另一程序或服务内部实现细节的情况下,访问和使用其功能。 APIKey 是用于实现对 API 访问控制的方法,通常是一串字符串,用于身份验证和访问控制。当开发者或应用程序通过 API 与另一程序或服务交互时,APIKey 作为请求的一部分被发送,以证明请求者具有调用该 API 的权限。它帮助服务提供商识别调用者身份,监控和控制 API 的使用情况,并防止未经授权的访问。 API 就像一个信差,接受一端的请求,告诉那边的系统您想要做的事情,然后把返回的信息发回给您。其数据格式通常为 JSON。 对于使用 API,首先要明确想要做什么样的 GPT 以及是否需要外部数据,然后寻找 API 文档或开发 API 以及可用的 Action,最后基于 API 文档编写 Action 里的 Schema 和 Prompt 来处理取回的信息。 您可以通过以下方式进一步学习 API 相关知识: 1. 系统地了解和学习 API 相关的知识。 2. 去网上寻找可以用的 API 来练习。 3. 发掘 GPT Action 更多的潜力。 创建 APIKey 时,登录网站寻找并创建新的密钥,记得保存好且不要泄露。使用 APIKEY 可能需要单独充值,有两种模式可以使用: 1. 使用官方的 key 网站:https://platform.openai.com/apikeys,创建好您的 key 后记得复制保存。 2. 如果觉得充值麻烦,可以考虑用第三方的网站:https://www.gptapi.us/register?aff=WLkA,这个充值起来方便一些,模型选择也可以多一些。
2025-03-24
coze AI 应用中图片触发工作流如何设置
在 Coze AI 应用中设置图片触发工作流,步骤如下: 1. 工作流入参设置:将工作流的入参设置为 File>Image。注意,图片下方会提供特别的文本供复制,代码内容中 ImageUpload1 部分可替换成实际的文件上传组件名称,且一个引号、一个大括号都不能错。因为 value 里未提供 url 地址,只能用上传后的 file_id 从 Coze 存储的图片中获得索引。 2. 获得图片 URL:在工作流中可以直接使用 image 变量,也可以用 string 模式输出,它会神奇地变成图片的 URL。当使用文本组件显示其地址时,能清晰看到图片地址,图片组件上也可正常显示图片。只要绑定工作流的 image 输出即可。 此外,还有以下相关内容供您参考: 用扣子 Coze 搭建的 AI 公益应用中,用户界面的功能页相对复杂。当用户上传完图片进入分析,分析后会显示具体分析结果。布局组件包括容器(Div)、Markdown、图片(Image)、按钮(Button)、图片上传(ImageUpload)等,组合方式也有详细配置。 在 Coze 中,图像流的入口可通过扣子 coze.cn 的个人空间页面,图像流菜单进入。创建全新的图像流可在右上角点击操作,输入名称和描述。图像流由多个工具节点组合而成,包括开始节点、结束节点和智能生成、智能编辑、基础编辑等工具节点类别。
2025-03-29
Coze上有哪些高赞的智能体?
以下是 Coze 上的一些高赞智能体及相关内容: 此外,以下是一些常见的 Agent 构建平台: 1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成了丰富插件工具,能拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 Coze 是字节跳动推出的强大的 AI 聊天机器人构建平台,具有多种功能,如智能体、插件、知识库、工作流、图像流和记忆模块。智能体是其核心功能之一,基于大型语言模型构建,具有多种智能行为特征,能完成多种复杂任务,分为单智能体和多智能体模式。单智能体解决复杂问题需长记忆能力,多智能体扩展能力好,能共同解决复杂问题。
2025-03-29
coze工作流
Coze 的工作流具有以下特点和步骤: 特点: 是一种可视化的方式,允许用户组合各种功能模块,如插件、大语言模型、代码块等,实现复杂和稳定的业务流程编排。 由多个节点组成,包括 Start 节点和 End 节点,用户可在节点间添加各种功能模块构建业务流程。 支持丰富的功能模块,可根据需求灵活组合,如调用大语言模型进行文本生成、调用插件进行数据处理等。 工作流的创建和编辑通过可视化拖拽界面完成,无需编写代码,降低了搭建门槛。 创建好的工作流可直接集成到 Coze 的聊天机器人中使用,实现复杂业务逻辑。 为用户提供了可视化、低代码的方式,快速搭建满足业务需求的 AI 应用和服务,降低开发门槛,提升工作效率。 步骤: 梳理清楚工作流,例如对于复刻吴恩达开源的 AI 翻译项目,先新建工作流,逐步导入核心流程。 工作流分为若干节点,每个节点完成特定任务,如初始翻译、反思优化、结果输出等。 对每个节点进行配置,如开始节点选择翻译的源语言和目标语言及其他参数;初步翻译大模型节点选择大模型和参考相关提示词等。
2025-03-28
COZE智能体全自动制造视频发布媒体
以下是关于 COZE 智能体全自动制造视频发布媒体的相关内容: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,还提供了相关教程。 先看效果: 可查看 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 工作流调试完成后,加入到智能体中,可选择工作流绑定卡片数据。 选择发布渠道为飞书多维表格,填写上架信息等待审核,审核通过后即可使用。 3. 在多维表格中使用字段捷径,引用该智能体。 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,自动调用工作流生成视频。 进行表单分享,实现填写表单自动创建文案短视频的效果。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 创建智能体: 1. 知识库 本次创建知识库使用手动清洗数据。 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库,飞书在线文档中每个问题和答案以分割。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。
2025-03-28
coze开发硬件接入ai
如果您想开发硬件接入 Coze 智能体,以下是一些相关信息: 在服务器设置方面,对于 chatgptonwechat(简称 CoW)项目,可点击“Docker”中的“编排模板”中的“添加”按钮。备注说明版可借用“程序员安仔”封装的代码。将编译好的内容复制进来,在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”,若无法正常启动,可查看文档后面的“常见问题”。 关于计划,包括弄共学、做网页连接 Coze 等,涉及网页、小程序、App、桌面应用、浏览器插件等方面,还提到了硬件相关的工作安排。 在入门 Coze 工作流方面,首先要明确任务目标与执行形式,包括详细描述期望获得的输出内容(如文本、图像、音频等形式的数据,以及具体格式和结构、质量标准),预估任务的可行性,确定任务的执行形式。例如对于一篇文章,可参照特定框架进行微调,评估任务可行性,结合使用习惯确定预期的执行形式。
2025-03-27
coze的输入中如何引用变量
在 Coze 的输入中引用变量的方式如下: 在大模型节点的提示词中,支持使用{{variable}}引用输入参数。变量用{{}}来包裹,这里的变量就是前面输入的内容,如果变量名正确,会显示成蓝色。 在文本处理节点中,有两种工作模式。字符串拼接模式下,可以用{{变量名}},{{变量名.子变量名}},{{变量名}}的方式引用变量。如果直接引用一个数组类型的变量,默认会用逗号把数组中的内容连接起来,也可以指定只要数组中的某一项。字符串分隔模式下,用特定的分隔符(比如"||"、"////"或"")把一段文字拆分成多个小段。 在阅读导图的插件节点配置中,确定输入时,在输入区,该插件仅需设置{{query_text}}变量,格式是 string 字符串。只需要引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。
2025-03-26
如何综合运用插件、工作流、知识库,搭建满足各种需求的智能体,尤其是调用多个智能体,组成像Manus这样的工具?
要综合运用插件、工作流、知识库搭建满足各种需求的智能体,尤其是调用多个智能体组成类似 Manus 的工具,需要了解以下内容: 插件:插件如同一个工具箱,里面可放置一个或多个工具,称为 API。扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 及能处理多种任务的模型。若平台现有插件不符合需求,还可自行制作添加所需 API。 工作流:工作流类似可视化拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束节点有特殊作用,不同节点可能需要不同信息,包括引用前面节点信息或自行设定信息。 知识库:可上传私有文件作为回答参考。 智能体:智能体是对自定义操作的封装,用于解决特定场景问题。以 ChatGPT 的 GPTs 为例,包括描述作用和回复格式的提示词、作为回答参考的知识库、请求第三方 API 获取实时数据的外挂 API 以及个性化配置等。 例如,在“竖起耳朵听”的智能体中添加了插件和工作流的相关设置。创建智能体时,输入人设等信息,并配置工作流。但需注意,如工作流中使用的插件 api_token 为个人 token 时,不能直接发布,可将其作为工作流开始的输入,由用户购买后输入使用再发布。 此外,在 AI 搜索中,可预置 after_answer 钩子,将请求大模型的上下文和回答发给第三方插件整理成文章或思维导图等格式同步到第三方笔记软件。全流程中有很多节点可做 Hook 埋点,多个插件构成可插拔架构,常用功能可抽离成标准插件用于主流程或辅助流程,还可自定义智能体 Agent 等。
2025-03-29
我想搭建个人rag知识库,实现本地化部署,可以调用本地大模型去分析知识库的内容进行解答
以下是搭建个人 rag 知识库并实现本地化部署,调用本地大模型分析知识库内容进行解答的详细步骤: 一、通过 Open WebUI 使用大模型 1. 访问相关网址,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,这是构建知识库的基础之一)。 3. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现与大模型对话。ChatGPT 访问速度快且回答效果好的原因在于其服务器配置高、训练参数多、数据更优及训练算法更好。 二、本地知识库进阶 1. 若要更灵活掌控知识库,需使用额外软件 AnythingLLM,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 三、RAG 是什么 利用大模型搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括非结构化、结构化数据及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 文本加载器是将用户提供的文本加载到内存中,便于后续处理。
2025-03-25
如何用coze实现一个心理学调研的智能体?最好能够支持音频调用
要使用 Coze 实现一个支持音频调用的心理学调研智能体,您可以按照以下步骤进行操作: 1. 进入 Coze,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息。 3. 点击确认后完成工作流的新建,左侧「选择节点」模块中,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。本案例涉及的思维导图、英文音频,因为无法通过 LLM 生成,就需要依赖插件来实现。 大模型:调用 LLM,实现各项文本内容的生成。本案例的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,则分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 在配置子任务节点时: 1. 关于模型选择,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用,进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。 2. 一般选择豆包·function call 32k。“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
2025-03-12
manus的工具调用使用到的具体技术有哪些
Manus 工具调用使用的具体技术包括: 1. 基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中,通过规划、执行和验证三个子模块的分工协作来处理复杂任务。 2. 核心功能由多个专注于不同任务或领域(如自然语言处理、数据分析、推理等)的独立模型共同完成,这种多模型驱动的设计提高了系统的鲁棒性和准确性,增强了处理复杂任务的能力。 3. 技术架构包含关键组件: 虚拟机:运行在云端虚拟机中,用户可随时查看任务进度,适合处理耗时任务。 计算资源:利用计算资源生成算法,用于筛选简历等具体任务。 生成物:能够生成各种类型的输出,如文本、表格、报告等。 内置多个 agents:通过内置多个智能体,实现任务的分解和协同工作。 4. 采用“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力,使处理复杂任务更高效和准确。
2025-03-06
调用api是什么
调用 API(Application Programming Interface,应用程序编程接口)是指软件系统之间进行交互和通信的一种方式。通过调用 API,一个程序可以请求并获取另一个程序或服务所提供的数据、功能或执行特定的操作。 API 通常定义了一组规则、协议和方法,包括请求的格式、参数的传递方式、响应的数据结构等。开发人员可以使用特定的编程语言和工具,按照 API 的规定发送请求,并处理返回的响应结果,以实现不同系统之间的集成和数据共享。 例如,在 Web 开发中,调用第三方提供的 API 可以获取天气信息、地图数据、社交媒体内容等,从而丰富自己的应用功能。在移动应用开发中,也可以调用系统提供的 API 来实现诸如访问设备传感器、发送短信等功能。 总之,调用 API 是现代软件开发中实现功能扩展和系统集成的重要手段。
2025-03-05
给我一些Agent的典型例子
以下是一些 Agent 的典型例子: 1. Inhai:Agentic Workflow:使用 Kimi Chat 查询问题时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子。此外,Agent 会自行规划任务执行的工作流路径,如先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 2. Roger:从产品角度思考 Agent 设计:Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,曾是一位历史学家,对世界重大历史事件了如指掌,愿意分享知识。为使角色生动,可设计背景故事、定义性格和语气、规划角色互动方式以及明确角色技能。 3. 智能体的类型: 简单反应型智能体,如温控器,根据温度传感器输入直接行动,不维护内部状态和考虑历史信息。 基于模型的智能体,如自动驾驶汽车,维护内部状态,对感知输入建模,推理未来状态变化并行动。 目标导向型智能体,如机器人导航系统,有明确目标,评估行动方案并选择最优行动。 效用型智能体,如金融交易智能体,量化不同状态效用值,选择效用最大化行动。 学习型智能体,如强化学习智能体,通过与环境交互不断改进性能。
2025-03-23
怎么写提示词,举几个例子
以下是关于如何写提示词的相关内容: 写提示词是决定 AI 模型理解和生成文本的关键步骤。一个好的提示词应具备以下要点: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,应提供足够信息。 3. 使用清晰语言:避免模糊或歧义词汇,用简单明了的语言描述。 4. 给出具体要求:明确格式、风格等特定要求。 5. 使用示例:提供期望结果的示例,帮助模型理解需求。 6. 保持简洁:避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词。 在 SD 文生图中,提示词的写法有一定特点: 括号和特定符号可用来增加或降低权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。 一般概念性、大范围、风格化的关键词写在前面,叙述画面内容的其次,描述细节的最后。 关键词应具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 可以使用括号人工修改提示词的权重,如“”将权重减少为原先的 25%。 例如: 英文为:,drawing,paintbrush 反向提示词:NSFw,,(toomany finger 根据想画的内容写出提示词,多个提示词之间使用英文半角符号,如:masterpiece,best quality,ultradetailed,illustration,closeup,straight on,face focus,1girl,white hair,golden eyes,long hair,halo,angel wings,serene expression,looking at viewer
2025-03-20
请给我整理一套怎么才能学习和使用AI的方法,列举几个例子是怎么能快速的理解ai的发展历史及原理
以下是一套学习和使用 AI 的方法,以及帮助您快速理解 AI 发展历史及原理的途径: 一、学习 AI 的方法 1. 了解 AI 基本概念 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 二、快速理解 AI 发展历史及原理的途径 1. AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-02-07
深度学习跟机器学习有啥区别呀?能不能举个通俗易懂的例子
深度学习和机器学习的区别主要体现在以下几个方面: 1. 学习方式:机器学习通常需要人工选择和设计特征,而深度学习能够自动从数据中学习特征。 2. 模型结构:机器学习模型相对简单,深度学习则使用多层的神经网络,结构更复杂。 3. 数据处理能力:深度学习能够处理更大量和更复杂的数据模式。 例如,在图像识别任务中,如果使用机器学习,可能需要人工提取图像的颜色、形状等特征,然后基于这些特征进行分类。但在深度学习中,神经网络可以自动从大量的图像数据中学习到有效的特征表示,从而实现更准确的分类。 机器学习是人工智能的一个子领域,让计算机通过数据学习来提高性能,不是直接编程告诉计算机如何完成任务,而是提供数据让机器找出隐藏模式或规律,然后用这些规律预测新的未知数据。 深度学习是机器学习的一个子领域,模拟人脑工作方式,创建人工神经网络处理数据,包含多个处理层,能学习和表示大量复杂模式,在图像识别、语音识别和自然语言处理等任务中非常有效。 大语言模型是深度学习在自然语言处理领域的应用之一,目标是理解和生成人类语言,需要在大量文本数据上训练,如 ChatGPT、文心一言。同时,大语言模型具有生成式 AI 的特点,不仅能理解和分析数据,还能创造新的独特输出。
2025-01-21
谈谈医疗人工智能的风险及其法律防范,举一个具体例子,如影响肿瘤外科内科
医疗人工智能在带来诸多益处的同时,也存在新的风险。以下为您举例说明其风险及法律防范: 以自动化医疗分诊系统为例,其具有适应性和自主性。适应性方面,它能基于对医疗数据集、患者记录和实时健康数据的分析来预测患者病情;自主性方面,它能为医疗专业人员或直接为患者生成有关症状可能原因的信息,并推荐潜在的干预和治疗措施。 然而,这也带来了一些风险和监管问题。比如,若该系统提供了错误的医疗建议,导致患者出现负面健康结果,责任归属不明确,影响患者获得赔偿。 在法律防范方面,需要明确此类系统的责任界定,制定相关法律法规,确保患者在因错误建议受到损害时能够获得有效的救济。同时,应加强对医疗人工智能系统的监管和评估,确保其准确性和可靠性。
2025-01-02
帮我想想三年内有争议有公众性时效性的新闻评议选题,关于无人驾驶的,贴近生活,有新意。 例子:《强制加班不应该成为企业文化》《不敢看体检报告,是我们这一代人的命吗》《理发师因听得懂话爆火,这份作业值得抄》《“网红探墓”别“自挖坟墓”》《大学生挂科8门后离奇失踪,学校有责任吗》《不招疫情班应届生,一种赤裸裸的求职歧视》
以下是为您提供的一些关于无人驾驶三年内有争议、有公众性时效性且贴近生活、有新意的新闻评议选题: 1. 《无人驾驶汽车事故频发,谁来负责?》 2. 《无人驾驶能否解决城市交通拥堵难题?》 3. 《无人驾驶普及,传统司机将何去何从?》 4. 《无人驾驶技术,是便利还是安全隐患?》 5. 《无人驾驶车辆的隐私保护,你放心吗?》 6. 《无人驾驶时代,驾照是否会成为历史?》 7. 《无人驾驶汽车的保险政策,公平吗?》 8. 《无人驾驶上路,行人安全如何保障?》 9. 《无人驾驶出租车,你敢坐吗?》 10. 《无人驾驶公交,能否改变城市出行方式?》
2024-12-05