构建知识库的方法主要有以下两种:
使用 flowith 构建知识库:
使用 Dify 构建知识库:
总的来说,Dify 提供了一个可视化的知识库管理工具,关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。
来自flowith的朋友——玉树芝兰,王树义教授[heading4]构建[content]立即开始尝试构建知识库。方法是选择"Manage Your Knowledge Base",进入知识库管理页面。然后选择左上角的加号,添加新的知识库。你可以随意给知识库起个名。但是强烈建议你起个自己后来能分辨的名字,不然使用的时候会不方便找寻。下面,你就可以点击添加文件。建议使用Markdown格式的文件。一般情况平时发布的文章,存储的都是这种格式。它其实就是带标记的纯文本,比较符合大语言模型的偏好。接着,你会看到Flowith开始忙活,逐个文件进行抽取(Extraction)等处理。你根本无需操心它是怎么做的。关上页面,等处理好了再说。过了一会儿,处理完毕。我点开其中某一个文件看看。处理过后它包含3个seeds,也就是因为长度关系,切分成了3个部分。你可以在知识库管理页面测试检索。例如我这里输入「卡片」,就可以过滤出与「卡片」直接相关的发布文章内容。这就是知识库的构建方法——新建、拖拽、等待、搞定。按照类似的逻辑,王教授分别构建了「《玉树芝兰》公众号文章」和「《玉树芝兰》知识星球文章」两个知识库。知识库构建好了,咱们尝试一下问答吧。
使用Dify构建知识库的具体步骤如下:1.准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。2.创建数据集:在Dify中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。3.配置索引方式:Dify提供了三种索引方式供选择:高质量模式、经济模式和Q&A分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。4.集成至应用:将创建好的数据集集成到Dify的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。5.持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。总的来说,Dify提供了一个可视化的知识库管理工具,使得构建和维护知识库变得相对简单。关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。内容由AI大模型生成,请仔细甄别
☝️拆解创作任务AI创作的一个痛点在于生成的内容太过笼统模糊,也就是AI味儿很重。回想你在工作中是不是也遇到过派活后当甩手掌柜的领导,他不会告诉你步骤、方法或者技巧,只会「很急,今天就要」。如果把AI看作是一名实习生,它可能也遇到了类似的情况。所以如果想让AI成为你的得力助手,你需要提供一定的指导,比如拆解复杂的任务到合适的颗粒度,提供一些方法论让它效仿,定义好输出的格式它好按部就班地执行。我做的第一件事是拆解自己创作一期「科幻预见未来」的步骤,如下图所示:其中需要AI生成的核心内容有电影中未来世界观的描述,构成世界观的驱动力/颠覆因素的分析,和延伸思考的问题。而生成这些内容的前提是准确选出匹配电影设定的驱动力/颠覆因素,也就是流程中的第3步。因此,我们可以视其为一个关键的任务节点,而第4到第7步是围绕第3步展开的主线任务。✌️建立定向知识库由于《梦想与颠覆》卡牌是本次创作的元知识,我们可以将它导入到flowith的知识花园中作为AI可以调用的知识库。将所有的驱动力和颠覆因素转化为文字上传后,打开智能拆分模式,AI就会自动分析内容并优化拆分的逻辑,最后形成一颗颗知识「种子」。后续在画布的侧边栏激活知识库后,AI将启用知识关联功能,根据创作场景自动匹配库内素材,让输出的内容更具针对性。另外你可以选择发布或分享你的知识库,让它成为别人的知识外挂,而在flowith的知识市场中你也可以「挪用」别人的秘籍,只不过受益者是你的AI Agent。