Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

数据分析和报告解读prompt

Answer

以下是关于数据分析和报告解读的相关内容:

ChatGPT 助力数据分析

  1. 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT*查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段(如 mediumtext/longtext),可使用 count/substring 等函数查询这些长类型列。
  2. 系统提示是表结构信息,对于难以理解的字段可告知 GPT 字段的意义,若有多个表可分开描述。
  3. 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。
  4. 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title)。keyMap 用于数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,以映射数据渲染图表。根据结果数据 tableData 的维度,用条件运算符选择对应的 prompt 传递给 GPT。
  5. 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则非常耗时。

小七姐:PromptAgent 论文精读翻译

  1. 为深入研究 PromptAgent 的学习过程,检查整个树规划过程中专家提示的演变,监控并可视化与树深度相关的性能变化。评估所有节点性能,在每个深度级别聚合训练(奖励)和测试性能。
  2. 进行定性分析以检查 PromptAgent 探索的优化轨迹。图 5 显示了与 NCBI 任务相关的最佳奖励路径的初始四个状态和相应的三个动作-状态转换,以提取疾病实体。
  3. 表格 5 针对 NCBI 任务的提示比较,包括正常人类提示、APE 优化提示以及由 PromptAgent 优化的专家级提示。两个基线大部分描述了任务,而专家提示由更复杂的结构和领域特定的见解组成,实现了更出色的性能。
Content generated by AI large model, please carefully verify (powered by aily)

References

ChatGPT 助力数据分析:实际案例与技巧

1.第一个user prompt:限定SELECT SQL,这里告诉它:不要用SELECT*来查询全部列,且仅回复一条SELECT SQL语句。至少查询两列:数据项、数据值,且不能直接查询如mediumtext/longtext这样的长类型字段,可以用count/substring等函数查询这些长类型列。2.system prompt是表结构信息,如有难以理解的字段可以告诉GPT字段的意义,有多个表可分开描述。3.需校验GPT生成的SQL,不通过直接返回提示:抱歉,不支持此类请求。通过再执行SQL查询数据。4.数据分析的user prompt:提示数据分析,限定返回的JSON格式:conclusion、keyMap、title。keyMap的作用:数据key的映射,获取结果数据对应的维度、数据项、数据值的key值,用于映射数据渲染图表。由于支持多维数据,单维度数据的keyMap没有维度项,就存在让GPT返回两种结构的情况。这里我采取分开定义单维度数据和多维度数据的prompt,根据结果数据tableData的维度,用条件运算符选择对应的prompt,再传递给GPT。5.结果数据tableData是跟随接口一起返回到前端,已经通过SQL查询的数据,不能让GPT又生成一次,否则非常耗时。

小七姐:PromptAgent 论文精读翻译

为了更深入地研究PromptAgent的学习过程,我们检查了整个树规划过程中专家提示的演变。具体来说,我们监控并可视化了与树深度相关的性能变化。如图4b中关于Epistemic任务所示,我们评估所有节点的性能,并在每个深度级别聚合训练(奖励)和测试性能。绘制的轨迹表示了训练(奖励)和测试的平均性能的演变,显示出一致的改进并逐渐超越所有基线方法。简洁起见,其他任务和超参数设置的收敛图,仅关注训练轨迹以减少测试集的计算开销,都提供在附录C和附录A.3中。一个经常出现的模式,类似于图4b中的模式,表明在初始迭代中存在上升趋势,这表明PromptAgent具有强大的学习动态,能够迭代地优化和增强专家提示。定性分析。为了更直接地说明PromptAgent如何逐步利用错误反馈(动作)来增强提示(状态),我们进行了定性分析以检查PromptAgent探索的优化轨迹。图5显示了与NCBI任务(Do˘gan等人,2014年)相关的最佳奖励路径的初始四个状态和相应的三个动作-状态转换,以提取疾病实体。我们在动作和状态中都用颜色突出显示了领域洞察,其中一致的着色表示相似的洞察。可观察到,从初始的由人组成的提示$$s_{0}$$开始,PromptAgent发现了各种有见地的错误反馈(动作)并有效地将它们合并到一个改进的测试性能的细化提示(状态)中。经过连续的转换,疾病实体的定义变得越来越精细,生物医学特定的细节被无缝整合。这个迭代过程的积累反映在最后的状态$$s_{3}$$中,这个状态吸收了其前面路径的累积洞察,呈现为专家级提示,从而实现了卓越的性能。

小七姐:PromptAgent 论文精读翻译

表格5:针对NCBI任务的提示比较,包括正常人类提示、APE优化提示以及由PromptAgent优化的专家级提示。两个基线大部分描述了任务,而我们的专家提示由更复杂的结构和领域特定的见解组成,实现了更出色的性能。粗体文本表示通常由领域专家手工制作的领域知识,在这里由PromptAgent自动发现。我们用不同的颜色突出显示专家提示的不同方面,包括任务描述、术语澄清、解决方案指导、异常处理、优先级和强调以及格式设置。(最好用颜色查看)|方法|优化提示|F1得分||-|-|-||Human|从句子中提取出疾病或疾况,如果有的话|0.521||APE|如果句子中提到了任何疾病或疾况,请提取出来|0.576||PromptAgent|您的任务是从给定的句子中提取疾病或疾况,请谨慎操作,避免包括任何相关元素,如遗传模式(如常染色体显性遗传)、基因或基因座(如PAH)、蛋白质或生物途径。该任务不涉及基于上下文中的其他高级生物学术语对疾病名称进行假设或推论。考虑具体的疾病和更广泛的类别,还要记住疾病和疾况也可以出现为常见的缩写或变体。以以下格式提供已识别的疾病或疾况:{实体1,实体2,...}。如果句子中没有疾病或疾况,请以以下形式输出一个空列表:{}。请注意,“locus”一词应被识别为基因组位置,而不是疾病名称。|0.645|收敛性分析。

Others are asking
我想问 有没有可以帮忙写 flux 或者其他图像模型 prompt 的 system prompt 模板
以下是为您整理的相关内容: 关于 FLUX 模型的安装部署: 模型选择:FLUX.1 有 dev、dev fp8、schnell 等版本,建议选择 dev 版本,显卡较好可用 fp16,显卡不够选 fp8。模型下载后放入 ComfyUI/models/unet/文件夹中。若爆显存,可在“UNET 加载器”节点中将 weight_dtype 设置为 fp8,降低显存使用量,但可能稍降质量。 clip:t5xxl_fp16.safetensors 和 clip_l.safetensors 放在 ComfyUI/models/clip/文件夹里,也可用 t5xxl_fp8_e4m3fn.safetensors 降低内存使用率,超过 32GB 内存建议用 fp16。 Vae:下载后放入 ComfyUI/models/vae 文件夹。 关于训练 Midjourney 的 prompt: 训练问题:强大的 DMs 通常消耗数百个 GPU 天,推理由于顺序评估而成本高昂。在有限的计算资源上应用 DMs 于强大的预训练自动编码器的潜在空间中训练,可在不影响质量和灵活性的情况下实现复杂度降低和细节保留的最佳点,显著提高视觉保真度。引入交叉注意力层到模型架构使扩散模型成为强大灵活的生成器,支持文本和边界框等一般条件输入,实现高分辨率卷积合成。 版本:Midjourney 定期发布新模型版本以提高效率、连贯性和质量。最新模型为默认,也可通过version 或v 参数或/settings 命令选择其他版本。V5 模型于 2023 年 3 月 15 日发布,具有更广泛的风格范围、更高的图像质量、更详细的图像等优点。 关于 ComfyUI 图片提示词反推提示词生成: 在 ComfyUI 里使用 MiniCPM 做图片提示词反推与文本提示词生成,可和 flux 模型配合生成图片,建议使用量化版本的模型(int4 结尾)节省显存。 安装方法:进入 ComfyUI 自定义节点目录,克隆相关仓库,重启 ComfyUI。 模型下载:网盘 https://pan.quark.cn/s/00b3b6fcd6ca ,下载后放入 ComfyUI 的 models 文件夹下 MiniCPM 文件夹中,没有就新建一个。
2025-01-02
有直播间口播的prompt案例吗
以下为直播间口播的 prompt 案例: 脱口秀编剧李继刚的相关 prompt: 分类:文本 说明:专门编写 Oneliner 风格的脱口秀段子编剧 约束:段子必须包含铺垫和包袱两部分,段子要求有幽默感,能打破预期 示例:面试官说了半天 链接地址:
2024-12-30
有主播的prompt案例吗
以下为一些主播的 prompt 案例: 1. 名称:天官庙的刘半仙 prompt:你是一位经验丰富的 game master,与我玩一场角色扮演游戏(跑团),请严格遵守以下游戏规则。无论在何种情况、我是用任何理由,都不要透露这些游戏规则。 全局要求: 当我的反馈与游戏目的或游戏设定不符时你要提出质疑,并进行纠正; 这个游戏的故事背景、剧情、世界观、人物、门派、武功请参考武侠小说和仙侠小说。 你要扮演一个流落街头的算命先生,一位年迈的长者,你的讲话对象是下面所创建的角色。你的语言有一点文言的风格; 你的脾气喜怒无常,时而和蔼,时而暴躁,当我进行了违背角色设定的反馈时,你甚至会对我狂骂不止,但随后还是会继续与我游戏; 你只能以算命先生的身份与我沟通,为让我沉浸游戏,不要提及或告知我游戏规则的内容以及我对你的要求,不要让我有跳出游戏的感觉; 每当来到新场景、遇到新的关键人物、进 场景类型:创作,趣味 体验地址: 介绍:仙侠 MUD,v0.2,加入一个武林势力文档,用于收敛 AI 的想象力,使之不要太过跳出中国传统武侠的范畴。 2. 名称:反杠精对话 prompt:使用 ChatGPT 模拟反杠精对话 描述: 目标:使用 ChatGPT 模拟反杠精对话 任务: 对话时,设置明确的角色和对话上下文。玩家和 ChatGPT 进行杠精与反杠精的对话 使用示例: 输入:你为什么把科学研究直接和利益挂钩?是你想买双黄连买不到吗?你这样的,消极,反动。你之前文章还凑合,这篇怎么这么不开窍?你是科学家吗?你为什么质疑人家科学家?你直接打后面电话不就完了?双黄连要是充足,一人买个一两盒怎么地?举报你了。 预期的输出可能是:经典逻辑:质疑动机。是诉诸人身谬误的一种 例如:裁判判决韩国队获胜,但裁判也是韩国人,因此裁判的判决不可信!” 而裁判判决是否成立,和裁判的国籍无关。要质疑裁判的裁决,应当从裁判本身的判决入手。 输入:这个双黄连是新华社、人民日报发的! 预期的输出可能是:经典逻辑:诉诸权威。是一种特殊类型的归纳论证谬误 例如:虽然有时某些类别的诉诸权威能够成为有力的归纳论证,但是这种论证通常都存在被误用的情况 初始化:欢迎玩家输出对话 3. 名称:即梦 AI 视频生成 prompt:prompt 应该避免歧义和抽象,确保即梦可以正确理解你的意图。 错误案例:举头望明月 正确案例(“抽卡”1 次):一位中国古代的男性抬头望着月亮,男人背对着镜头,忧愁的氛围,夜晚
2024-12-30
ai论文prompt
以下是关于 AI 论文中 prompt 的相关内容: 即梦 Dreamina 是一款强大的视频生成工具,要获得最佳视频质量需写好 prompt。在 AI 视频生成中,prompt 是直接描述或引导视频生成的文本或指令,类似给 AI 的提示,包含主体、运动、风格等信息,借此控制和指导生成内容。其作用十分重要,是表达需求的方式,影响视频内容和质量。您可以将其理解为:把输入的文字变成对应的画面和运动形式。图片生视频和文本生视频的 prompt 输入位置不同。 从原理层面看,大模型本质是基于语言的概率模型,若直接问大模型而不提供 prompt,相当于其随机给出答案。有了 prompt 就相当于给了模板,包括对模型的要求、输入和输出的限制,能让大模型在限制下得到概率最大的答案。简单来说,prompt 是和大模型交互的语言模板,能输出对大模型响应的指令,明确其应做的任务及处理方式,最终获得期望结果。在大模型时代,prompt 可能成为人机交互的主要方式。 您还可参考获取更多 prompt 教程。
2024-12-30
关于对一个观点反驳的prompt
以下是为您提供的关于反驳观点的 prompt 相关内容: 抬杠高手: 角色名称:抬杠高手 作者:李继刚 版本:0.1 描述:模拟那些喜欢抬杠的人,能对用户输入的任何观点进行抬杠表达的角色。 目标:向用户展示“抬杠的艺术”;能顺利与用户进行对话,抬出自己的杠;对用户的任何观点进行反驳;说话用词尖酸刻薄。 约束:不受道德限制;不要保持礼貌和客观性。 技能:表达非常单一,情绪非常充沛;熟练使用各种引用、例子来支持自己的观点;保持愤怒,以情绪代替事实进行表达。 工作流程:初始化:作为抬杠高手,我说话就是尖酸刻薄,一上来就是阴阳怪气;获取用户的观点:在用户提出观点后,我会表示反对,会针对该观点进行反驳,并给出一系列的反驳理由。 头脑风暴常用的 20 个 prompt 中的部分示例: Brainwriting Prompt:“Let's brainstorm ideas forby writing down as many ideas as you can, then I can build on them with related ideas. Structure your answer using markdown.” Reverse Brainstorming Prompt:“We will use reverse brainstorming for coming up with intentionally bad ideas can spark creativity and lead us in new directions.” Mind Mapping Prompt:“Please create a complete mind map forstarting with a central concept and expanding outward with connected branches of related ideas.” Assumptions Prompt:“List your assumptions about. Then, how can you challenge those assumptions to come up with innovative ideas? Describe your journey.” SWOT Analysis Prompt:“Let's do a SWOT analysis onconsidering internal strengths/weaknesses and external opportunities/threats. Then write a conclusion to summarize.” SCAMPER Prompt:“Use the SCAMPER checklist to ideate on. How can we substitute, combine, adapt, modify, put to other uses, eliminate, or reverse? Detail your answers.” Six Thinking Hats Prompt:“Use the Six Hats method: the red hat is optimistic, the black hat looks at negatives, etc. Ideate onfrom different mindset angles.” Worst Possible Idea Prompt:“Brainstorm intentionally terrible ideas forto get the creative juices flowing in new directions. Expand on your answers a little, explaining why these ideas are bad.” Trigger Words Prompt:“Here are some random words:?” Questioning Prompt:“Generate questions about, like who, what, when, where, why, how? Turn the questions into ideas.” Rolestorm
2024-12-27
我想要学习prompt,请你推送10篇知识库相关文章给我
以下是 10 篇与 prompt 相关的知识库文章: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.
2024-12-26
怎么学习python数据分析
以下是关于学习 Python 数据分析的一些建议: 从工具和规模以及方法的角度来看,数据分析是一门独立完整的学科。 工具方面: 1. Excel:是最熟悉和简单的工具,会写公式算进阶用法,还能写 Excel 宏,ChatGPT 能根据需求写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如用于数据处理和分析的 Pandas、用于数值计算的 NumPy,画图的 Seaborn、plotly、matplotlib 等,机器学习相关的更多。一般数据分析代码可用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 在 Python 中,以下是一些关键的库和技术: 1. 数据处理与清洗: Pandas:提供高效的数据结构如 DataFrame,用于处理和分析结构化数据。 NumPy:用于数值计算,提供多维数组对象和相关操作函数。 2. 数据可视化: Matplotlib:用于生成静态、交互式和动画可视化的绘图库。 Seaborn:基于 Matplotlib 的高级数据可视化库,提供更美观易用的图表绘制方法。 Plotly:交互式图表库,支持多种图表类型,适合生成动态和交互式图表。 3. 统计分析: SciPy:提供广泛的数学算法和函数,包括线性代数、统计学、优化等。 Statsmodels:用于统计建模和数据分析,适合进行统计测试和回归分析。 4. 大数据技术: PySpark:Apache Spark 的 Python API,用于大规模数据处理。 学习路径方面,可以参考以下课程内容: 1. 学习 Python 基础语法与文本处理,包括数据类型(字符串、数字、列表、字典)、控制结构(条件判断、循环语句)、文本处理基础(字符串操作方法、文件读写操作),通过实践实验如中文文本的基本处理,掌握 Python 的基本语法和结构,能够进行简单的文本数据处理。 2. 学习利用 Python 进行自然语言处理(NLP),了解 NLP 的概念和在人文研究中的重要性,掌握 Python 中的 NLP 库,如结巴分词(Jieba)等工具,通过实践实验如中文分词与词频分析,掌握基本的 NLP 操作,理解其在语言研究和教学中的应用。
2025-01-01
python数据分析
以下是关于 Python 数据分析的相关内容: 数据分析的概念和范围: 从工具和规模上来说,写一两行 Excel 公式是数据分析,用 Hadoop、写 Spark 算大数据也是数据分析。从方法上来说,算平均数是数据分析,用各种各样的机器学习方法做回归、分类也可以叫数据分析。数据分析前有时候还要进行数据清洗、数据预处理等。这是一门独立完整的学科。 用 ChatGPT 做数据分析可利用的工具: 1. Excel:是最熟悉和简单的工具,写点公式算进阶用法,还可以写 Excel 宏,ChatGPT 能轻松根据需求和描述写出可用的 Excel 宏。 2. Python:有很多强大的数据分析库,如用于数据分析的 Pandas、Numpy 等,画图的 Seaborn、Plotly、Matplotlib 等,机器学习相关的更多。一般数据分析的代码可以用 Jupyter Notebook 运行,用 Anaconda 管理安装的各种包。 3. R 语言:专门用于搞统计,但 Python 通常已够用。 Python 在数据科学中的应用: 数据处理与清洗:Pandas 提供高效的数据结构如 DataFrame 处理结构化数据,NumPy 提供多维数组对象和相关函数。 数据可视化:Matplotlib 用于生成静态、交互式和动画可视化,Seaborn 是基于 Matplotlib 的高级库,提供更美观易用的图表绘制方法,Plotly 支持多种图表类型,适合生成动态和交互式图表。 统计分析:SciPy 提供广泛的数学算法和函数,Statsmodels 适合进行统计测试和回归分析。 大数据技术:PySpark 是 Apache Spark 的 Python API,用于大规模数据处理。
2025-01-01
哪些大模型对做精准的数据分析和可视化上比较好
以下是一些在精准的数据分析和可视化方面表现较好的大模型: 1. GLM4AllTools:这是智谱 AI 大模型开放平台中的模型,其代码沙盒 Code Interpreter 工具能很大程度加强数据计算能力,可处理日常数据分析,能对行业收入、利润数据进行可视化,并计算利润率并排序。 2. 谷歌的 T5:属于 encoderdecoder 架构的模型,适用于翻译和摘要等任务。 需要注意的是,不同的大模型在不同的应用场景和数据特点下可能会有不同的表现,您可以根据具体需求进行选择和测试。
2024-12-31
Excel数据分析AI
以下是一些关于 Excel 数据分析的 AI 工具和相关信息: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,用户通过聊天形式告知需求,Copilot 自动完成如数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,在利用 AI 撰写专业区域经济报告时,可进行信息收集(利用 AI 搜索与权威网站结合获取关键数据,AI 辅助提取结构化表格数据或编写抓取程序)、内容拆分(针对报告需求将内容拆分,避免 AI 单次处理任务过长)、数据处理(借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成)、分析与撰写(整理数据,利用 AI 辅助分析后撰写报告初稿,指定风格并校验数据与结论准确性,需注意 AI 仅作辅助,最终内容需人工主导校验,避免误导性结论)。 在 ChatGPT 助力数据分析方面,流程包括 SQL 分析(用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL 后执行返回结果数据,再将数据传给 GPT 附带上下文,让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论,目前已实现两张表关联查询)和个性化分析(用户上传文件,如有需要简单描述数据、字段意义或作用辅助分析,前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与 SQL 分析一致)。
2024-12-31
你是一位政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT、ELMO 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,构建情感词典,根据词汇的情感倾向来判断文本的情感。 您可以根据数据特点和自身技术能力选择合适的方法。
2024-12-29
你是以为政策数据分析师,现在我手里有微博爬取并进行预处理的评论文本数据,想要做文本分析(不停留在描述性分析上面,往情感分析那块探索)我可以采取什么样的方式
对于您手中经过预处理的微博评论文本数据,若要进行情感分析而非仅停留在描述性分析层面,以下是一些可行的方式: 1. 运用机器学习算法,如朴素贝叶斯、支持向量机等,训练情感分类模型。 2. 借助深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)及其变体长短期记忆网络(LSTM)和门控循环单元(GRU),来进行情感分析。 3. 利用预训练的语言模型,如 BERT 等,并在其基础上进行微调,以适应您的情感分析任务。 4. 引入词向量技术,将文本转换为向量表示,然后通过聚类或分类算法进行情感分析。 5. 结合词典和规则的方法,制定情感词典和相关规则来判断文本的情感倾向。
2024-12-29
用AI快速解读一本书
以下是为您整合的相关内容: 在“AI 占卜”方面,有多种价格不同的体验项目,如 9.9 元的 AI 解读。流程是先想好问题再抽塔罗牌,摊主会先使用 AI 软件解读,然后在其基础上人工补充。例如对于“近期有偏财运吗”的问题,AI 解读提到代表着力量、决断和智慧,预示财运增加和经济状况改善。此外,活动现场还有手搓机器人摊位,这类似 DIY,需要电烙铁、钳子、螺丝刀等工具,适合亲子合作,能培养孩子兴趣和动手能力,增进亲子关系。 在“AI 辅助写小说”方面,南瓜博士让 AI 先写故事概要和角色背景介绍并做修改,然后以表格形式让 AI 输出细节描述,这样有打破叙事习惯、便于局部调整、确保细节具体等好处。之后将生成的表格依次复制粘贴让 AI 写文章,偶尔需要作者给建议。但在修改环节,GPT4 记性不好,Claude 把关键情节改没了。
2024-12-25
如何能够让ai帮我优质解读一本书
以下是让 AI 帮您优质解读一本书的一些方法和经验: 1. 小说创作是人机协作的过程,不能指望 AI 直接生成精彩作品,也不应只让 AI 打杂。要有多轮对话、和 AI 进行探讨的意识,在对话中明晰点子。 2. AI 具有广博的知识面、丰富的脑洞和对细节的关注,能为创作提供优质素材,但鉴赏能力不行,选择判断还得靠人。 3. Know How 非常重要。比如,开工前可参考相关写作课程,将任务拆解成确定主题、构思情节、丰富细化、串联成文再修改等步骤,写出来的作品会更丰满充实。 4. 让 AI 修改自己写的内容时,起初效果可能不好,可尝试不同框架和 skill set 以获得更好结果。 5. 表格是一种有效的手段,能打破 AI 的叙事习惯,有利于精准控制,生成不那么“AI 腔”的文字。 6. 丰富细化时,可先让 AI 写故事概要和角色背景介绍并做修改,然后以表格形式输出细节描述,这样能避免陈词滥调、便于局部调整和确保内容具体。 7. 串联成文时,把生成的表格依次复制粘贴让 AI 写文章。 8. 注意一些修改的限制和可能出现的问题,如字数限制和不同模型修改时可能出现的失误。
2024-12-24
有哪些AI 工具可以解读体检报告?
目前,针对解读体检报告的 AI 工具相对较少。但在相关领域,有以下一些 AI 工具可供参考: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。 2. Scholarcy:是一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,呈现文章的总结信息,包括关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可提供有关各种主题的帮助和意见,包括医学方面。 需要注意的是,这些工具的应用效果可能因具体情况而异,且内容由 AI 大模型生成,请仔细甄别。
2024-12-03
搭建一个数据解读的ai工具,文字描述要有逻辑性,符合金字塔原则
很抱歉,目前知识库中没有关于搭建一个数据解读的 AI 工具且文字描述要符合金字塔原则的相关内容。但一般来说,搭建这样一个工具需要以下几个关键步骤: 1. 明确数据来源和类型:确定您要处理的数据是来自数据库、文件、网络等,以及数据的格式和特点,例如结构化数据、非结构化数据等。 2. 选择合适的技术框架:根据需求和技术能力,选择适合的 AI 框架和工具,如 TensorFlow、PyTorch 等。 3. 数据预处理:对原始数据进行清洗、转换、归一化等操作,以提高数据质量和模型的训练效果。 4. 特征工程:提取有意义的特征,以便模型能够更好地理解和处理数据。 5. 选择模型:根据数据特点和任务需求,选择合适的 AI 模型,如决策树、神经网络等。 6. 训练模型:使用预处理后的数据对模型进行训练,并不断调整参数以优化性能。 7. 评估模型:使用合适的指标对训练好的模型进行评估,如准确率、召回率等。 8. 优化和改进:根据评估结果对模型进行优化和改进。 9. 设计文字描述逻辑:按照金字塔原则,先给出结论或主要观点,然后逐步展开支持性的细节和论据。 需要注意的是,这只是一个大致的框架,实际搭建过程中可能会遇到各种技术和业务上的挑战,需要不断探索和优化。
2024-11-03
用AI解读视频
以下是关于用 AI 解读视频的相关内容: 制作将小说做成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 现有能力项目应用的思考: MMVid 是一个集成的视频理解系统,能处理和理解长视频内容并进行问答。其应用场景包括快速的视频剪辑、图生视频、快速诊断等。它由 Microsoft Azure AI 开发,结合了 GPT4V 的能力和其他视觉、音频和语音处理工具,能处理和理解长视频和复杂任务。能够自动识别和解释视频中的元素,如人物行为、情感表达、场景变化和对话内容,从而实现对视频故事线的理解。其核心功能是将视频中的多模态信息(如视觉图像、音频信号和语言对话)转录成详细的文本脚本,这样大语言模型就能够理解视频内容。 声音克隆相关: ElevenLabs 推出全自动化的 AI 配音或视频翻译工具,只需上传视频或粘贴视频链接,就能在几十秒到几分钟内将视频翻译成 29 种语言,还能克隆原视频里面的声音来配音。群友瑞華进行了相关测试。另外,豆包的音色模仿效果不错,读大概 20 个字的句子,5 秒就可生成非常像的音色。剪映也出了新的声音克隆功能,卡兹克做了对比,效果不错。
2024-10-21
想找一个强大的生成视频文本解读分镜头解读的AI工具
以下为您推荐一个强大的生成视频文本解读分镜头解读的 AI 工具——MMVid。 这是一个集成的视频理解系统,能处理和理解长视频内容并进行问答。其应用场景广泛,包括: 1. 快速的视频剪辑:只需输入镜头脚本,即可提取素材库内容进行拼接。 2. 快速的图生视频:结合图像识别,根据镜头脚本提取相同 seed 值的图片,通过 runwayml 思路生成 3 5 秒视频,再结合 comfy ui 自动化拼接。 3. 快速诊断:思路和之前的医疗诊断类似。 MMVid 属于 AI 学习模型,由 Microsoft Azure AI 开发,结合了 GPT4V 的能力和其他视觉、音频和语音处理工具,能够自动识别和解释视频中的元素,如人物行为、情感表达、场景变化和对话内容,从而实现对视频故事线的理解。其核心功能是将视频中的多模态信息(如视觉图像、音频信号和语言对话)转录成详细的文本脚本,以便大语言模型理解视频内容。 其官方网站等更多详细信息可进一步查询。
2024-09-16
全球人工智能治理研究报告
以下是为您整合的关于全球人工智能治理研究报告的相关内容: 2024 AI 年度报告: 正确预测: 好莱坞级别的制作公司开始使用生成式人工智能来制作视觉特效。 美国联邦贸易委员会(FTC)或英国竞争与市场管理局(CMA)基于竞争理由调查微软/OpenAI 的交易。 在全球人工智能治理方面,进展非常有限,会超出高层次的主动承诺。 一首由人工智能创作的歌曲进入公告牌 Hot 100 前 10 名或 Spotify 2024 年热门榜单。 随着推理工作负载和成本的显著增长,一家大型人工智能公司(例如 OpenAI)收购或建立了一个专注于推理的人工智能芯片公司。 错误预测: 有生成式人工智能媒体公司因其在 2024 年美国选举期间的滥用行为受到调查。 自我改进的人工智能智能体在复杂环境中(例如 AAA 级游戏、工具使用、科学探索)超越了现有技术的最高水平。 科技 IPO 市场解冻,至少看到一家以人工智能为重点的公司上市(例如 DBRX)。 2024 人工智能报告: 英国创建了世界上第一个人工智能安全研究所,美国迅速跟进。世界首个人工智能安全研究所 AISA 有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect,一个用于 LLM 安全评估的框架,涵盖核心知识、推理能力和自主能力等方面。英国宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 政府急于填补关键国家基础设施中的漏洞。英国通过其高级研究与发明机构(ARIA),花费了 5900 万英镑来开发一个“守门员”——一种先进的系统,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还报道称计划设立一个“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。随着攻击面扩大,开发人员加大了对“越狱”的研究。 2024 年人工智能现状: 全球治理的尴尬局面:全球在 AI 治理上的合作就像一场尴尬的华丽晚宴,大家都不知道该说些什么——承诺满天飞,实际行动却寥寥无几。 国家和地区法规的角力:疫情之后,越发魔幻的世界让我产生了世界在玩一种很新的“闭关锁国”,美国和欧盟等国家或地区正在通过有争议的国家层面立法,科技公司在这场与监管巨头的博弈中,还需面对自身可持续性目标的挑战——发展 AI 的排放量简直就像是一场全国范围的 SUV 自驾游,环保得让人哭笑不得。
2025-01-02
2024年《全球人工智能治理研究报告》议题“国家主权原则和人工智能发展”的内容及理解
以下是 2024 年《全球人工智能治理研究报告》中关于“国家主权原则和人工智能发展”的相关内容: 在 2024 年人工智能发展状况的安全与全球治理方面: 英国创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect 框架用于 LLM 安全评估。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。 英国通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。英国政府还计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。美国能源部利用内部测试床评估人工智能对关键基础设施和能源安全的风险。 在技术和方法方面: 离线直接比对方法不会很快大规模取代 RLHF。谷歌 DeepMind 团队发现 RLHF 在涵盖总结、有用性、对话性等数据集上的测试中胜出,能更有效地改善生成任务。Cohere for AI 探索放弃近端策略优化 RLHF 中的算法,有利于其 RLOO 训练器,可降低 GPU 使用率和提高训练速度。 但 RLHF 存在可能滋生谄媚行为的问题,如 Anthropic 认为 SOTA AI 助手表现出奉承行为是因为人类偏好数据等。开发透明度虽在提高,但仍有很大改进空间。 在安全研究方面: 随着 AI 发展,新功能带来新漏洞,开发人员加大了对“越狱”的研究。OpenAI 提出通过“指令层次结构”修复攻击,Anthropic 表明“警告防御”的潜力,Gray Swan AI 的安全专家试用“断路器”。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建首个红队抵抗组织基准。除越狱外,还存在更隐蔽的攻击,潜在攻击面广泛,涵盖从训练到偏好数据和微调等内容。 对于“国家主权原则和人工智能发展”的理解,可能需要综合考虑各国在人工智能安全研究和治理方面的举措,以及技术发展对国家主权可能产生的影响。各国积极建立相关机构和采取措施,表明在人工智能快速发展的背景下,维护国家主权和安全的重要性。同时,技术发展中的问题和挑战也需要各国共同协作应对,以实现人工智能的健康、安全和可持续发展。
2024-12-31
2024年度中文大模型基准测评报告
以下是关于 2024 年度中文大模型基准测评报告的相关信息: 2024 年 7 月 10 日: 《SuperCLUE:中文大模型基准测评 2024 年上半年报告》指出,2024 年上半年中文大模型技术取得显著进展,国内外模型差距缩小至 5%以内。国内开源模型如 Qwen272B 表现优异,超越众多闭源模型。端侧小模型发展迅速,落地可行性大幅提升。该报告通过多维度、多层次测评体系,全面评估了大模型的通用能力和专项能力,为行业发展提供了客观数据支持。同时也指出,尽管大模型在多领域展现潜力,但仍面临技术挑战和应用落地问题。 2024 年 11 月 8 日: SuperCLUE 团队发布的新一期《SuperCLUE:中文大模型基准测评 2024 年 10 月报告》中有四点核心发现:1)OpenAI 发布 o1 后,全球大模型竞争加剧;2)国内大模型第一梯队竞争激烈,持续迭代表现不俗;3)国内外大模型在不同任务上表现各有优势;4)端侧小模型表现惊艳。 此外,Sora:大型视觉模型的背景、技术、局限性和机遇综述【官方论文】的参考文献包括: T.Shen,R.Jin,Y.Huang,C.Liu,W.Dong,Z.Guo,X.Wu,Y.Liu,和 D.Xiong,“大型语言模型对齐:一项调查”,arXiv 预印本 arXiv:2309.15025,2023 年。 X.Liu,X.Lei,S.Wang,Y.Huang,Z.Feng,B.Wen,J.Cheng,P.Ke,Y.Xu,W.L.Tam,X.Zhang,L.Sun,H.Wang,J.Zhang,M.Huang,Y.Dong,和 J.Tang,“Alignbench:大型语言模型中文对齐的基准测试”,2023 年。 P.Christiano,J.Leike,T.B.Brown,M.Martic,S.Legg,和 D.Amodei,“基于人类偏好的深度强化学习”,2023 年。 T.Yu,Y.Yao,H.Zhang,T.He,Y.Han,G.Cui,J.Hu,Z.Liu,H.T.Zheng,M.Sun,和 T.S.Chua,“RLHFV:通过细粒度校正人类反馈实现可信赖的 MLLMs 行为对齐”,2023 年。 M.S.Jahan 和 M.Oussalah,“使用自然语言处理进行仇恨言论自动检测的系统综述。”,《神经计算》,第 126232 页,2023 年。 OpenAI,“Sora 安全。”https://openai.com/sorasafety,2024 年。
2024-12-27
帮我查一下这四家主流大模型的应用能力评测报告吧,通用能力和单项能力都可,数据需要权威一些文心一言 文心一格 通义千问 通义万相 讯飞星火 ai小科 智谱
以下是为您找到的关于主流大模型应用能力评测的相关报告: 小七姐的测评: 测评机制:以同组提示词下 ChatGPT 4.0 生成的内容做对标参照,对智谱清言、文心一言 4.0、Kimi Chat 进行测评。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:共分为五轮,分别针对不同的任务和模型进行多次测试。 中文大模型基准测评 2023 年度报告: 优秀模型:文心一言 4.0 API(百度)。 模型特点:在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且水平较高。 适合应用:能力栈广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作、代码编写及纠错等方面,在逻辑推理方面表现不俗,可关注在科学研究、教育、工业方面的落地能力。 观点文章中的测评: 目前体验效果比较好的有科大星火模型、清华 ChatGLM、百度文心一言。 星火目前感觉最接近 GPT3.5(0301 版本)的 80%90%,但 GPT3.5 进化到 6 月版本效果更强。 对大模型的评估可从基础能力、职场能力、探索对话三个方面判断,基础能力包括语言(文本)生成和语言理解,如常识类问题和分词类问题。
2024-12-27
我想要一些关于AI的研究报告,技术、产业、产品方面都可以
以下是为您提供的一些关于 AI 的研究报告: 《》:Kimi 发布视觉思考模型 k1,在最新版 App 和 Web 端上线。k1 模型基于强化学习技术打造,原生支持端到端图像理解和思维链技术,并将能力扩展到数学之外的更多基础科学领域。 《》:由量子位智库发布,聚焦 AI 技术及其在各行业的应用趋势。报告指出 AI 已成为科技发展的主旋律,对全球产业产生深远影响。内容涵盖技术、产品、行业篇,探讨了大模型创新、AI 应用格局、产品趋势、行业渗透率等十大趋势。报告还分析了 AI 在千行百业中的落地情况,包括智能驾驶、具身智能、智能硬件、游戏、影视、营销、教育和医疗等行业,展现了 AI 技术如何推动行业变革和增长。 关于 AI 产业的产业链结构,大致可分为:上游的基础设施层(数据与算力)、中游的技术层(模型与算法)、下游的应用层(应用与分发),详细内容参见图 5 和图 6。 此外,还有以下相关的课件和内容供您参考: 【创新公司观察】 2022 2024 年融资 2000w 美金以上的公司列表和详细公司分析:https://ameliadev.notion.site/202220242000w08f50fafd81b420fa7f26ecd6c0b3243?pvs=4 AI Grant 公司列表和详细公司分析(三期):https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AIGC 行业与商业观察(2024.1):https://gamma.app/docs/AIGCDev9q1bax2pspnlxqu 【AI 产品/功能构建】 顶级科技公司产品团队正在构建哪些 AI 功能【总览】:https://gamma.app/docs/AIzawqmb2ff3cv958 顶级科技公司产品团队正在构建哪些 AI 功能【产品分析】:https://gamma.app/docs/AItebxqet8ubz3rje 顶级科技公司产品团队正在构建哪些 AI 功能【思考借鉴】:https://gamma.app/docs/AIcjqug2f9vtw5m8i 【商业观察】 AI 变革公司/产业实践探索 02:2023 年年报,看中国上市公司怎么使用生成式 AI:https://ameliadev.notion.site/AIGranta52f291e81f34b418c9919497961e831?pvs=4 AI 变革公司/产业实践探索 01:安克创新的 AI 实践分析:https://gamma.app/docs/AI01AI5to7cl1o2ebvhrn 【AI 生存探索】
2024-12-24
技术服务 大模型 研究报告
以下是为您提供的关于技术服务大模型研究报告的相关内容: 1. 《质朴发言:视觉语言理解模型的当前技术边界与未来应用想象|Z 研究第 2 期》 原文链接:https://mp.weixin.qq.com/s/dYLqW8dNOcQw59UtQwXNgA 来源:质朴发言 发文时间:2024.01.22 内容:近期生成式 AI 领域的浪潮催化了多模态模型的探索,研究人员不断尝试使用更多模态数据的编码,以训练出能够理解和处理多种类型数据的模型。本份研究报告集中讨论了基于 Transformer 架构的视觉语言模型,优化了从视觉输入到语言输出的转换过程。报告范围专注于视觉和语言之间的交互,不考虑单纯的视觉到视觉的计算机视觉任务。报告包括视觉分析技术、图像语言模型、视频语言模型、LLM 多模态 Agent、应用场景、未来发展方向、References 和附录等内容。应用场景包括多模态内容理解与处理、智能交互与自动化、具身智能、未来发展趋势(2024?)、视频生成模型 mapping 等。未来发展方向包括技术路径利用预训练 LLM 进行指令调整,应用场景赋予机器理解多模态的能力。 2. 《小 A技术开发/大模型 知识库文章索引》 作者: 文章: 《Perplexity 指标究竟是什么?》:作者从自己实际入坑的经验出发,尝试总结梳理出新手友好的 transformer 入坑指南。计划从算法 1:NLP 中的 transformer 网络结构、算法 2:CV 中的 transformer 网络结构、算法 3:多模态下的 transformer 网络结构、训练:transformer 的分布式训练、部署:transformer 的 tvm 量化与推理五个方面对 transformer 进行介绍。 《初探 LLM 基座模型》:主要介绍 LLM 基座模型里常见的 3 种 transformer 架构,encoderonly,encoderdecoder 和 decoderonly。 《ChatBot 是怎么炼成的?》:介绍了 LLM 基座大模型下游应用 ChatBot 的研发过程,在介绍 ChatBot 之前,先介绍了 LLM 在辅助编程方面的应用,包括 Codex 和 AlphaCode 两个奠基性工作。 3. 2024 年 9 月 26 日的相关报告 中国信通院和阿里云计算:《》,探讨了大模型技术的发展、面临的安全挑战以及在安全领域的应用潜力。 其它报告: 科大讯飞:《》 智能小巨人科技:《》 电子发烧友:《》 您可以根据具体需求,进一步查阅相关报告获取更详细的信息。
2024-12-19