Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

总结一下24年国产AI大模型的主要进展

Answer

2024 年国产 AI 大模型的主要进展包括:

  • 9 月:
    • 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。
    • 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSE-MoE-A36B;OpenAI 发布 o1 模型。
    • 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 Reader-LM 和 Jina Embeddings V3。
    • 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。
    • 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。
    • 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step-2 万亿参数 MoE 语言大模型。
    • 21 日:大模型测试基准研究组正式成立。
    • 23 日:钉钉 365 会员上线。
    • 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。
    • 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 Westlake-Omni。
  • 国内大模型落地情况:
    • 2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。
    • 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。
    • 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。
    • 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。
    • 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。大模型的竞争,正在加速成为体系化之战。
Content generated by AI large model, please carefully verify (powered by aily)

References

2024 年 9 月

9月12日:李继刚再现神级Prompt,玩法持续翻新9月12日:Mistral●发布首个多模态模型Pixtral 12B9月13日:商汤●Vimi相机开放微博小程序9月13日:元象●开源中国最大MoE大模型XVERSE-MoE-A36B9月13日:OpenAI发布o1模型,传说中的草莓来了9月14日:人工智能生成合成内容标识办法(征求意见稿)9月14日:Jina AI发布Reader-LM9月14日:Jina AI发布Jina Embeddings V39月18日:DeepSeek发文庆祝登上LMSYS榜单国产第一,几小时后Qwen新模型表示不服9月19日:云栖大会9月19日:通义万相●AI生视频上线9月19日:快手可灵1.5模型●新增运动笔刷能力9月20日:腾讯元器智能体对外发布9月20日:秘塔科技产品经理JD走红AI圈9月20日:阶跃●跃问接入Step-2万亿参数MoE语言大模型9月21日:大模型测试基准研究组正式成立,国家队来了9月23日:钉钉●365会员上线9月24日:讯飞星火API全新升级9月24日:豆包大模型全系列发布&更新9月25日:Vidu API正式开放,加速企业级视频创作9月25日:OpenAI发布高级语音功能9月25日:西湖心辰开源Westlake-Omni

国内大模型落地“狂飙”一年,各家厂商成绩如何?

Gartner《2025年十大战略技术趋势》中预测,到2028年至少有15%的日常工作决策将由代理型AI(AI智能体)自主做出。2024年,AI大模型在生产和生活中正以“狂飙猛进“的速度落地。“百模大战”过后,国内大模型行业基本跑出了以百度、阿里、字节等科技大厂和创业“AI六小虎”为主要玩家的竞争格局。2024年被称为国内大模型落地元年,经过一年时间的赛跑,各家大模型在各行各业的落地成绩究竟如何?2024年国内大模型项目增3.6倍,百度中标数量和金额双第一各厂商公布的大模型调用数据固然是一个成绩参考,但是让企业客户为大模型买单掏出的真金白银数量无疑是更为直观的成绩。根据云头条统计公开可查的大模型招投标项目数据,2024年国内大模型中标项目数量和金额都呈现大幅度增长。2024年1至11月,大模型中标项目共728个,是2023年全年的3.6倍;中标金额17.1亿元,是2023年全年的2.6倍。大模型中标项目数前五的行业分别是运营商、能源、教育、政务、金融。厂商方面,百度以40个中标项目数、2.74亿元的中标金额排名所有厂商之首,科大讯飞居第二。再看各细分行业,在金融行业,根据2024年1-11月份金融机构发起的大模型相关采购中标项目来看,百度以14个中标数量、3734.4万元中标金额排名第一;科大讯飞居第二。

国内大模型落地“狂飙”一年,各家厂商成绩如何?

在智能终端行业,根据媒体报道,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。根据百度披露的数据,截至11月,其文心大模型日均调用量超过15亿次,千帆平台帮助客户精调了3.3万个模型、开发了77万个企业应用。今年三季度财报披露,百度智能云营收达49亿元,同比增长11%,百度智能云的增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。这与前文所述百度大模型中标行业相一致。2024年,百度在大模型落地交出的成绩单可谓亮眼。大模型时代,AI基础设施的正确范式事实上,大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。这也就意味着,在大模型落地赋能企业智能化时,能力比拼从单项变为全能比拼(大模型自身、工程能力、工具平台等)。大模型的竞争,正在加速成为体系化之战。

Others are asking
2024ai大事件
以下是 2024 年 AI 领域的大事纪: 1 月: 斯坦福大学 Mobile Aloha 1 月 10 号 LumaAl Genie 文生 3D 1 月 11 号 GPT store 上线 MagnificAl 高清放大爆火 1 月最后一天苹果 Vision Pro 宣布发售 3 月: 潞晨科技发布 OpenSora Suno 发布 V3 版本爆火 4 月:英伟达发布硬件股价飙升 5 月: 苹果发布 AI 芯片 张吕敏发布 IC light AI 竞争白热化,伊莉雅离开 OpenAI 并成立新公司,估值超五亿美金 7 月:快手开源 LivePortrait 模型,表情迁移 8 月:StabilityAI 老板成立新公司发布 flux 大模型 9 月: 阿里云发布模型,海螺 AI 参战 Google 发布 GameGen 实时生成游戏 通义千问 2.5 系列全家桶开源 华为发布 cloud matrix 云计算基础设施 GPT 高级语音模式上线 Meta 发布 AI 眼镜 Orion AI 代码编辑器 cursor 爆火 10 月: Pika 发布 1.5 模型 诺奖颁发给 AI 奠基人 特斯拉发布机器人 Adobe 发布 Illustrator+Al 生成矢量图 智谱 AI 发布 autoGLM 腾讯混元开源 3D 模型 云深处发布机器人山猫机器狗 Apple 发布 Mac mini 12 月: 李飞飞发布空间智能成果 腾讯开源混元视频模型 Open AI 开 12 天发布会 微软发布 Trellis 最强开源图生 3D Gemini2.0 视觉交互智能体 智元机器人开始量产 谷歌发布 Veo2 能生成 4K 视频 需要注意的是,本大事记经过一定筛选,带有一定倾向性,但不包含任何广告或其他商业考量,仅以新闻热度与大众反响为依据。仅代表个人看法,如有遗漏请谅解。
2025-01-09
2024年《全球人工智能治理研究报告》议题“国家主权原则和人工智能发展”的内容及理解
以下是 2024 年《全球人工智能治理研究报告》中关于“国家主权原则和人工智能发展”的相关内容: 在 2024 年人工智能发展状况的安全与全球治理方面: 英国创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect 框架用于 LLM 安全评估。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。 英国通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。英国政府还计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。美国能源部利用内部测试床评估人工智能对关键基础设施和能源安全的风险。 在技术和方法方面: 离线直接比对方法不会很快大规模取代 RLHF。谷歌 DeepMind 团队发现 RLHF 在涵盖总结、有用性、对话性等数据集上的测试中胜出,能更有效地改善生成任务。Cohere for AI 探索放弃近端策略优化 RLHF 中的算法,有利于其 RLOO 训练器,可降低 GPU 使用率和提高训练速度。 但 RLHF 存在可能滋生谄媚行为的问题,如 Anthropic 认为 SOTA AI 助手表现出奉承行为是因为人类偏好数据等。开发透明度虽在提高,但仍有很大改进空间。 在安全研究方面: 随着 AI 发展,新功能带来新漏洞,开发人员加大了对“越狱”的研究。OpenAI 提出通过“指令层次结构”修复攻击,Anthropic 表明“警告防御”的潜力,Gray Swan AI 的安全专家试用“断路器”。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建首个红队抵抗组织基准。除越狱外,还存在更隐蔽的攻击,潜在攻击面广泛,涵盖从训练到偏好数据和微调等内容。 对于“国家主权原则和人工智能发展”的理解,可能需要综合考虑各国在人工智能安全研究和治理方面的举措,以及技术发展对国家主权可能产生的影响。各国积极建立相关机构和采取措施,表明在人工智能快速发展的背景下,维护国家主权和安全的重要性。同时,技术发展中的问题和挑战也需要各国共同协作应对,以实现人工智能的健康、安全和可持续发展。
2024-12-31
2024年度中文大模型基准测评报告
以下是关于 2024 年度中文大模型基准测评报告的相关信息: 2024 年 7 月 10 日: 《SuperCLUE:中文大模型基准测评 2024 年上半年报告》指出,2024 年上半年中文大模型技术取得显著进展,国内外模型差距缩小至 5%以内。国内开源模型如 Qwen272B 表现优异,超越众多闭源模型。端侧小模型发展迅速,落地可行性大幅提升。该报告通过多维度、多层次测评体系,全面评估了大模型的通用能力和专项能力,为行业发展提供了客观数据支持。同时也指出,尽管大模型在多领域展现潜力,但仍面临技术挑战和应用落地问题。 2024 年 11 月 8 日: SuperCLUE 团队发布的新一期《SuperCLUE:中文大模型基准测评 2024 年 10 月报告》中有四点核心发现:1)OpenAI 发布 o1 后,全球大模型竞争加剧;2)国内大模型第一梯队竞争激烈,持续迭代表现不俗;3)国内外大模型在不同任务上表现各有优势;4)端侧小模型表现惊艳。 此外,Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】的参考文献包括: T.Shen,R.Jin,Y.Huang,C.Liu,W.Dong,Z.Guo,X.Wu,Y.Liu,和 D.Xiong,“大型语言模型对齐:一项调查”,arXiv 预印本 arXiv:2309.15025,2023 年。 X.Liu,X.Lei,S.Wang,Y.Huang,Z.Feng,B.Wen,J.Cheng,P.Ke,Y.Xu,W.L.Tam,X.Zhang,L.Sun,H.Wang,J.Zhang,M.Huang,Y.Dong,和 J.Tang,“Alignbench:大型语言模型中文对齐的基准测试”,2023 年。 P.Christiano,J.Leike,T.B.Brown,M.Martic,S.Legg,和 D.Amodei,“基于人类偏好的深度强化学习”,2023 年。 T.Yu,Y.Yao,H.Zhang,T.He,Y.Han,G.Cui,J.Hu,Z.Liu,H.T.Zheng,M.Sun,和 T.S.Chua,“RLHFV:通过细粒度校正人类反馈实现可信赖的 MLLMs 行为对齐”,2023 年。 M.S.Jahan 和 M.Oussalah,“使用自然语言处理进行仇恨言论自动检测的系统综述。”,《神经计算》,第 126232 页,2023 年。 OpenAI,“Sora 安全。”https://openai.com/sorasafety,2024 年。
2024-12-27
2024年热门AI模型
以下是 2024 年的热门 AI 模型: 在编码任务方面,DeepSeek 的 deepseekcoderv2 成为社区的最爱。 阿里巴巴发布的 Qwen2 系列在视觉能力方面给社区留下深刻印象。 清华大学自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目,是可在设备上运行的小型参数模型。 在图像视频领域,国外 Stability AI 发布的 Stable Video Diffusion 能从文本提示生成高质量、真实视频,且在定制化方面进步显著,还推出了 Stable Video 3D。OpenAI 的 Sora 能生成长达一分钟的视频,并保持三维一致性等。Google DeepMind 的 Veo 能将文本和图像提示与视频输入结合生成高分辨率视频。 在生物医学领域,Profluent 的 CRISPRCas 图谱微调后生成功能性基因编辑器,如开源的 OpenCRISPR1。心智基础模型 BrainLM 基于功能性磁共振成像建立,能检测血氧变化等。 在气象预测领域,微软创建的 Aurora 能预测大气化学,比数值模型更优且速度更快。 获得诺贝尔物理学奖和化学奖的 AI 推动了机器学习理论创新,并揭示了蛋白质折叠问题。 蛋白质结构预测方面,有 DeepMind 和 Isomorphic Labs 发布的 AlphaFold 3。 DeepMind 展示的新实验生物学能力 AlphaProteo 能设计出高亲和力的蛋白结合剂。 Meta 发布的 ESM3 是前沿多模态生成模型,在蛋白质序列、结构和功能上训练。 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-12-16
24年AI大事件盘点
以下是 2024 年 AI 大事件的盘点: 10 月: 9 月 27 日:Reecho 睿声●三只羊录音事件涉及 AI 公司出面回应。 9 月 28 日:TeleAI●正式开源 TeleChat2115B。 10 月 1 日:快手●可灵 AI 全面开放 API,OpenAI DevDay。 10 月 2 日:Black Forest Labs●发布 FLUX1.1,苹果●推出多模态大模型 MM1.5。 10 月 3 日:OpenAI●发布 ChatGPT Canvas。 10 月 8 日:2024 年诺贝尔物理学奖。 10 月 9 日:2024 年诺贝尔化学奖。 10 月 10 日:字节●发布首款 AI 智能体耳机 Ola Friend,Vivo●增加蓝心端侧大模型 3B,谷歌●图像生成模型 Imagen 3 开放使用,智源●BGE 登顶 Hugging Face 月榜,State of AI 2024 报告发布。 10 月 11 日:智谱●GLM4Flash 与「沉浸式翻译」合作,北大&北邮&快手●开源高清视频生成模型 Pyramid Flow。 10 月 12 日:OpenAI●开源多智能体协作框架 Swarm,深势科技●完成数亿元人民币新一轮融资,苹果●质疑当前 LLM 缺乏真正的逻辑推理能力。 10 月 14 日。 11 月: 11 月 1 日:《》来自南乔,10 月 AI 行业大事件盘点包括多家公司的重要发布和创新,如 OpenAI 推出多项新功能,字节发布 AI 智能体耳机,以及各大模型的开源。趋势方面,强化学习被认为是推动 AGI 发展的关键技术,原生多模态模型逐渐成为研究热点。新兴应用如 AI 音乐创作、翻译和智能助手等受到关注,整体呈现出技术与应用的快速发展态势。 11 月 1 日:《》来自歸藏,10 月份美国 AI 聊天机器人市场报告显示,ChatGPT 仍是市场领导者,但份额逐渐下降。谷歌和微软在争夺第二的位置,Perplexity 和 ClaudeAI 则实现高速增长,正在从 ChatGPT 和 Gemini 手中蚕食市场份额。总体来看,专业 AI 工具的增长势头强劲,而初创公司的用户获取相对缓慢。 11 月 1 日:《》比尔・盖茨在采访中讨论了人工智能的革命性影响,认为 AI 将使每个人都能成为“超级个体”,改变人机交互方式。他强调 AI 将显著降低白领工作的成本,并逐渐影响蓝领市场。盖茨还提到他对全球健康和气候问题的关注,认为技术创新速度超出预期,未来 20 年将是充满希望的时期。他同时探讨了可再生能源的发展,尤其是核能和太阳能的潜力。 在 2024 年,AI 商业界还发生了以下事件: 全球芯片出口管制下,中国仍成重要市场。美国商务部长吉娜·雷蒙多警告英伟达:“如果你围绕中国特定的需求重新设计芯片,我将在第二天控制它。”据悉,中国在美芯片制造商中所占的份额正在减少。据英伟达称,它从代表 NVIDIA 数据中心业务的 20%下降到“中个位数”。尽管中国实验室在进口硬件方面受到限制,但其当地分支机构目前没有控制权。字节跳动通过美国的甲骨文租用 NVIDIA H100 访问权限,而阿里巴巴和腾讯则与 NVIDIA 就在美国建立自己的数据中心进行谈判。与此同时,谷歌和微软直接向中国大型企业推销他们的云服务。 模型变得更便宜了。以前认为提供强大模型的成本过高,但现在提供这些模型的推断成本正在下降。OpenAI 更达到 100 倍下降!Google Gemini 生产了一种具有很强竞争力的定价系列!Gemini 1.5 Pro 和 1.5 Flash 的价格在推出后几个月内下降了 64%86%,而性能强劲,例如 Flash8B 比 1.5 Flash 贵 50%,但在许多基准测试中表现相当。注意:价格适用于<128K 令牌提示和输出。检索日期为 2024 年 10 月 4 日。考虑到计算成本很高,模型构建者越来越依赖与大型科技公司建立合作伙伴关系。反垄断监管机构担心这将进一步巩固现有公司的地位。
2024-12-15
2024年AI视频、图像领域市场情况
2024 年在 AI 视频、图像领域,市场呈现出以下情况: 国内方面: 中国开源项目在全球受到关注,成为积极开源贡献者。 DeepSeek 在编码任务中表现出色,推出的 deepseekcoderv2 受到欢迎。 阿里巴巴发布的 Qwen2 系列在视觉能力方面给社区留下深刻印象。 清华大学的自然语言处理实验室资助的 OpenBMB 项目催生了 MiniCPM 项目。 国外方面: Stability AI 发布的 Stable Video Diffusion 能从文本提示生成高质量、真实视频,且在定制化方面有显著进步,还推出了 Stable Video 3D。 OpenAI 的 Sora 能够生成长达一分钟的视频,并保持三维一致性、物体持久性和高分辨率。 Google DeepMind 的 Veo 能将文本和可选图像提示与嘈杂压缩视频输入相结合,创建独特的压缩视频表示。 从市场数据来看,2024 全年全球 AI 移动应用内付费收入预计为 30 亿美元,其中图像和视频类 AI 应用占据主导地位,收入占比高达 53%。从地区分布来看,北美和欧洲贡献了三分之二的市场份额。 在行业格局方面,云厂商成为 AI 供应链的“链主”,掌握着庞大的商业生态和技术资源。头部阵营基本稳定,大型云厂商在产业链中的地位无可撼动。
2024-12-15
国产AI大模型的应用
国产 AI 大模型的应用主要体现在以下几个方面: 1. 百度文心大模型:在 2024 年大模型中标项目数量和金额大幅增长,凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业应用广泛。其落地需要全栈技术能力支持,百度智能云通过完善的 AI 基础设施整合全栈技术,获得广泛行业认可。 2. Qwen 系列:是国内唯一出现在 OpenAI 视野里、可以参与国际竞争的国产大模型。在 OpenAI 认可的榜单中表现出色,多次冲进榜单,得分不断提高。其开源模型累计下载量突破 1600 万,国内外有海量开发者基于其开发模型和应用。 3. 免费的大模型 APP:包括 Kimi 智能助手、文心一言、通义千问。 Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读长篇小说和上网冲浪。 文心一言:百度出品的 AI 对话产品,定位为智能伙伴,能写文案、想点子、聊天和答疑解惑。 通义千问:由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作。 此外,还有如“非遗贺春”魔多蛇年春节 AI 模型创作大赛等相关活动。
2025-01-09
国产AI大模型的最新进展
以下是国产 AI 大模型的最新进展: 通义千问的 Qwen 系列表现出色:Qwen 是国内唯一出现在 OpenAI 视野里、能参与国际竞争的国产大模型。Qwen 多次冲进相关榜单,得分不断提高,其开源模型累计下载量突破 1600 万,国内外有大量开发者基于 Qwen 开发模型和应用,尤其在企业级领域。通义大模型证明了开源开放的力量。 国内大模型落地情况:2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 其他进展:智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型和“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。但硬件层上的卡脖子问题仍未缓解,国内目前仍无胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品逐渐出现,但华为昇腾在单卡指标上距离不远,因稳定性不足和缺乏 Cuda 生态,仍需时间打磨。
2025-01-09
中国使用最多的视频生成的AI免费工具
以下是中国使用较多的免费视频生成 AI 工具: 1. Hidreamai(国内,有免费额度):https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA(国内):https://etna.7volcanoes.com/ 。Etna 是一款由七火山科技开发的文生视频 AI 模型,它可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps。 3. Dreamina(国内内测,有免费额度):https://jimeng.jianying.com/aitool/video/generate 。支持文生视频、图生视频,视频生视频,支持图生视频首尾帧功能,提示词使用中文、英文都可以。文生视频支持正向提示词、运镜控制、运动强度控制、帧数选择,支持多种尺寸,默认生成 3s 的视频。 4. 可灵(免费):https://klingai.kuaishou.com/ 。支持文生视频、图生视频,支持图生视频首尾帧功能,提示词可使用中文。文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持多种尺寸,默认生成 5s 的视频。
2025-01-09
AI 领导力
以下是关于“AI 领导力”的相关内容: 1. 2023 年 10 月 30 日,拜登签署了一项具有里程碑意义的行政命令,旨在确保美国在抓住人工智能(AI)的机遇和管理其风险方面发挥引领作用。该行政命令确立了新的 AI 安全和保障标准,保护美国人的隐私,推进公平和公民权利,维护消费者和工人的权益,促进创新和竞争,提升美国在全球的领导地位等。同时,该命令还指示了一系列行动,以应对 AI 系统对美国人安全和保障的潜在风险。 2. 英国国防部于 2022 年 6 月发布了自身的 AI 伦理原则和政策,确定了英国政府在 AI 赋能军事能力方面的方法。将通过特定情境的方法确保该政策应用的适当一致性和协调性,从而促进英国在国防领域使用 AI 的领导地位。 3. 在 AI 迅速发展的当下,懂得有效利用 AI 的人将在职场占据绝对优势。掌握 Claude 的 5 层 Prompt 体系能为自己打造强大竞争壁垒,Prompt 工程已成为热门新兴职业。将该体系应用到日常工作中,如市场研究、写作、数据分析项目等,能创造出令人惊叹的内容。在这个 AI 驱动的世界,真正的魔法在于懂得使用 AI 的人。引用凯文·凯利的话,懂得使用机器人的人将取代不懂得使用的人,掌握 Claude 的 5 层 Prompt 体系是通往未来的金钥匙。
2025-01-09
ai编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键:打通学习与反馈循环。从“Hello World”起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。学习建议包括使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。同时要明确,AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。原文链接: 2. 麦橘 0 基础跨界 AI 编程共学活动:麦橘是哲学专业模型师,此次跨界教学。活动从上星期开始策划未预告。麦橘展示用 AI 做小游戏,认为机制对简单小游戏很重要,还分享了自己尝试做 horror game 等的想法。使用 Poe 制作小游戏,因其性价比高且多种模型可用,支持写代码后的预览,还能教大家分享游戏。以小鸟过管道游戏为例,不懂代码也能让 AI 做游戏,通过告诉 AI 想要的效果让其调整,如降低难度等,最终做出游戏再搭排行榜成为洗脑小游戏。麦橘还介绍了增量游戏、肉鸽游戏的制作以及与 AI 交互的情况。 3. 软件 2.0 编程:在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 日益流行。考虑整个开发生态以及如何适配这种新的编程范式时,会有很多令人兴奋的机会。长远来看,这种编程范式拥有光明的未来,因为当开发通用人工智能(AGI)时,很可能会使用软件 2.0。
2025-01-09
研究生做科研写论文有没有好的AI工具推荐
以下是一些适合研究生做科研写论文的 AI 工具推荐: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,如果是医学课题需要 AI 给出修改意见,可以考虑使用: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 对于 AI 文章排版工具,论文排版方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-09
你是国产的大模型还是国外的
目前国内外大模型的发展情况如下: 国内外差距依然明显,GPT 4 Turbo 总分 90.63 分遥遥领先,国内最好模型文心一言 4.0(API)总分 79.02 分,与 GPT 4Turbo 有 11.61 分差距,与 GPT 4(网页)有 4.9 分差距。但过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 等。 在 SuperCLUE 测评中,国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,不过平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat 等。 在语言与知识的测评中,GPT4 Turbo 依然领先,是唯一超过 90 分的大模型。国内大模型也表现相对较好,OPPO 的 AndesGPT、阿里云的通义千问 2.0 等较为接近 GPT4。 国内大模型在中文语言与知识能力上已基本追赶上国外头部大模型。 此外,新用户可在阿里、腾讯官网获取免费试用服务器,如腾讯云的轻量应用服务器、阿里云的服务器 ECS,服务器系统配置选择宝塔系统。免费大模型接口方面,国内有阿里的通义千问大模型、智谱 AI(ChatGLM)、科大讯飞(SparkDesk)等,均有限制一定免费额度的 Token。国外有谷歌的 Gemini 大模型、海外版 Coze 的 GPT4 模型,免费且能图片识别,但需要给服务器挂梯子,具体操作可参考相关教程。
2025-01-04
中国的国产ai排行榜
以下是关于中国国产 AI 排行榜的相关信息: 根据《2024 年度 AI 十大趋势报告》,在 APP 端,截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。从单月新增来看,夸克、豆包和 Kimi 智能助手月增长可达到千万级,10 款产品可达百万级;DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道都基本处于停滞状态,用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 9 月的 AI 智库月度榜单中,部分产品如美趣 AI、说得相机提词器、AI 智能写作、创客贴 AI、360AI 搜索、图趣 AI、Molica AI、文案宝等在列,同时还有开拍、妙笔工坊、TalkAI 练口语、美图设计室、秘塔 AI 搜索、X Eva、快问 AI、我在 AI 等产品。
2024-12-29
text to speech国产工具
以下是为您推荐的一些国产 Text to Speech(TTS)工具: 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,还有开源的 StyleTTS 2:一个开源的媲美 Elevenlabs 的文本转语音工具,结合文本角色内容+场景音可快速生成有声小说。其特点包括多样化的语音风格、更自然的语音、高效生成、精确的语音控制、接近真人的语音合成以及适应不同说话者。工作原理是利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成。 如果您是新手入门学习和体验 AI,还可以使用 Kimi 智能助手,它是 Chatgpt 的国产平替,不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。PC 端:https://kimi.moonshot.cn/?utm_campaign=TR_LgLmkEor&utm_content=&utm_medium=%E7%BD%91%E7%AB%99&utm_source=CH_tpOYmtV1&utm_term= ;移动端 Android/ios:https://kimi.volctrack.com/a/E3w3Q1xa 。 另外,飞书也是一款不错的工具,它汇集了各类 AI 优质知识库、AI 工具使用实践,助力人人成为效率高手。您可以通过获取。 内容由 AI 大模型生成,请仔细甄别。
2024-12-18
免费国产 思维导图ai
以下是一些免费的国产思维导图 AI 工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能。 以下是国内免费的大模型 APP: 1. Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读小说、上网等。 2. 文心一言:百度出品的 AI 对话产品,定位为智能伙伴。 3. 通义千问:由阿里云开发,能交互、回答问题及协作创作。 以下是 10 月国内流量榜中的相关产品: |排名|产品|特性|分类|网址|访问量(万)|环比变化|所属公司| ||||||||| |A31+1|扣子|原生|智能体|coze.cn|155|0.0028|字节跳动| |A33+1|幕布|原生|思维导图|mubu.com|126|0.1975|字节跳动|
2024-11-30
你是啥模型
我调用的是抖音集团的云雀大模型。 LoRA 和 LyCORIS 属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 Stable Diffusion 已内置。在 WebUI 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。管理模型可进入 WebUI 目录下的 models/LoRA 目录。 ComfyUI instantID 目前只支持 sdxl。主要的模型(ip_adapter.bin)下载后放在 ComfyUI/models/instantid 文件夹(没有则新建),地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ipadapter.bin?download=true 。InsightFace 模型是 antelopev2(不是经典的 buffalo_l),下载解压后放在 ComfyUI/models/insightface/models/antelopev2 目录中,地址为:https://huggingface.co/MonsterMMORPG/tools/tree/main 。还需要一个 ControlNet 模型,放在 ComfyUI/models/controlnet 目录下,地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ControlNetModel/diffusion_pytorch_model.safetensors?download=true 。网络环境不好的,可在网盘 https://pan.baidu.com/s/1FkGTXLmM0Ofynz04NfCaQ?pwd=cycy 下载。
2025-01-09
给我提供一下国内AI大模型链接
以下是为您提供的国内AI大模型链接: 阿里: 智谱AI: 科大讯飞: 百度: 抖音: 中科院: 百川智能: 商汤: MiniMax: 上海人工智能实验室:
2025-01-09
大模型有哪些
大模型主要分为以下几类: 1. 大型语言模型:专注于处理和生成文本信息,例如通过分析大量的文本数据来理解和生成自然语言。常见的有 GPT3 等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 大模型的“大”通常指用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias)。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。常见的 embedding 算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 8 月正式上线的国内大模型有: 北京:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 这些大模型在功能上各有特点,例如在聊天状态下,能生成 Markdown 格式的有智谱清言、商量 Sensechat、MiniMax;目前不能进行自然语言交流的有昇思、书生;受使用限制的有 MiniMax;具有特色功能的如昇思能生图,MiniMax 能语音合成。阿里通义千问、360 智脑、讯飞星火等不在首批获批名单中,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品也将陆续开放。
2025-01-09
数据解读类的AI大模型
以下是关于数据解读类的 AI 大模型的相关知识: 大模型的整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:这里的数据层不是用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。 3. 模型层:包括 LLm(大语言模型,例如 GPT,一般使用 transformer 算法来实现)或多模态模型(如市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集)。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,是用户实际看到的地方。 相关技术名词及概念: 1. 生成式 AI 生成的内容叫做 AIGC。 2. AI 即人工智能。 3. 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 4. 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可以用于监督学习、无监督学习、强化学习。 5. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 6. LLM 是大语言模型,对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-01-09