Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么用飞书ai助手在文档内部总结文档内容

Answer

以下是关于如何用飞书 AI 助手在文档内部总结文档内容的相关信息:

  1. 大型语言模型在概括文本方面的应用:可在 Chat GPT 网络界面中完成,从入门代码开始,如导入 OpenAI、加载 API 密钥和使用 getCompletion 助手函数。还提到对产品评论进行摘要的任务及相关提示。包括文字总结、针对某种信息总结、尝试“提取”而不是“总结”、针对多项信息总结等方面。
  2. 总结其他内容:
    • 文章:可让 AI 总结不超过 2 万字的文章,如复制文章给 GPT 进行总结,GPT4 能识别重点内容。
    • B 站视频:通过获取视频字幕,将其提取后发给 AI 执行内容总结任务。可安装油猴脚本获取字幕,如 [Bilibili CC 字幕工具],下载字幕并复制给 GPT 进行总结。
  3. 实践:群总结工具
    • 微信群聊总结 AI 助手:Mac 版可在https://github.com/aoao-eth/wechat-ai-summarize-bot/releases/tag/1.0.0下载。本项目由免费白嫖 GPT 的智囊 AIhttps://zhinang.ai技术支持。自己跑不起来的同学,可加机器人微信号:aoao_eth,把机器人拉进群。
    • 新版本:有桌面应用,包括一键监控、总结、发送等功能。可使用桌面版或脚本版,下载后配置 app key 即可运行。暂时只有 mac 版本,windows 版本可自己构建或直接运行代码。提供了功能截图,如每日群聊监控和数据统计、一键总结等。
Content generated by AI large model, please carefully verify (powered by aily)

References

4.总结类应用

在当今的世界中,有如此多的文本存在,几乎没有人有足够的时间阅读我们希望有时间阅读的所有文本。因此,我看到大型语言模型最令人兴奋的应用之一是使用它来概括文本。这是我看到多个团队正在将其内置到多个软件应用程序中的事情。你可以在Chat GPT网络界面中完成这项工作。我经常会这样做来总结文章,这样我就可以阅读更多文章的内容,而不仅仅是以前能读的那么少。如果你想以更加机械化的方式实现这一点,你可以在这节课中看到如何做到这一点。所以,让我们深入了解代码,看看你如何使用它来总结文本。因此,让我们从与之前相同的入门代码开始,导入OpenAI,加载API密钥,以及这个getCompletion助手函数。我将使用一个运行示例,即对该产品评论进行摘要的任务。我得到了这个熊猫毛绒玩具作为女儿生日礼物,她非常喜欢并且带它到处走等等。如果你正在构建一个电子商务网站并且有大量的评论,那么一个可以总结冗长评论的工具可以让你很快地浏览更多的评论,以更好地了解所有客户的想法。因此,这是一个产生摘要的提示。你的任务是从电子商务网站的产品评论中生成一个简短的摘要,并在30个单词以内对评论进行总结等等。[heading2]4.1文字总结[heading2]4.2针对某种信息总结[heading2]4.3尝试“提取”而不是“总结”[heading2]4.4针对多项信息总结

夙愿:AI 快速总结群聊消息

除了聊天内容之外,我们还能让AI总结整理各种文章(文章不超过2w字,否则就超出token了)例如,我复制了我的一篇文章给它总结:打开后直接全选复制全文,然后粘贴发送给GPTs,它就开始总结了,很方便,GPT4它能识别出哪些部分属于重点内容。[heading3]2、B站视频[content]你可能会疑惑,GPT不是无法处理视频内容吗,这是怎么做到的?答案是视频字幕。我用这个视频举例:https://www.bilibili.com/video/BV1VL411U7MU/?spm_id_from=333.337.search-card.all.click&vd_source=e05ea46c768d112737bc19e721da8967打开这个视频,如果你能在视频栏下面有一个字幕按钮,说明这个视频作者已经上传了字幕或者后台适配了AI字幕。那我们把这些字幕弄下来,再发给AI执行内容总结任务,是不是就达到了总结视频的效果?是的,目前大部分用AI总结视频的工具/插件/应用都是这么干的。那接下来的卡点就是,怎么把字幕文字内容给提取出来,用语音转文字?不,效率太低了。像这种有字幕的视频,我们可以装一个油猴脚本:[Bilibili CC字幕工具](https://greasyfork.org/zh-CN/scripts/378513-bilibili-cc%E5%AD%97%E5%B9%95%E5%B7%A5%E5%85%B7)安装之后,刷新浏览器,点击字幕,你会看到多出一个“下载”按钮点击下载按钮,会弹出下面这个窗口,你可以选择多种字幕格式,带时间的或者不带时间的:接下来,还是老办法,将字文字内容全选复制发送给GPTs即可。当然,总结完视频内容之后你继续向AI提问更多细节内容或者与它探讨视频内容。

实践:群总结工具

[Mac版下载](https://github.com/aoao-eth/wechat-ai-summarize-bot/releases/tag/1.0.0](https://github.com/aoao-eth/wechat-ai-summarize-bot/releases/tag/1.1.0)本项目由免费白嫖GPT的智囊AI[https://zhinang.ai](https://zhinang.ai/)技术支持自己跑不起来,但是需要群聊总结的同学,可以加机器人微信号:aoao_eth,然后把机器人拉进你的群里即可。[heading2][heading2]新版本:桌面应用[content]您可使用桌面版来使用,一键监控、总结、发送。也可以使用脚本版,手动运行监控和总结。下载后直接打开配置app key即可运行监控和总结,一键总结,一键发送到群内。[下载地址(暂时只有mac版本)](https://github.com/aoao-eth/wechat-ai-summarize-bot/releases/tag/1.1.0)如您需要windows版本,可以自己构建或者直接代码运行,代码在app文件夹中,欢迎构建成功的同学提供windows安装包[heading4][heading4]截图[content]功能:每日群聊监控和数据统计(界面上实时更新)一键总结,一键查看总结结果,一键发送到群聊聊天记录实时查看,直接发送内容到群聊随时更新的配置,可以配置截取的文本长度和结尾词等机器人状态监控,账号切换正常运行界面点击对话,可以看到实时的对话和对话记录,同时可以直接输入内容对话微信登录界面

Others are asking
如何制作这样的一个AI agent?我可以将所有的文档放在本地或者云盘。
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来,我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 在了解 AI Agent 之前,我们先考虑一个场景:我们要写一本 20 万字的关于人工智能最新技术的书。在没有大模型之前,写书一般会按照如下流程: 1. 先使用搜索引擎搜索一些相关书籍和信息进行阅读,为我们打开思路。 2. 形成本书的大纲,并且考虑清楚每一章节要编写的内容。 3. 针对每一个章节进行内容的编写,在编写过程中可能会调整文章的大纲。 4. 在编写后面章节的时候可能会忘记前面写的内容,需要去翻阅前面已经写的内容。 5. 文章初步完成之后,可能会找相关专业人士帮忙修改。 6. 经过几番调整之后,书籍最终成型。 在大模型出现之后,可能会直接请大模型帮忙生成,但会发现写出来的书根本无法阅读,这不仅仅是因为大模型的能力不行,还因为相比于第一种写书的方式,第二种方式明显缺少了几个环节: 1. 没有办法使用 Google 获取最新的外部信息(大模型的训练数据是有日期限制的)。 2. 没有对整个事情进行规划(比如先写大纲,再编写每个章节,然后和别人讨论,最后成文)。 3. 大模型没有记忆的能力,由于上下文(脑容量)的限制,无法一次性完成 20 万字的文章,会造成前言不搭后语的现象。 而 AI Agent 就是为了解决这个问题。AI Agent 是应用了大模型(LLM)能力的 Agent。以 GPT 为代表的大模型的出现,将 Agent 的能力提高到了前所未有的高度。OpenAI 的 Lilian Weng 将以 LLM 为驱动的 AI Agent,形式化为如下的公式:
2025-01-10
怎样利用自己现有的培训文档,制作一个AI agent可以担任系统分析员的工作,从文档中抽丝剥茧找出系统问题的根本原因和解决方案?
目前没有相关的培训文档内容可参考。但一般来说,要利用现有的培训文档制作一个能担任系统分析员工作的 AI agent 并从文档中找出系统问题的根本原因和解决方案,您可以考虑以下步骤: 1. 对培训文档进行详细的梳理和分类,提取关键信息,例如系统常见问题的特征、根本原因的类型以及可能的解决方案模式。 2. 利用自然语言处理技术,对提取的信息进行标注和训练,使 AI agent 能够理解和识别这些模式。 3. 设计有效的交互方式,让用户能够向 AI agent 清晰地描述系统问题,以便它能够准确地匹配和应用所学知识。 4. 不断测试和优化 AI agent 的性能,根据实际应用中的反馈,调整训练数据和算法,提高其准确性和实用性。
2025-01-10
怎样提高ai识别文档准确性
以下是一些提高 AI 识别文档准确性的方法: 1. 对于过期的文档,在标题里加上【已废弃】【已过期】等字眼,这样在召回排序过程中会被过滤掉,避免影响答案的准确性。 2. 现阶段尽量使用普通文本进行描述,避免过多表格、图片等内容。当前文档里插入的表格内容虽然能被 AI 识别,但识别效果还在提升中,图片等内容还不支持识别。随着技术发展,这些局限会逐渐消除。 3. 文档的标题内容需要跟正文有强相关性,因为召回排序的逻辑里文档总标题在相似度计算中占有较高权重。 4. 不同的知识点尽量分段书写、合理控制段落长度。不同的主题通过文档内的子标题进行区分,子标题下正文里每个段落最好对应一个明确的知识点,每个段落尽量不超过 500 字,避免段落过长在文档分割时导致主题打散。 5. 对于经常被问到的内容,可以写成问答对(FAQ)的格式,当用户提出相关问题时,包含该问答对的片段在召回排序里会更靠前,给出的答案也更准确。
2025-01-10
文档检测的提示词
以下是为您提供的文档检测相关的提示词: 新闻文章的事实核查员: 角色:你是一个新闻文章的事实核查员。 个人信息:作者为悟空,版本 0.1,语言为中文,工作是确定新闻报道中哪些段落是假的。 目标:首先能区分事实和观点,确定事实和观点是否一致,同时呈现事实和观点,用问号标记缺乏事实支持的观点。 约束:总结事实,原样重述观点。 技能:具备区分事实和观点的能力,使用表情符号、缩写、粗体文本等格式化技术使内容清晰生动。 工作流程:逐步列出文本中的事实和观点,先列事实再列观点,用颜文字符号标记与事实不符的观点并提供判断理由,进一步解释推理。 文章打分器: 角色:文章打分器。 个人信息:作者为李继刚,版本 0.1,语言为中文,基于打分项对文章打分并给出总体得分和各项得分。 目标:了解文章的针对性、观点阐述是否清晰,信息量和文采是否丰富,排版和撰写长度是否符合阅读习惯。 约束:只能对文本文件打分,无法识别图片和视频等非文本内容。 技能:对文字质量有深刻理解,了解优秀文章特征,能进行排版分析和文章长度分析。 工作流程:读取输入文件,包括文章标题和正文。 此外,为您提供一些与文档检测提示词相关的网站: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru:
2025-01-10
我使用了豆包,也学习了简单的提示词,但大数据反馈的结果并不好,很多数据分析,文档优化效果并不理想。我该怎么办
以下是一些可能有助于您改善大数据反馈结果和提升数据分析、文档优化效果的建议: 1. 像“给 Prompt 打分”的示例中那样,找专业的“Prompt 药剂师”对您的提示词进行详细分析,给出准确的评分和改进建议,以提升提示词的质量。 2. 对于数据分析和文档优化任务,要清晰明确地向模型阐述需求。例如,提供大模型可访问的数据源或上传数据表格,通过清晰的提示词说明需要从哪些维度分析数据,以及期望的分析结果输出格式。然后观察生成结果,不断迭代和优化提示词。 3. 对于“大模型幻觉”问题,目前虽无法完全消除,但可以通过其他第三方信息源和知识来检验生成内容是否准确。 4. 若想提高大模型的对话能力,可在 AGI 中搜索“结构化”获取相关文章。另外,如果您指的上下文 token 长度是大模型的记忆窗口,通常是无法延长的,因为这是设定好的。 5. 在用 ChatGPT 写剧本并希望其学习现有成功剧本时,要精心设计提问,清晰准确地表达您的需求,例如明确指出需要总结的规律以及在后续创作中的应用方式。
2025-01-08
我是否可以在飞书上传我的相关文档,然后把这些文档作为知识库进行对话,若可以,如何操作
在飞书上可以上传您的相关文档并将其作为知识库进行对话。具体操作如下: 1. 您需要一个额外的软件:AnythingLLM。其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 第一步:选择大模型。 第二步:选择文本嵌入模型。 第三步:选择向量数据库。 2. 在 AnythingLLM 中,有一个 Workspace 的概念,您可以创建自己独有的 Workspace 与其他项目数据进行隔离。操作步骤为: 首先创建一个工作空间。 上传文档并且在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供了两种对话模式: Chat 模式:大模型会根据自己的训练数据和您上传的文档数据综合给出答案。 Query 模式:大模型仅仅会依靠文档中的数据给出答案。 测试对话。 3. 另外,您还可以参考以下操作在飞书上创建知识库并上传文本内容: 登录 。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入知识库页面,并单击创建知识库。在弹出的页面配置知识库名称、描述,并单击确认(一个团队内的知识库名称不可重复,必须是唯一的)。 在单元页面,单击新增单元。 在弹出的页面选择要上传的数据格式(默认是文本格式),然后选择一种文本内容上传方式完成内容上传。上传方式如下: 本地文档: 在文本格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容,每个文件不得大于 20M,一次最多可上传 10 个文件。当上传完成后单击下一步。 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。分段标识符:选择符合实际所需的标识符。分段最大长度:设置每个片段内的字符数上限。文本预处理规则:替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址。单击下一步完成内容上传和分片。
2025-01-07
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
飞书如何接入大模型?
飞书接入大模型的步骤如下: 1. 搭建,用于汇聚整合多种大模型接口,并获取白嫖大模型接口的方法。 2. 搭建作为知识库问答系统,将知识文件放入其中,并接入上面的大模型。如果不想接入微信,搭建到这里即可,它有问答界面。 3. 搭建接入微信,并配置FastGpt将知识库问答系统接入微信。建议先用小号以防封禁风险。完成上述3步即可。 另外,对于将相关内容发布到飞书: 1. 目标是发布到飞书并在飞书中调用。 2. 尝试发布,在页面右上角点击发布,若飞书未授权则点击配置,然后再次点击发布。 3. 发布成功后可在飞书工作台中找到并使用。但可能存在与所说步骤不完全一致的情况,可通过workflow解决。 对于重度用户,工作流的最好教程参见官方文档:https://www.coze.cn/docs/guides/welcome 。工作流可以解决大模型调用写邮件插件时可能出现的速度慢和可能出错等问题,例如采取工作流+代码的组合方法,将用户原始输入直接传送给插件WebPilot,并通过另一个工作流AI Project进行样式注入等。
2025-01-07
怎么把小ai接进飞书里?
要将小 AI 接入飞书,可参考以下步骤: 1. 注册 AI 模型: 进入智普 AI:https://open.bigmodel.cn/ 。 点击开始使用,注册登录。 按照要求进行认证,点击控制台,查看 API key,点击添加新的 API key 并复制,将编码暂时保存备用。 2. 注册云服务器: 新用户点击去注册腾讯云: 。 微信扫码注册,首次注册选择第一个,地域随便选择,镜像选择下拉框最上边的宝塔 8.1.0 后点击立即试用。 进入腾讯云服务台登录,可直接登录或微信扫码登录。 在当前页面,复制 sudo/etc/init.d/bt default 粘贴回车,保存输出内容。 返回服务器控制台,点击箭头指示的空白区域,选择“防火墙”菜单栏,点击【添加规则】按钮,点击新增,手动输入图中大红框内的内容并确定。 3. 开始部署(这里继续): 删除上图文件里的所有代码,复制下边的代码粘贴到文件里,找到第 4 行,把注册并保存好的智谱 API key 粘贴到双引号里,修改完点击保存关闭文件。 依然在当前文件的【终端】里,依次复制粘贴:cd plugins/godcmd ,cp config.json.template config.json 。 操作完成后,退出窗口,刷新一下。进入/root/chatgptonwechat/plugins/godcmd ,双击 config.json,进入后设置 password 和 admin_users ,可设置为和示例一样,点击保存后关闭。 重新回到/root/chatgptonwechat/这个文件路径下,点击终端,依次粘贴:touch nohup.out ,nohup python3 app.py&tail f nohup.out 。 最下方会出现一个二维码,使用想要做机器人的微信扫码登录。 4. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复。如果想为这个 AI 赋予什么样的提示词,可以返回“目录 4 里的第 17 步”,其中的中文部分,便是设置 AI 提示词的地方,可以进行更改。此后,进行任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”。 5. 再往后就是添加插件了, 。
2024-12-30
在coze中如何接入飞书插件
在 Coze 中接入飞书插件的步骤如下: 1. 企业微信群聊机器人插件: 到语聚 ai 的第三方 api 集成平台上添加工具动作。 在平台上测试相关动作,获得返回的 API 请求的 python 代码。 按步骤集成到 Coze 的插件创建平台中。 2. 飞书多维表格插件: 使用 Coze 在 Coze IDE 中创建模式创建插件。 根据飞书开放者文档的要求在 Coze IDE 平台中用 handler 的方式编写 python 代码,配置项目依赖。 在 metadata 中配置输入和输出端信息。 最后测试发布成功。 此外,还有以下相关内容供您参考: 1. 通过已有服务 api 创建 Coze 插件: 进入 Coze,个人空间中,选择插件。新建一个插件,起个名字 api_1(名字可随意,描述叫 test)。 在插件的 URL 部分,填入刚才 ngrok 随机生成的 https 的链接地址。 按照指引配置输出参数,测试后发布插件。 手捏插件搞定之后,就可以创建 bot,将创建的插件接进来,在 prompt 里面让它调用插件。 2. 大聪明的保姆级教程: 先创建第一个 bot,然后不断精进。 如创建一个 Coze Bot 帮查阅 Hacker News 并中文返回,可引入联网插件 WebPilot 实现。
2024-12-23
如何用coze的智能体自动存储在飞书智能表格里
要将 Coze 的智能体自动存储在飞书智能表格里,可参考以下步骤: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”,实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入;自动化“整理入库”,系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态,且支持跨平台查看;智能“选择”推荐,根据收藏记录和用户阅读兴趣生成阅读计划。 发现同在字节生态中的 Coze、飞书、飞书多维表格可构建完整的 AI 工作流,通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发插件、APP 就能实现跨平台的稍后读收集与智能阅读计划推荐。 2. 逐步搭建 AI 智能体: 搭建整理入库工作流,设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以解析长内容网页。 进行日期转时间戳,使用「日期转时间戳time_stamp_13」插件进行格式转化,因后续的飞书多维表格插件节点入库日期字段只支持 13 位时间戳。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前只支持带有转义符的 string,以 Array<Object>格式输入,需将元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 结束节点返回入库结果,「飞书多维表格add_records」插件返回入库结果,用于通知外层 bot 工作流的入库是否成功,别忘了对整个工作流进行测试。
2024-12-17
如何打造自己的AI办公生态
要打造自己的 AI 办公生态,可参考以下步骤: 1. 确定功能范围: 支持用户发送“关键字”,自助获取您分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“您的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 “AI 前线”能发布在您的微信公众号上,作为“微信客服助手”。 2. 准备相关内容: 根据 Bot 的目的、核心能力,编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等整理。 创建自己的【知识库】,用来回答 AI 相关知识。 创建一个【工作流】,控制 AI 按照要求处理信息。 准备好自己的微信公众号,以便发布机器人。 3. 设计“AI 前线”Bot 详细步骤: 展示“AI 前线”Bot 的【最终效果】界面。 编写【prompt】提示词,设定 Bot 的身份和目标。 创建【知识库】,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。创建知识库路径为:个人空间知识库创建知识库。本次使用【本地文档】,注意知识库的内容切分粒度,可在内容中加上特殊分割符“”,分段标识符号选择“自定义”,内容填“”。 创建【工作流】,告诉 AI 机器人应按什么流程处理信息。创建工作流路径:个人空间工作流创建工作流。工作流设计好后,先点击右上角“试运行”,测试无误后点击发布。若任务和逻辑复杂,可结合左边“节点”工具实现,如调用大模型、数据库、代码等处理。但工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很重要。
2025-01-11
AI学习
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-11
如何能更加了解AI
以下是帮助您更加了解 AI 的一些建议: 1. 认识 AI 的基本概念: 把 AI 当成一个黑箱,只需知道它是能模仿人类思维、理解和输出自然语言的东西。 了解 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 学习途径: 阅读「」部分,熟悉相关内容。 在「」中找到为初学者设计的课程,如李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入。 掌握提示词技巧,因其上手容易且有用。 4. 实践和尝试: 理论学习后进行实践巩固知识,尝试使用各种产品并制作作品。 分享实践后的成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 6. 应对 AI 幻觉问题: 对 AI 模型的训练数据进行“大扫除”,去除错误、补充缺失、平衡偏差。 让 AI 的“思考过程”更透明,便于理解和监督,例如使用可解释性 AI 技术。 让多个 AI 模型协同工作,避免单个模型的局限性导致的错误。 总之,了解 AI 需要不断学习和实践,借鉴人类应对认知偏差的方法,推动 AI 技术的进步。
2025-01-11
AI是什么
AI 是一门令人兴奋的科学,它是某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于没有理工科背景的人来说,可以把 AI 当成一个黑箱,其生态位是一种似人而非人的存在。 从技术角度看,最初计算机是按照明确定义的程序(即算法)来对数字进行运算。但对于像根据照片判断一个人的年龄这类任务,我们无法明确编程的每一个步骤,而这正是 AI 所感兴趣的。 AI 已经渗透到各行各业,在医疗保健领域可用于医学影像分析、药物研发等;在金融服务领域可用于风控和反欺诈、信用评估等;在零售和电子商务领域可用于产品推荐、搜索和个性化等;在制造业领域可用于预测性维护、质量控制等;在交通运输领域也有相应应用。
2025-01-11
AI生成题库
以下是关于 AI 生成题库的相关信息: 在教育领域,借助大模型可以实现个性化学习和定制化作业。例如,教师通过提示词到位、示例清晰的操作,能让 AI 模仿中高考、托福雅思、SAT、GRE 等测试题,为教师提供源源不断的真题库,为学生提供错题练习库。以英语学科的选词填空出题为例,其提示词逻辑可迁移到语文学科。 在商业化问答场景中,检索原理包括信息筛选与确认、消除冗余、关系映射、上下文构建、语义融合以及预备生成阶段等步骤。最终,整合好的上下文信息被编码成适合生成器处理的格式传递给大语言模型,生成准确连贯的答案。 FastGPT 是一个功能强大、易于使用的知识库问答系统,基于 LLM 技术能理解自然语言并生成高质量答案,支持连接外部知识库获取更全面信息,具有可视化工作流编排工具方便创建复杂问答场景,以及开箱即用的数据处理和模型调用功能方便快速上手。可用于构建智能客服、知识库搜索、文档生成等应用。相关资源包括 FastGPT 官网、文档、GitHub 仓库以及个人版知识库部署教程。
2025-01-11
我是一个AI新手并且没有编程能力,如果我想要一个属于自己的AI智能体,并解决实际生活中的一些问题,请问有什教程吗?
以下是为您提供的创建属于自己的 AI 智能体的相关教程: 1. 扣子 Coze: 扣子官网: 可以通过简单 3 步创建智能体:首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像。开发完成后,还可以将自己构建的 Bot 发布到各种社交平台和通讯软件上。 2. 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等): 点击“浏览 GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话进行具体设置或手工设置。 开始调试您的智能体并发布。 此外,智能体具有以下特点: 1. 强大的学习能力:能够通过大量的数据进行学习,从而获得对语言、图像等多种信息的理解和处理能力。 2. 灵活性:可以适应不同的任务和环境,表现出较高的灵活性和适应性。 3. 泛化能力:能够将学到的知识泛化到新的情境中,解决之前未见过的类似问题。 智能体应用类型包括: 1. 智能体应用(Assistant):基于上下文对话,自主决策并调用工具来完成复杂任务的对话式 AI 应用。示例场景如客户服务、个人助理、技术支持等。 2. 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。 3. 智能体编排应用:支持多智能体协作的流程式 AI 应用,能够编排多个智能体的执行逻辑,也可以使多个智能体自动规划和执行任务。
2025-01-11
有哪些免费的没有限制的编程助手
以下是一些免费且没有限制的编程助手: 1. JanitorAI(http://janitorai.com/) 2. Spicychat(http://spicychat.ai/) 3. CrushOn(http://crushon.ai/) 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 此外,还有以下可以帮助编程、生成代码、debug 的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 5. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 6. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-10
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07
AI智能数据库查询助手
以下是关于您提出的“AI 智能数据库查询助手”的相关信息: 能联网检索的 AI: 存在能联网检索的 AI,它们通过连接互联网实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如: ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,旨在简化您的在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 AI 新产品|网站精选推荐: AIHelperBot 自动生成 SQL Queries,支持数据库一键链接或导入。当前收费$5 每月,可免费试用 7 天。链接:https://skybox.blockadelabs.com/ ChartGPT by CadLabs 由 CadLabs 开发工具,基于 GPT3.5,可以根据数据生成图表并回答问题。链接:https://chartgpt.cadlabs.org/ Embedding Store 功能如其名,是一站式 Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线。链接:https://www.embedding.store/ AI 在医疗药品零售领域的应用: AI 在医疗药品零售领域有着多方面的应用前景: 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-07
开发简单的 Agent 助手
开发简单的 Agent 助手可以参考以下内容: 基于结构化数据来 RAG 实战:以餐饮生活助手为例,它是基于结构化数据 RAG 方法的应用,能从大规模餐饮数据集中检索合适餐厅并提供信息服务。实现餐饮生活助手 RAG 的 Langchain 代码实战需完成以下步骤:定义餐饮数据源,将其转化为 Langchain 可识别和操作的形式并注册;定义 LLM 的代理,通过 Langchain 的代理根据用户问题提取信息、形成查询语句、检索数据源并生成答案。 从基础案例入门: 三分钟捏 Bot: 登录控制台:登录扣子控制台(coze.cn),使用手机号或抖音注册/登录。 在我的空间创建 Agent:在扣子主页左上角点击“创建 Bot”,选择空间名称为“个人空间”、Bot 名称为“第一个 Bot”并确认。 编写 Prompt:填写 Prompt,即 Bot 功能说明,第一次可用简短词语作为提示词。 优化 Prompt:点击“优化”进行优化。 设置开场白及其他环节。 发布到多平台&使用。 进阶之路: 15 分钟:查看其他 Bot 获取灵感。 1 小时:找到与兴趣、工作方向结合的 Bot 深入沟通,阅读相关文章。 一周:了解基础组件,寻找不错的扣子借鉴复制,加入 Agent 共学小组,尝试在群里问第一个问题。 一个月:合理安排时间,参与 WaytoAGI Agent 共学计划,创建 Agent 并分享经历心得。 《执笔者》:基于多 Agent 模式的全能写手: 操作步骤: 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面自动切换,相比单 agent 多了中间的 agent 连接区。 添加合适节点:有两种方式选择,用已发布的 bot 或创建新的 agent,按需选取并连接在默认总管 agent 后面,无结束节点。 添加合适的 prompt:为每个 agent 填写合适 prompt,外围人设填写主要功能,内部 bot 填写应用场景。 调试与美化:经过以上三步基本搭建完成,后续需调试,调整提示词优化交互。
2025-01-07
一个好玩的车载语音助手应该是什么样子的?
一个好玩的车载语音助手可以有以下特点和形式: Glowby Basic:能够让用户搭建一个拥有自己声音的 AI 语音助手,您可以通过 🔗https://github.com/glowbom/glowby 了解更多。 Dreamkeeper:在 AI 的帮助下记录并了解梦境。它使用多个 Gen AI 模型,具体流程为:由 ChatGPT 驱动的助手向用户提问以记住用户的梦,并根据回答调整内容;通过 Stable Diffusion 模型提取 ChatGPT 生成的关于用户梦境的摘要描述中的关键词来生成图像;将图像传输至图生视频模型创建基于用户梦境的动画;用 GPT 进行嵌入处理,将用户想要保留的梦保留在一个画廊中。您可以访问 🔗https://thedreamkeeper.co/ 进一步了解。 Andrej Karpathy 开发的 Awesome movies:这是一个电影搜索与推荐平台,搭建该网站共分三步,包括抓取自 1970 年以来的所有 11,768 部电影,从维基百科上抓取每部电影的简介和情节,并使用 OpenAI API(ada002)进行嵌入处理,最后将所有信息整合成一个电影搜索/推荐引擎网站。您可以通过 🔗https://awesomemovies.life/ 查看。
2025-01-06
如何搭建一个本地的ai助手,通过学习本地文档进行训练
搭建一个本地的 AI 助手并通过学习本地文档进行训练,可参考以下步骤: 1. 设计 AI 机器人: 编写【prompt】提示词,设定 Bot 的身份和目标。 2. 创建知识库: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 创建知识库路径:个人空间 知识库 创建知识库。 知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:在内容中加上特殊分割符“”,以便于自动切分数据。分段标识符号选择“自定义”,内容填“”。 同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。 3. 创建工作流: 告诉 AI 机器人应该按什么流程处理信息。 创建工作流路径:个人空间 工作流 创建工作流。 工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布。 如果任务和逻辑复杂,可以结合左边“节点”工具来实现。比如:可以在工作流中再次调用【大模型】,总结分析知识库内容;可以调用【数据库】存储用户输入的信息;可以调用【代码】来处理复杂逻辑等。 个人建议:工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很重要。 另外,您还可以参考以下 10 分钟在网站上增加一个 AI 助手的方法: 1. 搭建示例网站: 点击打开提供的函数计算应用模板,参考下图选择直接部署、并填写前面获取到的百炼应用 ID 以及 APIKEY。 其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消③所在位置的代码注释即可。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果。此时您会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。
2025-01-06