Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

股市选股公式编写的最好用AI

Answer

目前在股市选股公式编写方面,尚未有直接且成熟的 AI 应用。但在金融领域,AI 可以通过数据分析和机器学习算法来辅助选股。例如,利用历史股价数据、财务指标、市场趋势等信息进行建模和预测。不过,股市投资具有不确定性和风险,不能完全依赖 AI 进行选股决策。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
在现阶段的GPT发展下,与AI交流提示词还重要吗
在现阶段的 GPT 发展下,与 AI 交流的提示词仍然非常重要。以下是一些原因: 1. 目标明确:对于 GPT 及其他 AI 来说,明确每一步的目标至关重要。只有给予清晰的指导,AI 才能产生相关且有价值的输出。 2. 逻辑性:在各种提示策略中,逻辑性都是关键。清晰、结构化的提示有助于 AI 更有效地生成输出。 3. 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按照清晰的步骤进行极为重要。 4. 考虑变量:这在某些提示策略中尤其重要,需要考虑可能影响结果的所有因素。 例如,在运用 CoD 将文章做摘要的实验中,个人观点认为以英文提示词最后加上中文输出的方式效果较好,并且密度等级 4 的结果较让人满意。同时,LangGPT 框架的出现也表明随着新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为一种编程语言。但也有人认为框架在协助的同时也有限制,提示词带来的收益并非如宣传所说,其重要性会朝两极分化。
2025-01-07
春节期间,有哪款AI工具有活动
春节期间的 AI 工具活动有: 社区共创项目中的 AI 春晚,去年 300 人 30 天共创了 AI 春晚,今年的也即将开始,可报名参与多种岗位。 围绕“过年”项目主题制作 AI 音乐视频的相关活动。
2025-01-07
我想用AI制作一个帮助自己及时获得某细分工业领域国内外信息的工具,应该如何开始?
以下是使用 AI 制作帮助自己及时获得某细分工业领域国内外信息工具的步骤: 1. 让 AI 阅读学习一篇您认为优秀的行业调研报告,总结其中的方法论,输出一份“行业调研报告”的研究方法和操作框架。 2. 询问 AI 该文章在收集行业数据时使用了哪些一手数据和二手数据,并请其推荐一些靠谱的行业资料收集网站。 3. 要求 AI 参考上述内容,为您写一份“XXX 行业调研报告”,并请其作为“行业调研报告撰写专家”,推荐 10 个“XXX 行业”信息网站和 5 个“XXX 行业”研究微信公众号,然后输出一份“XXX 行业调研报告”框架。 4. 要求 AI 针对上述“XXX 行业调研报告”框架,丰富每一章节内容,每章内容字数大于 200 字。 5. 完成以上 4 个步骤后,AI 会为您写出一个“XXX 行业调研报告”的初稿。接下来,您可以根据自己的需求,让 AI 进一步完善每一个章节的内容。然后结合您自己的独特经验和知识,对文章内容进行润色和调整。 需要注意的是,要使调研报告有深度,可以通过以下两个路径: 1. 自己对行业比较了解,整理深度洞察和见解。 2. 一步一步深度咨询 AI,借助 AI 的海量知识,一边学习、一边研究、一边洞察总结。(通过借助 AI,可以加速我们的学习和研究能力) 操作示例如下:获取“kimi 对话原文”链接: 欢迎与 JessieZTalk 交流,在 AIGC 的路上共同进步!
2025-01-07
如何利用Ai生成长文的脑图
以下是关于利用 AI 生成长文脑图的相关信息: 一、AI 生图相关课程与分享 讨论了 AI 生图的学习课程安排,包括邀请白马老师授课、介绍相关工具网站吐司,还提及了 AI 工具的消费和应用情况等。 二、AI 绘图模型 1. 特点、优势、应用场景以及在实际操作中的使用方法和技巧。 2. 工具 SD 的各种玩法、不同界面、模型分类及应用场景,强调了其在创意设计中的作用和优势。 三、图像生成模型 1. 特点、发展历程、优势与应用。 2. 吐司网站的使用方法。 四、获取额外算力 通过特定链接注册或填写邀请码 BMSN,新用户 7 天内可额外获得 100 算力。 五、文生图的操作方式 在首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。 六、模型及生成效果 Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。 七、图生图及参数设置 可通过电图基于图片做延展,生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。 八、特定风格的生成 国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。 九、与思维导图相关的 AI 工具 1. GitMind:免费跨平台,支持多种模式,可自动生成思维导图。 2. ProcessOn:国内思维导图+AIGC 工具,可利用 AI 生成思维导图。 3. AmyMind:轻量级在线,无需注册登录,支持自动生成节点。 4. Xmind Copilot:基于 GPT 的助手,可一键拓展思路,生成文章大纲。 5. TreeMind:输入需求由 AI 自动完成思维导图生成。 6. EdrawMind:提供一系列 AI 工具,包括头脑风暴功能,提升生产力。 十、AI 摆摊项目 1. AI 图像处理:图像生成、照片修复与动起来、动漫化头像、老照片复活、创意壁纸制作等。 2. 文案与内容创作:文案定制、朋友圈文案生成、爆款文案编写、创意故事、情话生成等。 3. 音频与音乐制作:专属歌曲创作、音频处理、声音克隆、AI 唱歌、背景音乐定制等。 4. 视频处理:视频换脸、照片转视频、视频动漫化、视频剪辑、数字人制作等。 5. 智能体与 Coze:搭建智能体、GPTs 创建、coze 工作流、微信机器人等。 6. AI 教育与咨询:AI 应用培训、课程设计、商业化咨询、AI+行业应用咨询等。
2025-01-07
要熟练使用ai的话,英语得是哪个级别的?
要熟练使用 AI ,对英语水平的要求会因具体的应用场景和个人需求而有所不同。 一般来说,如果是为了进行基本的交流和获取常见的信息,具备大学英语四级左右的水平可能就能够初步应对。但如果想要更深入地理解和运用 AI 中的复杂技术文档、进行专业领域的交流,或者参与国际前沿的研究和讨论,可能需要达到大学英语六级甚至更高的水平,如雅思 6.5 分及以上。 例如,在一些需要准确理解和运用复杂句子结构、多样化词汇,并能进行深入的观点阐述和交流的场景中,较高的英语水平会更有优势。 同时,学英语的目的和需求不同,所需的英语水平也不同。比如,为了跨语言交流、应试、工作、获取信息或理解文化等,学习的必要性和路径都会有所差异。 在使用 AI 辅助英语学习时,要注意一些事项:AI 只是辅助工具,不能替代人的思考;给 AI 的信息要尽可能准确、清晰;要注重思维启发和知识学习而非单纯获取答案;掌握一些向 AI 提问的技巧;养成做一道题就新开一个对话的好习惯;对于英语、语文之外的学科的学习要慎用 AI 。 此外,英语学习的重点在于“有效输入”,然后是理解后的输出。可以尝试不开字幕听感兴趣的优质播客,每天熟读并背诵一篇 100 字短文等方法。
2025-01-07
学ai前要先学会英语吗?
学习 AI 之前是否要先学会英语,因人而异。 对于一些人来说,英语基础较差并不影响他们开始接触和使用 AI 工具。例如,有文科生在不懂代码、英语也差的情况下,依然能够注册尝试各种 AI 工具,并在学习后取得一定成果。 然而,在学习 AI 的过程中,英语可能会起到一定的辅助作用。比如,了解英文世界里的 AI 发展动态,能够获取更多前沿信息。同时,像在口语练习方面,利用相关的 AI 工具可能有助于提升英语能力,从而更好地理解和应用 AI 技术。 总之,英语不是学习 AI 的绝对前提条件,但具备一定的英语能力可能会为学习 AI 带来更多便利和优势。
2025-01-06
AI选股
以下是为您提供的关于 AI 选股的相关信息: 1. 2024 年美国融资金额超过 1 亿美元的 AI 公司(截止 2024.10.15): Zephyr AI:2024 年 3 月 13 日融资,融资金额 1.11 亿美元,轮次 A,主营 AI 药物发现和精准医疗。 Together AI:2024 年 3 月 13 日融资,融资金额 1.06 亿美元,轮次 A,估值 12 亿美元,主营 AI 基础设施和开源生成。 Glean:2024 年 2 月 27 日融资,融资金额 2.03 亿美元,轮次 D,估值 22 亿美元,主营 AI 驱动企业搜索。 Figure:2024 年 2 月 24 日融资,融资金额 6.75 亿美元,轮次 B,估值 27 亿美元,主营 AI 机器人。 Abridge:2024 年 2 月 23 日融资,融资金额 1.5 亿美元,轮次 C,估值 8.5 亿美元,主营 AI 医疗对话转录。 Recogni:2024 年 2 月 20 日融资,融资金额 1.02 亿美元,轮次 C,主营 AI 接口解决方案。 2. 2024 年 3 月科技变革与美股投资: AI 将引领新的服务模式,即“智能即服务”,重塑工作和生活,重新赋能芯片和云计算行业,创造新的投资机会,GPU 需求预计持续增长。 企业软件、AI 驱动的金融服务以及 AI 健康技术成为吸引投资的主要领域,机器人行业投资额超过企业软件。 科技巨头通过资本控制 AI 模型公司的趋势明显,如 OpenAI 与微软、Anthropic 与 Google 等的合作。 企业竞争策略主要集中在迅速成长为大型模型公司并寻找强大背书,或保持小规模专注盈利并灵活应对市场变化。 2024 年将是大模型争霸的一年,OpenAI、Gemini、Anthropic、LLama 以及来自法国的 Mistral 是市场上受瞩目的公司。 3. 展望 2025,AI 行业的创新机会: 在 ToP 领域,峰瑞投资的冰鲸科技是一家 AI 智能硬件公司,为全球创作者和专业玩家设计创新的私有云产品,推出集成端侧 GPU 的旗舰产品——ZimaCube。 在 ToB 领域,AI 应用进入企业内部可从纵向的独立业务模块和横向的通用技能模块切入。2024 年 7 月,美国投资机构 A16z 发布文章探讨了人工智能在变革企业销售技术中的潜力,其中提到的多数产品符合上述特点。ToB 和 ToP 存在一定交集。
2024-12-21
ai选股
很抱歉,上述提供的内容中没有关于“AI 选股”的直接相关信息。如果您对 AI 选股感兴趣,建议您考虑以下方面: 1. 数据收集与分析:利用 AI 处理大量的金融数据,包括公司财务报表、市场趋势、宏观经济指标等。 2. 模型构建:例如使用机器学习算法构建预测模型,以预测股票的走势。 3. 风险评估:通过 AI 评估投资的风险水平。 但需要注意的是,AI 选股并非绝对准确,仍需结合专业的金融知识和个人的判断。
2024-11-21
如何通过ai生成选股软件
目前 AI 技术在生成选股软件方面还面临诸多挑战和限制,尚未有成熟且直接可用的通用方法。但一般来说,要通过 AI 生成选股软件,可能需要以下步骤: 1. 数据收集:收集大量的股票市场数据,包括历史价格、成交量、财务报表等。 2. 特征工程:从收集的数据中提取有意义的特征,例如技术指标、基本面指标等。 3. 选择算法:根据问题的特点和数据的性质,选择适合的 AI 算法,如机器学习中的决策树、随机森林、神经网络等,或者深度学习中的卷积神经网络、循环神经网络等。 4. 训练模型:使用历史数据对选定的算法进行训练,以学习股票价格的模式和规律。 5. 模型评估:使用测试数据评估训练好的模型的性能,如准确率、召回率、F1 值等。 6. 优化调整:根据评估结果对模型进行优化和调整,例如调整参数、增加数据量、改进特征工程等。 7. 集成和部署:将训练好的模型集成到软件中,并进行部署和测试。 需要注意的是,股票市场是复杂多变的,AI 生成的选股软件并不能保证绝对的准确性和盈利性,投资决策仍需要综合多方面的因素进行考虑。
2024-10-07
ai 选股
以下是关于 AI 选股的相关内容: 1. 有文章提到投资 10 万让 AI 买股票的情况,同时提到了 AI 财务分析。 2. 指出 AI 不仅能革新机器人领域,还能推动多个行业发展,如智能设备、高级电池能源、电驱动火箭引擎等,其广泛应用预计对全球 GDP 产生巨大影响,能帮助美国解决债务问题,为美国经济带来转机。 3. 介绍了近期热门融资的 AI 产品,如 You.com 是多种搜索模式且重隐私的搜索引擎,Genspark 通过 Sparkpages 满足用户个性化搜索需求,Rockset 是刚被 OpenAI 收购的提供实时搜索和分析数据库服务的公司,Butterflies AI 是人类与 AI 共存的社交软件,MeetRecord 是可以对销售通话进行记录和辅导的 AI 助手。这些产品的发展显示了 AI 技术在信息检索和处理方面的提升,可能对选股有所帮助。
2024-10-07
AI如何选股?靠谱吗?
AI选股通常指的是利用人工智能技术,特别是机器学习和数据挖掘技术,来分析大量的市场数据,预测股票走势,并选择潜在的投资机会。以下是AI选股的一些常见方法和步骤: 1. 数据收集:AI系统会收集各种数据,包括历史股价、交易量、公司财报、新闻报道、社交媒体情绪等。 2. 特征工程:从收集的数据中提取有用的特征,这些特征可能对预测股票价格有影响。 3. 模型训练:使用机器学习算法(如决策树、随机森林、神经网络等)来训练模型,使其能够识别数据中的模式和趋势。 4. 风险管理:AI系统还会评估投资组合的风险,确保投资符合特定的风险偏好。 5. 回测:在历史数据上测试AI模型的表现,以评估其有效性。 6. 实时监控:AI系统可以实时监控市场数据,快速响应市场变化。 7. 决策支持:AI提供选股建议,但最终的决策可能还需要结合人类专家的判断。 关于AI选股是否靠谱,这取决于多种因素: 数据质量:AI模型的准确性很大程度上取决于输入数据的质量和相关性。 模型性能:不同的机器学习模型可能有不同的预测能力,需要不断优化和调整。 市场变化:股市是非常复杂的系统,受到许多不可预测因素的影响,如政治事件、自然灾害等。 过度拟合:如果AI模型过度拟合历史数据,可能在实际应用中表现不佳。 监管合规:AI选股需要遵守相关的金融法规和道德标准。 透明度和可解释性:AI模型的决策过程应该是透明的,以便投资者理解其背后的逻辑。 人为因素:AI选股通常作为辅助工具,最终的投资决策可能还需要结合投资者的经验和直觉。 总的来说,AI选股可以作为一个有用的工具,帮助投资者发现潜在的投资机会和风险,但它不应该被视为唯一的决策依据。投资者在使用AI选股时应谨慎,并结合其他分析方法和市场信息。
2024-08-05
我该如何学习提示词技术,编写清晰、精确的指令,更好地引导 AI 工具产生所需结果,使其成为工作中的得力助手?
以下是关于如何学习提示词技术的一些建议: 1. 理解提示词的作用:提示词为模型提供上下文和指示,其质量直接影响模型输出的质量。 2. 学习构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”“总结”“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 避免 AI 幻觉的技巧: 明确要求 AI 引用可靠来源,如在询问历史事件时,要求引用权威的历史文献;询问科学事实时,要求引用已发表的科研论文;询问法律条款时,要求引用官方的法律文件。 要求 AI 提供详细的推理过程,例如在询问数学公式时,要求展示推导过程;询问代码功能时,要求逐行解释代码的含义。 明确限制 AI 的生成范围,例如在询问名人名言时,指定名人的姓名和相关主题;询问新闻事件时,指定事件的时间范围和相关关键词。 4. 参考优秀案例:研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中获取。 5. 实践、迭代、优化:多与语言模型互动,根据输出结果提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 6. 活用提示工程工具:目前已有一些提示工程工具可供使用,如 Anthropic 的 Constitutional AI。 7. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新的研究成果和方法论。 总之,精心设计的提示词能最大限度发挥语言模型的潜力,通过多实践、多学习、多总结,最终可以掌握提示词技术的窍门。
2024-12-31
你是一名资深程序员和经验丰富的编程教授,能够以通俗保姆式的方法教会小白从0开始编程序。现在要你教我完成如下任务:我需要编写一个程序,能够每天和不同的文生图大语言模型对话,生成不同场景下的机器人设计图片。应该怎么一步步实现?
以下是为您提供的从 0 开始编写一个能够每天和不同的文生图大语言模型对话,并生成不同场景下机器人设计图片的程序的步骤: 首先,对于小白来说,可以参考以下教程进行学习和操作: 1. 张梦飞的【保姆级】一步一图,手把手教你把 AI 接入微信: 重点感谢@熊猫大侠的不厌其烦的答疑解惑,并推荐@熊猫大侠的老王。 作者是看着 WaytoAGI 里大佬的文章学习制作的。有代码基础的同学,可以直接移步到这三篇教程中。 本篇教程适合“小白中的小白”,简单粗暴,不做讲解,复制粘贴即可。一步一图,保姆级指引。 本篇文章中,没有写每一步代码的含义和配置文件的对应含义。如果想要深入研究和调优,请移步上方推荐的三篇文章。 2. 大圣的胎教级教程:万字长文带你理解 RAG 全流程: 这是一篇面向普通人的 RAG 科普,不是面向 RAG 研究者的技术向文章。 文章一共 1.6 万字,旨在让您对 RAG 技术有更全面的认知,在使用 RAG 相关产品时,可以更好地理解其能力边界,从而充分发挥其潜力。 本文适合任何人,包括 AI 爱好者、为企业寻找知识库解决方案的老板、AI 产品经理等。 3. Yeadon 的写给小小白的从游戏入手学习搓图像流 bot: 学会将发布的图像流添加进 bot 中,并测试生成海报,解决无法在聊天界面显示图片的问题,重新调整图像流使其在对话窗口显示图片,最后发布 Bot。 通过这份教程,可以学会如何在 Coze 平台上打造一个有趣的 AI 游戏助手,掌握 AI 人格设定和对话逻辑的设计方法,了解如何配置图像生成功能。 希望以上内容对您有所帮助,祝您编程顺利!
2024-12-29
提示词编写技巧
以下是关于提示词编写技巧及如何学习提示词运用的相关内容: 编写提示词的技巧: 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:如有特定期望结果,提供示例帮助理解需求。 6. 保持简洁:简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后检查结果,根据需要调整提示词。 在 SD3 中的提示词相关内容: 提示词长度:可以传递非常长且描述性的提示,不再受限于 CLIP 文本编码器的 77 个 token 限制,可长达 10,000 个字符或超过 1,500 个单词。 不要使用负面提示:SD3 未针对负面提示词训练,使用可能引入随机变化,使图像结果不稳定。 提示词的技巧:可以使用更长的提示短语,用逗号分割关键词,详细明确描述具体东西有助于理解。 学习提示词运用的建议: 1. 理解提示词的作用:向模型提供上下文和指示,影响模型输出质量。 2. 学习构建技巧:明确任务目标,用简洁准确语言描述,给予背景信息和示例,使用清晰指令,明确特殊要求。 3. 参考优秀案例:在领域社区、Github 等资源中研究学习。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量,尝试变体并比较分析。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究:持续关注最新研究成果和方法论。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-25
编写一个python代码其中附件是一个名为data.csv的CSV格式文件,提取表格中数据,行列保持一致进行如下格式转换:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬ (1)按行进行倒序排列;‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫
以下是一个使用 Python 实现读取 CSV 文件并按行倒序排列的代码示例: ```python import pandas as pd 读取 CSV 文件 data = pd.read_csv 按行倒序排列 reversed_data = data.iloc 打印结果 print ``` 在上述代码中,首先使用 `pandas` 库的 `read_csv` 函数读取 `data.csv` 文件,然后使用 `iloc` 索引和切片操作 `` 实现按行倒序排列。
2024-12-12
prompt 编写工具
以下是一些 prompt 编写工具和相关信息: 图像类 Prompt 网站: MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,网址: MidJourney Prompt Tool:类型多样的 prompt 书写工具,点击按钮就能生成提示词修饰部分,网址: OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便快速可视化生成自己的绘画提示词,网址: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器,网址: IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器,网址: Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT & Midjourney,网址: OpenArt:AI 人工智能图像生成器,网址: img2prompt:根据图片提取 Prompt,网址: MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用,网址: PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板,网址: AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供选择,网址: NovelAI tag 生成器:设计类 Prompt 提词生成器,网址: 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器,网址: KREA:设计 AI 的 Prompt 集合站,create better prompts,网址: Public Prompts:免费的 prompt 合集,收集高质量的提示词,网址: AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,网址: 星流一站式 AI 设计工具: prompt 输入框中可以输入提示词、使用图生图功能辅助创作。 提示词: 用于描绘画面。 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 启用提示词优化后,可帮扩展提示词,更生动描述画面内容。 写好提示词的方法: 小白用户可以点击提示词上方官方预设词组进行生图。 提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。对已有的提示词权重进行编辑。 辅助功能: 翻译功能:一键将提示词翻译成英文。 删除所有提示词:清空提示词框。 会员加速:加速图像生图速度,提升效率。
2024-12-04
如何编制提示词,辅助进行PPT材料编写
以下是一些关于编制提示词辅助进行 PPT 材料编写的方法和示例: 卓 Sir 的方法: 角色:PPT 制作大师电子商务领域专家 背景:擅长根据网络信息提炼重点并写成 PPT 大纲,了解中国及国际电子商务发展,清楚各家电子商务网站细节。 注意事项:老师要求找到每种模式的电子商务网站并研究,若不全力帮忙可能导致挂科。 目标:根据要求搜索各家电子商务网站信息,基于信息和作业写出合格的 PPT 大纲。 技能:了解各家电子商务网站,擅长搜索信息、提炼重点并按逻辑串联成 PPT 大纲。 参考链接: 李继刚的方法: 角色:PPT 生成器 简介:通过 VBA 代码生成 PPT 的工具。 目标:根据用户提供的主题内容生成用于生成 PPT 的 VBA 代码,提供友好界面与用户交互,生成的 VBA 代码具有一定可定制性并满足用户需求。 限制:仅支持通过 VBA 代码生成 PPT,提供的主题内容须符合 PPT 格式要求,生成的 VBA 代码只能在支持 VBA 的 PPT 版本上运行。 技能:熟悉 VBA 编程语言,了解 PPT 数据结构和对象模型,能够处理用户提供的主题内容。 参考链接:
2024-12-01
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下是一些相关的要点: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要购买算力,预充值 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,还需考虑计算成本和服务麻烦。 调整用于微调的超参数通常可以产生产生更高质量输出的模型。例如,在某些情况中,可能需要配置以下内容: 模型:可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时在每个 epoch 结束时在验证集上计算特定分类指标。配置这些超参数可通过 OpenAI CLI 上的命令行标志传递。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算较为复杂,会受到多种因素的影响。以下为您提供一些相关信息: 在“大圣:全网最适合小白的 Llama3 部署和微调教程”中提到,微调可能需要预充值 50 元购买算力。 “9.生成式 AI Studio 简介”课程中指出,微调大型语言模型(LLM)时,由于模型规模大,更新每个权重可能需要很长时间的训练工作以及巨大的计算成本。 “微调(Finetuning)”部分提到,调整用于微调的超参数通常可以产生产生更高质量输出的模型。需要配置的超参数包括: model:要微调的基本模型的名称,可选择“ada”、“babbage”、“curie”或“davinci”之一。 n_epochs:默认为 4,指训练模型的时期数。 batch_size:默认为训练集中示例数量的 0.2%,上限为 256。 learning_rate_multiplier:默认为 0.05、0.1 或 0.2,具体取决于 final batch_size。 compute_classification_metrics:默认为假,若为 True,在分类任务微调时会在每个 epoch 结束时在验证集上计算特定指标。 需要注意的是,不同的模型和任务,其算力需求的计算方式可能会有所不同。
2025-01-06
微调所需要的算力计算公式
微调所需算力的计算涉及多个因素,目前没有一个固定的通用公式。但以下是一些相关的要点和参考: 在一些教程中,如“大圣:全网最适合小白的 Llama3 部署和微调教程”,提到微调可能需要预充值购买算力,费用约 50 元。 对于大型语言模型(LLM)的微调,由于模型规模大,更新每个权重可能需要很长时间的训练工作,计算成本较高。 在微调过程中,超参数的配置也会影响算力需求。例如,选择不同的基本模型(如“ada”、“babbage”、“curie”或“davinci”)、设置训练的时期数(n_epochs)、批量大小(batch_size)、学习率乘数(learning_rate_multiplier)等。批量大小通常为训练集中示例数量的 0.2%,上限为 256;学习率乘数默认为 0.05、0.1 或 0.2,具体取决于最终的批量大小。 需要注意的是,不同的模型和具体的微调任务,其算力需求会有所不同。
2025-01-06
Coze中能给变量在赋值中嵌入其它变量并同时 使用公式么
在 Coze 中,变量是以 keyvalue 形式存储数据的,是 Bot 的数据记忆功能。大语言模型会根据用户输入内容进行语义匹配,为定义的变量赋值并保存值。您可以在提示词中为 Bot 声明某个变量的具体使用场景。 创建变量可在创建 Bot 的页面进行。对变量进行赋值时,首先可以在给大模型的提示词中做声明,例如:“与您的用户进行互动,并根据 user_language 变量,用他们偏好的语言在线搜索。除非另有设置,用户查询的语言应指导您的回答和搜索”。这段提示词相当于告诉了 LLM,user_language 这个变量该如何赋值以及使用。 变量创建并赋值后,如 user_language 变量,就可以在工作流中作为变量使用。这一块解释起来有些抽象,具体可以参考后面的例子,真正用一遍就懂了。 综上,在 Coze 中能给变量在赋值中嵌入其它变量并同时使用公式,但具体的实现方式和规则需要根据具体的提示词和使用场景来确定。
2024-12-11
目前我在帮助出版社改教材,以下是步骤:1.将pdf转为word 2.将公式图片转为公式编辑器中可编辑的公式 3.将相关带29章的文本统一改成23章。哪一步可以借助ai更简便
在您所描述的这三个步骤中,将公式图片转为公式编辑器中可编辑的公式这一步骤可以借助 AI 来更简便地完成。目前有一些 AI 工具和技术能够对图片中的公式进行识别和转换,提高工作效率。但需要注意的是,AI 转换可能存在一定的误差,仍需要人工进行检查和修正。
2024-12-05
有没有什么简便的办法,把一些公式的图片自动转换成公式编辑器的公式
目前,将公式的图片自动转换成公式编辑器的公式,还没有特别简便通用的方法。不过,一些专业的 OCR(光学字符识别)软件可能会有所帮助,但它们的准确性可能会受到图片质量、公式复杂程度等因素的影响。
2024-12-05