目前国内有多个表现出色的 AI 模型和相关产品。例如:
同时,Kimi 智能助手作为 ChatGPT 的国产平替,实际上手体验较好,是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做得较好的 AI 产品,能一次搜索几十个数据来源,无广告,能定向指定搜索源。
需要注意的是,判断哪个 AI 最好取决于具体的应用场景和需求。不同的 AI 在不同领域和任务中可能具有不同的优势。
Llama 3.1是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与GPT-4相抗衡。这标志首次开放模型缩小与专有前沿的差距。上图为人们关于Llama 3.1 405B与GPT,Claude的评估,win:胜Tie:平Loss:输借助AlphaGeometry,符号推理引擎得以拯救谷歌DeepMind与纽约大学团队使用符号引擎生成了数百万条合成定理和证明,利用这些数据从零开始训练了一个语言模型。AlphaGeometry在语言模型提出新构造,与符号引擎执行推理交替进行,直至找到解决方案。令人印象深刻的是,AlphaGeometry在奥林匹克级几何问题基准测试中解决了30题中的25题,接近人类国际数学奥林匹克金牌得主的表现。第二好的AI表现仅得10分。它还展示了泛化能力——例如,发现2004年国际数学奥林匹克问题中的一个具体细节对于证明并非必要“尽管受到制裁,中国LLMs在排行榜上风头正劲”由DeepSeek、零一万物、知谱AI和阿里巴巴开发的模型在LMSYS排行榜上取得了优异的成绩,尤其在数学和编程方面表现尤为出色。中国的最强模型与美国生产的第二强前沿模型竞争,同时在某些子任务上挑战了SOTA。中国模型更能优先考虑计算效率,以弥补GPU访问的限制,并学会比美国同行更有效地利用资源。中国模型各有优势。例如,DeepSeek在推理过程中通过多头隐式注意力减少内存需求,并且改进了MoE架构。同时,零一万物更加关注数据集的建设而不是建筑创新。由于在像Common Crawl这样的流行存储库中相对缺乏数据,因此它更加关注建立强大的中文数据集来弥补不足。
智谱:一年间推出了4代GLM,一直是国内能力最好的模型之一MiniMax:推出了MoE架构的新模型,和”星野“这个目前国内最成功的AI陪聊APP月之暗面:专注长Token能力,在记忆力和长Token能力上可圈可点其他的我暂时不列了,在2023年官宣AI大模型的公司非常多,其中免不了很多是蹭流量的。以及,大模型确实有门槛,融了资的公司还有些钱花,我们可以多给一些时间看2024年的结果。(判断的方式并不客观,欢迎讨论)从产品层面上,2C端唯一真正出圈的是“妙鸭相机”,不过也只是昙花一现。大多数消费者对于AI产品的态度是“猎奇”,而非刚需。在2B行业中,大模型目前还是“纯技术投入”,对于收入撬动非常有限;而卖AI的大厂们实际上的目的是为了卖云……最后,硬件层上的卡脖子并没有缓解。目前国内仍然没有芯片可以胜任大模型训练。不过在推理上已经开始有Nvidia的替代产品逐渐出现。备受瞩目的华为昇腾在单卡指标上距离不远,但因为稳定性不足和缺乏Cuda(硬件编译库)生态,仍然需要时间打磨。美国对于国内的芯片禁运在未来还会进一步加深;因此,除了卷模型之外,基于昇腾生态的软-硬件创业是一个机会,而且是更确定的机会。
Kimi智能助手1.Chatgpt的国产平替,实际上手体验最好,推荐新手用Kimi入门学习和体验AI2.1.不用科学🕸️、不用付费、支持实时联网3.是国内最早支持20万字无损上下文的AI,也是目前对长文理解做的最好的Ai产品3.能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索[PC端点我传送门直接使用](https://kimi.moonshot.cn/?utm_campaign=TR_LgLmkEor&utm_content=&utm_medium=%E7%BD%91%E7%AB%99&utm_source=CH_tpOYmtV1&utm_term=)[移动端Android/ios](https://kimi.volctrack.com/a/E3w3Q1xa)点我去下载[heading1]🙏友情链接[content]「飞书」:一款汇集了各类AI优质知识库、AI工具使用实践的效率工具,助力人人成为效率高手。👇浏览飞书社区的精选课程、先进客户实践:[💻下载飞书](https://www.feishu.cn/download)