Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

国产AI大模型的最新进展

Answer

以下是国产 AI 大模型的最新进展:

  • 通义千问的 Qwen 系列表现出色:Qwen 是国内唯一出现在 OpenAI 视野里、能参与国际竞争的国产大模型。Qwen 多次冲进相关榜单,得分不断提高,其开源模型累计下载量突破 1600 万,国内外有大量开发者基于 Qwen 开发模型和应用,尤其在企业级领域。通义大模型证明了开源开放的力量。
  • 国内大模型落地情况:2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。
  • 其他进展:智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型和“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。但硬件层上的卡脖子问题仍未缓解,国内目前仍无胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品逐渐出现,但华为昇腾在单卡指标上距离不远,因稳定性不足和缺乏 Cuda 生态,仍需时间打磨。
Content generated by AI large model, please carefully verify (powered by aily)

References

Qwen 2开源了 模型性能超越目前所有开源模型和国内闭源模型

可以说,Qwen是国内唯一出现在OpenAI视野里,可以参与国际竞争的国产大模型。不久前,OpenAI创始人奥特曼在X上转发了一条OpenAI研究员公布的消息,GPT-4o在测试阶段登上了Chatbot Arena(LMSys Arena)榜首位置,这个榜单是OpenAI唯一认可证明其地位的榜单,而Qwen是其中唯一上榜的国内模型。早些时候,有人做了个LMSys榜单一年动态变化视频。过去一年内,国产大模型只有Qwen多次冲进这份榜单,最早出现的是通义千问14B开源视频Qwen-14B,后来是Qwen系列的72B、110B以及通义千问闭源模型Qwen-Max,得分一个比一次高,LMSys也曾官方发推认证通义千问开源模型的实力。在顶尖模型公司的竞争中,目前为止中国模型只有通义千问真正入局,能与头部厂商一较高下。开发者用脚投票的结果,显示了Qwen系列的受欢迎程度。目前为止,Qwen系列开源模型的累计下载量突破了1600万,国内外有海量开发者都基于Qwen开发了自己的模型和应用,尤其是企业级的模型和应用。Qwen的很多忠实拥趸是海外开发者,他们时常在社交平台发表“我们为什么没有这种模型”的溢美之词(配图详见附件)。可以说,通义大模型用行动证明了开源开放的力量。七、为什么大模型的生态建设如此重要?AI大模型是全球数字技术体系的竞争,这个体系包括芯片、云计算、闭源模型、开源模型、开源生态等等。中国信息化百人会执委、阿里云副总裁安筱鹏指出,全球AI大模型竞争的制高点是AI基础大模型,因为基础大模型决定了产业智能化的天花板,商业闭环的可能性,应用生态的繁荣以及产业竞争的格局。与此同时,开源生态在整个技术体系的竞争中也有着至关重要的作用。

国内大模型落地“狂飙”一年,各家厂商成绩如何?

Gartner《2025年十大战略技术趋势》中预测,到2028年至少有15%的日常工作决策将由代理型AI(AI智能体)自主做出。2024年,AI大模型在生产和生活中正以“狂飙猛进“的速度落地。“百模大战”过后,国内大模型行业基本跑出了以百度、阿里、字节等科技大厂和创业“AI六小虎”为主要玩家的竞争格局。2024年被称为国内大模型落地元年,经过一年时间的赛跑,各家大模型在各行各业的落地成绩究竟如何?2024年国内大模型项目增3.6倍,百度中标数量和金额双第一各厂商公布的大模型调用数据固然是一个成绩参考,但是让企业客户为大模型买单掏出的真金白银数量无疑是更为直观的成绩。根据云头条统计公开可查的大模型招投标项目数据,2024年国内大模型中标项目数量和金额都呈现大幅度增长。2024年1至11月,大模型中标项目共728个,是2023年全年的3.6倍;中标金额17.1亿元,是2023年全年的2.6倍。大模型中标项目数前五的行业分别是运营商、能源、教育、政务、金融。厂商方面,百度以40个中标项目数、2.74亿元的中标金额排名所有厂商之首,科大讯飞居第二。再看各细分行业,在金融行业,根据2024年1-11月份金融机构发起的大模型相关采购中标项目来看,百度以14个中标数量、3734.4万元中标金额排名第一;科大讯飞居第二。

AGI万字长文(上)| 2023回顾与反思

智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点其他的我暂时不列了,在2023年官宣AI大模型的公司非常多,其中免不了很多是蹭流量的。以及,大模型确实有门槛,融了资的公司还有些钱花,我们可以多给一些时间看2024年的结果。(判断的方式并不客观,欢迎讨论)从产品层面上,2C端唯一真正出圈的是“妙鸭相机”,不过也只是昙花一现。大多数消费者对于AI产品的态度是“猎奇”,而非刚需。在2B行业中,大模型目前还是“纯技术投入”,对于收入撬动非常有限;而卖AI的大厂们实际上的目的是为了卖云……最后,硬件层上的卡脖子并没有缓解。目前国内仍然没有芯片可以胜任大模型训练。不过在推理上已经开始有Nvidia的替代产品逐渐出现。备受瞩目的华为昇腾在单卡指标上距离不远,但因为稳定性不足和缺乏Cuda(硬件编译库)生态,仍然需要时间打磨。美国对于国内的芯片禁运在未来还会进一步加深;因此,除了卷模型之外,基于昇腾生态的软-硬件创业是一个机会,而且是更确定的机会。

Others are asking
总结一下24年国产AI大模型的主要进展
2024 年国产 AI 大模型的主要进展包括: 9 月: 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 ReaderLM 和 Jina Embeddings V3。 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 21 日:大模型测试基准研究组正式成立。 23 日:钉钉 365 会员上线。 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 国内大模型落地情况: 2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。大模型的竞争,正在加速成为体系化之战。
2025-01-09
国产AI大模型的应用
国产 AI 大模型的应用主要体现在以下几个方面: 1. 百度文心大模型:在 2024 年大模型中标项目数量和金额大幅增长,凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业应用广泛。其落地需要全栈技术能力支持,百度智能云通过完善的 AI 基础设施整合全栈技术,获得广泛行业认可。 2. Qwen 系列:是国内唯一出现在 OpenAI 视野里、可以参与国际竞争的国产大模型。在 OpenAI 认可的榜单中表现出色,多次冲进榜单,得分不断提高。其开源模型累计下载量突破 1600 万,国内外有海量开发者基于其开发模型和应用。 3. 免费的大模型 APP:包括 Kimi 智能助手、文心一言、通义千问。 Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读长篇小说和上网冲浪。 文心一言:百度出品的 AI 对话产品,定位为智能伙伴,能写文案、想点子、聊天和答疑解惑。 通义千问:由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作。 此外,还有如“非遗贺春”魔多蛇年春节 AI 模型创作大赛等相关活动。
2025-01-09
中国使用最多的视频生成的AI免费工具
以下是中国使用较多的免费视频生成 AI 工具: 1. Hidreamai(国内,有免费额度):https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA(国内):https://etna.7volcanoes.com/ 。Etna 是一款由七火山科技开发的文生视频 AI 模型,它可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps。 3. Dreamina(国内内测,有免费额度):https://jimeng.jianying.com/aitool/video/generate 。支持文生视频、图生视频,视频生视频,支持图生视频首尾帧功能,提示词使用中文、英文都可以。文生视频支持正向提示词、运镜控制、运动强度控制、帧数选择,支持多种尺寸,默认生成 3s 的视频。 4. 可灵(免费):https://klingai.kuaishou.com/ 。支持文生视频、图生视频,支持图生视频首尾帧功能,提示词可使用中文。文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持多种尺寸,默认生成 5s 的视频。
2025-01-09
AI 领导力
以下是关于“AI 领导力”的相关内容: 1. 2023 年 10 月 30 日,拜登签署了一项具有里程碑意义的行政命令,旨在确保美国在抓住人工智能(AI)的机遇和管理其风险方面发挥引领作用。该行政命令确立了新的 AI 安全和保障标准,保护美国人的隐私,推进公平和公民权利,维护消费者和工人的权益,促进创新和竞争,提升美国在全球的领导地位等。同时,该命令还指示了一系列行动,以应对 AI 系统对美国人安全和保障的潜在风险。 2. 英国国防部于 2022 年 6 月发布了自身的 AI 伦理原则和政策,确定了英国政府在 AI 赋能军事能力方面的方法。将通过特定情境的方法确保该政策应用的适当一致性和协调性,从而促进英国在国防领域使用 AI 的领导地位。 3. 在 AI 迅速发展的当下,懂得有效利用 AI 的人将在职场占据绝对优势。掌握 Claude 的 5 层 Prompt 体系能为自己打造强大竞争壁垒,Prompt 工程已成为热门新兴职业。将该体系应用到日常工作中,如市场研究、写作、数据分析项目等,能创造出令人惊叹的内容。在这个 AI 驱动的世界,真正的魔法在于懂得使用 AI 的人。引用凯文·凯利的话,懂得使用机器人的人将取代不懂得使用的人,掌握 Claude 的 5 层 Prompt 体系是通往未来的金钥匙。
2025-01-09
ai编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键:打通学习与反馈循环。从“Hello World”起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。学习建议包括使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。同时要明确,AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。原文链接: 2. 麦橘 0 基础跨界 AI 编程共学活动:麦橘是哲学专业模型师,此次跨界教学。活动从上星期开始策划未预告。麦橘展示用 AI 做小游戏,认为机制对简单小游戏很重要,还分享了自己尝试做 horror game 等的想法。使用 Poe 制作小游戏,因其性价比高且多种模型可用,支持写代码后的预览,还能教大家分享游戏。以小鸟过管道游戏为例,不懂代码也能让 AI 做游戏,通过告诉 AI 想要的效果让其调整,如降低难度等,最终做出游戏再搭排行榜成为洗脑小游戏。麦橘还介绍了增量游戏、肉鸽游戏的制作以及与 AI 交互的情况。 3. 软件 2.0 编程:在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 日益流行。考虑整个开发生态以及如何适配这种新的编程范式时,会有很多令人兴奋的机会。长远来看,这种编程范式拥有光明的未来,因为当开发通用人工智能(AGI)时,很可能会使用软件 2.0。
2025-01-09
研究生做科研写论文有没有好的AI工具推荐
以下是一些适合研究生做科研写论文的 AI 工具推荐: 1. 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,能提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 此外,如果是医学课题需要 AI 给出修改意见,可以考虑使用: 1. Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,简化学术工作。 2. Scholarcy:能从文档提取结构化数据,生成文章概要,包含关键概念等板块内容。 3. ChatGPT:强大的自然语言处理模型,可提供修改意见和帮助。 对于 AI 文章排版工具,论文排版方面: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,改进文本清晰度和流畅性。 3. Latex:常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档则 Grammarly 和 PandaDoc 等可能更适用。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-09
AI方面有什么最新进展
以下是 AI 方面的一些最新进展: 1. 2024 人工智能现状报告:由剑桥大学和 AI 风险投资公司 Air Street Capital 的相关人员共同发表,围绕人工智能领域的最新进展、政治动态、安全挑战及未来预测几大方面进行说明。 2. AI 绘画:从生成艺术作品到辅助艺术创作,逐渐改变传统艺术面貌。技术进步使创作质量和速度取得突破,为艺术家提供新工具和可能性,但也引发了关于艺术本质、创造性、版权和伦理的讨论,带来对从业者职业安全的焦虑和“侵权”嫌疑的反对之声。 3. 技术历史和发展方向: 发展历程:包括早期阶段的专家系统、博弈论、机器学习初步理论;知识驱动时期的专家系统、知识表示、自动推理;统计学习时期的机器学习算法;深度学习时期的深度神经网络等。 前沿技术点:大模型(如 GPT、PaLM 等)、多模态 AI(视觉语言模型、多模态融合)、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI、AI 芯片和硬件加速。
2024-12-05
人工智能与AI诈骗最新进展
以下是关于人工智能与 AI 诈骗的最新进展: 在 2024 年,AI 领域有诸多进展。在图像和视频方面,超短视频的精细操控,如表情、细致动作、视频文字匹配等有所发展,有一定操控能力的生成式短视频中,风格化、动漫风最先成熟,真人稍晚。AI 音频能力长足进展,带感情的 AI 配音基本成熟。“全真 AI 颜值网红”出现,可稳定输出视频并直播带货。游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。AI 男/女朋友聊天基本成熟,在记忆上有明显突破,能较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。实时生成的内容开始在社交媒体内容、广告中出现。AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。AI 的商业模式开始有明确用例,如数据合成、工程平台、模型安全等。可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。中国 AI 有望达到或超过 GPT4 水平,美国可能出现 GPT5,世界上开始出现“主权 AI”。华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代稍晚)。然而,AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧,AI 立法、伦理讨论仍大规模落后于技术进展。 在 3 月底的 23 个最新 AI 产品中,有室内装修自动渲染的 HomeByte,生成效果超赞的新视觉模型 Playground v1,“图生文”反向工具 Clip Interrogator 以及致力于解决电话诈骗的 GPTCHA 等。 在技术应用方面,LLMs 能自动化写代码等流程,交通应用如 Google Maps 和 CityMapper 也使用了 AI。AI 在银行业的欺诈检测、信用管理和文件处理等方面发挥作用。同时,AI 还在药物研发、解决气候危机等领域有重要应用。 总之,AI 技术在不断发展的同时,也带来了如诈骗等问题,需要关注和解决。
2024-12-02
AI加教育的最新进展
以下是 AI 加教育的最新进展: 案例方面: “AI 赋能教师全场景”,来自 MQ 老师的投稿贡献。 “未来教育的裂缝:如果教育跟不上 AI”,揭示了人工智能在教育领域从理论走向实际应用带来的颠覆性改变。 “化学:使用大型语言模型进行自主化学研究”。 “翻译:怎么把一份英文 PDF 完整地翻译成中文?”,介绍了 8 种方法。 对未来的预判: 个性化学习时代已到来,AI 将作为教育生态系统的一部分与人类教师协作,为孩子提供不同的学习体验,如混合式教学、定制学习路径等。 教育工作者将成为学习的引导者和伙伴,更多关注孩子的全人发展,如创造力和社交智慧。 未来 3 年,提升人机协作效率的领域,如 AI 作业批改、备课、定制教育规划、学前启蒙等,对教育从业者蕴藏着巨大机遇。 探索实践: 过去半年多,梳理教学和育儿工作流,每个环节与 AI 协作可大幅提升效率,但也加剧了知识获取的不平等。从家长的“育”、老师的“教”和学生的“学”进行了落地实践的拆解。
2024-11-05
Ai最新进展
AI 技术的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。 当前 AI 的前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,例如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,包含自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。 6. 机器人学,包括强化学习、运动规划、人机交互等。 7. 量子 AI,有量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 此外,绿洲资本张津剑认为 AI 技术正在加速发展,并且没有看到任何减缓的迹象。尽管媒体报道可能有所减少,但 AI 的实际进展非常迅速。
2024-09-03
LLM写ABAP代码的最新进展
大型语言模型(LLM)在编写ABAP代码方面的能力正在不断提升。ABAP(高级业务应用编程)是SAP系统的编程语言,专门用于开发企业资源规划(ERP)软件。以下是一些LLM编写ABAP代码的最新进展: 1. 代码生成:LLM可以基于自然语言描述生成ABAP代码片段,帮助开发者快速实现特定功能。 2. 代码补全:通过机器学习技术,LLM能够预测并补全ABAP代码,提高开发效率。 3. 代码审查:LLM可以分析ABAP代码,识别潜在的错误和不规范的编程实践。 4. 文档生成:LLM能够根据ABAP代码自动生成文档,包括函数描述、参数说明等。 5. 模式识别:LLM可以识别ABAP编程中的常见模式和最佳实践,并在代码生成时应用这些模式。 6. 交互式学习:一些LLM提供交互式学习环境,帮助开发者通过实例学习ABAP编程。 7. 集成开发环境(IDE)插件:LLM技术被集成到ABAP开发工具中,提供智能代码提示和错误检测。 8. 自动化测试:LLM可以生成测试用例,帮助自动化ABAP代码的测试过程。 9. 性能优化:LLM可以分析ABAP代码的性能瓶颈,并提出优化建议。 10. 跨语言能力:一些LLM能够理解多种编程语言的概念,并将其应用于ABAP代码的编写。 然而,尽管LLM在编写ABAP代码方面取得了进展,但它们仍然面临一些挑战,例如: 领域特定知识:ABAP是一种领域特定的语言,需要对SAP系统有深入的理解。 复杂逻辑处理:企业级应用的逻辑可能非常复杂,LLM需要能够处理这些复杂性。 代码维护性:自动生成的代码需要易于理解和维护。 随着技术的发展,LLM在ABAP编程领域的应用将越来越广泛,但它们可能仍然需要与人类开发者合作,以确保生成的代码既高效又可靠。
2024-08-05
GPT4最新进展
GPT4是OpenAI开发的大型多模态语言模型,它能够接受图像和文本输入,并产生文本输出。以下是GPT4的一些最新进展: 1. GPT4 Turbo的发布:OpenAI推出了GPT4 Turbo的预览版,这是一个更强大的模型,它了解截至2023年4月的世界事件。GPT4 Turbo具有128K的上下文窗口,可以处理相当于300多页文本的输入。相比于GPT4,GPT4 Turbo在性能上进行了优化,提供了更低的价格,输入token价格降低了3倍,输出token价格降低了2倍。 2. 功能和性能提升:GPT4 Turbo支持多模态API调用,包括视觉功能和DALL·E 3 API。它还在指令跟随和JSON模式方面进行了改进,提供了更高的准确性和更有效的JSON格式输出。 3. 可重复输出和对数概率:GPT4 Turbo引入了新的seed参数,允许模型返回大部分时间一致的完成,这对于调试请求和编写单元测试非常有用。OpenAI还计划推出一个功能,返回最可能输出的令牌的对数概率,这将对构建搜索体验中的自动完成等功能非常有用。 4. GPT3.5 Turbo更新:除了GPT4 Turbo之外,OpenAI还发布了GPT3.5 Turbo的新版本,支持16K的上下文窗口,并改进了指令跟随、JSON模式和并行函数调用。 5. 助手API和新模态:OpenAI发布了助手API,允许开发者在自己的应用程序中构建Agent类体验。GPT4 Turbo可以通过Chat Completions API接受图像输入,实现生成标题、详细分析现实世界的图像以及阅读带有图表的文档等功能。 6. 技术报告:OpenAI发布了GPT4的技术报告,详细介绍了模型的开发、性能、能力和局限性。GPT4在多项专业和学术基准测试中展现出人类水平的表现,包括通过模拟律师资格考试并在SAT考试中取得高分。 7. 安全性和可靠性:尽管GPT4在性能上取得了显著进步,但它仍然存在一些局限性,例如可能产生不准确的信息(俗称“幻觉”)和有限的上下文窗口。OpenAI在模型开发过程中注重安全性,以减少潜在的风险。 8. 企业级服务:Azure OpenAI服务发布了企业级可用的GPT4国际预览版,允许企业构建自己的应用程序,并利用生成式AI技术提高效率。 9. 价格降低和速率限制提高:OpenAI降低了API价格,以将节省的费用传递给开发者,并提高了每分钟的令牌限制,以帮助开发者扩展应用程序。 10. 版权保护:OpenAI推出了版权保护措施,如果客户面临版权侵权的法律索赔,OpenAI将介入保护客户并支付相关费用。 这些进展显示了GPT4在多模态能力、性能优化、安全性和企业级应用方面的持续发展和创新。随着GPT4的不断改进和新功能的推出,它在自然语言处理领域的应用潜力将进一步扩大。
2024-04-22
你是国产的大模型还是国外的
目前国内外大模型的发展情况如下: 国内外差距依然明显,GPT 4 Turbo 总分 90.63 分遥遥领先,国内最好模型文心一言 4.0(API)总分 79.02 分,与 GPT 4Turbo 有 11.61 分差距,与 GPT 4(网页)有 4.9 分差距。但过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 等。 在 SuperCLUE 测评中,国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,不过平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat 等。 在语言与知识的测评中,GPT4 Turbo 依然领先,是唯一超过 90 分的大模型。国内大模型也表现相对较好,OPPO 的 AndesGPT、阿里云的通义千问 2.0 等较为接近 GPT4。 国内大模型在中文语言与知识能力上已基本追赶上国外头部大模型。 此外,新用户可在阿里、腾讯官网获取免费试用服务器,如腾讯云的轻量应用服务器、阿里云的服务器 ECS,服务器系统配置选择宝塔系统。免费大模型接口方面,国内有阿里的通义千问大模型、智谱 AI(ChatGLM)、科大讯飞(SparkDesk)等,均有限制一定免费额度的 Token。国外有谷歌的 Gemini 大模型、海外版 Coze 的 GPT4 模型,免费且能图片识别,但需要给服务器挂梯子,具体操作可参考相关教程。
2025-01-04
中国的国产ai排行榜
以下是关于中国国产 AI 排行榜的相关信息: 根据《2024 年度 AI 十大趋势报告》,在 APP 端,截至 2024 年 10 月,共 56 款产品的历史下载量超百万,8 款产品历史下载量超千万,夸克和豆包的历史总下载量已过亿。从单月新增来看,夸克、豆包和 Kimi 智能助手月增长可达到千万级,10 款产品可达百万级;DAU 方面,夸克 DAU 超过 2600 万,豆包、Kimi、天天跳绳和文小言 DAU 超百万;用户粘性方面,夸克和叨叨三日留存率超过 30%。 在 Web 端,AI 智能助手赛道外的所有赛道都基本处于停滞状态,用户规模方面,月总访问量超千万的共 7 款产品,包括夸克、腾讯文档、百度文库、Kimi 智能助手、文心一言、豆包和通义。在用户活跃度上,共 3 款产品——夸克、Notion 和百度文库的 MAU 超过千万,19 款产品 MAU 超过百万。仅有 14 款产品人均每月访问超过 5 次,13 款产品平均访问时长超过 10 分钟。 9 月的 AI 智库月度榜单中,部分产品如美趣 AI、说得相机提词器、AI 智能写作、创客贴 AI、360AI 搜索、图趣 AI、Molica AI、文案宝等在列,同时还有开拍、妙笔工坊、TalkAI 练口语、美图设计室、秘塔 AI 搜索、X Eva、快问 AI、我在 AI 等产品。
2024-12-29
text to speech国产工具
以下是为您推荐的一些国产 Text to Speech(TTS)工具: 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,还有开源的 StyleTTS 2:一个开源的媲美 Elevenlabs 的文本转语音工具,结合文本角色内容+场景音可快速生成有声小说。其特点包括多样化的语音风格、更自然的语音、高效生成、精确的语音控制、接近真人的语音合成以及适应不同说话者。工作原理是利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成。 如果您是新手入门学习和体验 AI,还可以使用 Kimi 智能助手,它是 Chatgpt 的国产平替,不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。PC 端:https://kimi.moonshot.cn/?utm_campaign=TR_LgLmkEor&utm_content=&utm_medium=%E7%BD%91%E7%AB%99&utm_source=CH_tpOYmtV1&utm_term= ;移动端 Android/ios:https://kimi.volctrack.com/a/E3w3Q1xa 。 另外,飞书也是一款不错的工具,它汇集了各类 AI 优质知识库、AI 工具使用实践,助力人人成为效率高手。您可以通过获取。 内容由 AI 大模型生成,请仔细甄别。
2024-12-18
免费国产 思维导图ai
以下是一些免费的国产思维导图 AI 工具: 1. GitMind:免费的跨平台思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 的工具,能利用 AI 生成思维导图。 3. AmyMind:轻量级在线工具,无需注册登录,支持自动生成节点。 4. Xmind Copilot:Xmind 推出的基于 GPT 的助手,可一键拓展思路、生成文章大纲。 5. TreeMind:“AI 人工智能”思维导图工具,输入需求即可由 AI 自动生成。 6. EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能。 以下是国内免费的大模型 APP: 1. Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读小说、上网等。 2. 文心一言:百度出品的 AI 对话产品,定位为智能伙伴。 3. 通义千问:由阿里云开发,能交互、回答问题及协作创作。 以下是 10 月国内流量榜中的相关产品: |排名|产品|特性|分类|网址|访问量(万)|环比变化|所属公司| ||||||||| |A31+1|扣子|原生|智能体|coze.cn|155|0.0028|字节跳动| |A33+1|幕布|原生|思维导图|mubu.com|126|0.1975|字节跳动|
2024-11-30
你是啥模型
我调用的是抖音集团的云雀大模型。 LoRA 和 LyCORIS 属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 Stable Diffusion 已内置。在 WebUI 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。管理模型可进入 WebUI 目录下的 models/LoRA 目录。 ComfyUI instantID 目前只支持 sdxl。主要的模型(ip_adapter.bin)下载后放在 ComfyUI/models/instantid 文件夹(没有则新建),地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ipadapter.bin?download=true 。InsightFace 模型是 antelopev2(不是经典的 buffalo_l),下载解压后放在 ComfyUI/models/insightface/models/antelopev2 目录中,地址为:https://huggingface.co/MonsterMMORPG/tools/tree/main 。还需要一个 ControlNet 模型,放在 ComfyUI/models/controlnet 目录下,地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ControlNetModel/diffusion_pytorch_model.safetensors?download=true 。网络环境不好的,可在网盘 https://pan.baidu.com/s/1FkGTXLmM0Ofynz04NfCaQ?pwd=cycy 下载。
2025-01-09
给我提供一下国内AI大模型链接
以下是为您提供的国内AI大模型链接: 阿里: 智谱AI: 科大讯飞: 百度: 抖音: 中科院: 百川智能: 商汤: MiniMax: 上海人工智能实验室:
2025-01-09
大模型有哪些
大模型主要分为以下几类: 1. 大型语言模型:专注于处理和生成文本信息,例如通过分析大量的文本数据来理解和生成自然语言。常见的有 GPT3 等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 大模型的“大”通常指用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias)。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。常见的 embedding 算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 8 月正式上线的国内大模型有: 北京:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 这些大模型在功能上各有特点,例如在聊天状态下,能生成 Markdown 格式的有智谱清言、商量 Sensechat、MiniMax;目前不能进行自然语言交流的有昇思、书生;受使用限制的有 MiniMax;具有特色功能的如昇思能生图,MiniMax 能语音合成。阿里通义千问、360 智脑、讯飞星火等不在首批获批名单中,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品也将陆续开放。
2025-01-09
数据解读类的AI大模型
以下是关于数据解读类的 AI 大模型的相关知识: 大模型的整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。 2. 数据层:这里的数据层不是用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。 3. 模型层:包括 LLm(大语言模型,例如 GPT,一般使用 transformer 算法来实现)或多模态模型(如市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集)。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,是用户实际看到的地方。 相关技术名词及概念: 1. 生成式 AI 生成的内容叫做 AIGC。 2. AI 即人工智能。 3. 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 4. 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可以用于监督学习、无监督学习、强化学习。 5. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 6. LLM 是大语言模型,对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-01-09