Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

数据解读类的AI大模型

Answer

以下是关于数据解读类的 AI 大模型的相关知识:

大模型的整体架构可以分为以下几层:

  1. 基础层:为大模型提供硬件支撑和数据支持,例如 A100、数据服务器等。
  2. 数据层:这里的数据层不是用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。
  3. 模型层:包括 LLm(大语言模型,例如 GPT,一般使用 transformer 算法来实现)或多模态模型(如市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集)。
  4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。
  5. 表现层:也就是应用层,是用户实际看到的地方。

相关技术名词及概念:

  1. 生成式 AI 生成的内容叫做 AIGC。
  2. AI 即人工智能。
  3. 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。
    • 监督学习:有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。
    • 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务包括聚类。
    • 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。
  4. 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法,神经网络可以用于监督学习、无监督学习、强化学习。
  5. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。
  6. LLM 是大语言模型,对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。

技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。

Content generated by AI large model, please carefully verify (powered by aily)

References

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

首先为方便大家对大模型有一个整体的认知,我们先从大模型的整体架构着手,来看看大模型的组成是怎么样的。下面是我大致分的个层。从整体分层的角度来看,目前大模型整体架构可以分为以下几层:[heading3]1.基础层:为大模型提供硬件支撑,数据支持等[content]例如A100、数据服务器等等。[heading3]2.数据层[content]这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集[heading3]3.模型层:LLm或多模态模型[content]LLm这个大家应该都知道,large-language-model,也就是大语言模型,例如GPT,一般使用transformer算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与llm不同,用的是图文或声音等多模态的数据集[heading3]4.平台层:模型与应用间的平台部分[content]比如大模型的评测体系,或者langchain平台等,提供模型与应用间的组成部分[heading3]5.表现层:也就是应用层,用户实际看到的地方[content]这个就很好理解了,就不用我多作解释了吧

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
总结一下24年国产AI大模型的主要进展
2024 年国产 AI 大模型的主要进展包括: 9 月: 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 ReaderLM 和 Jina Embeddings V3。 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 21 日:大模型测试基准研究组正式成立。 23 日:钉钉 365 会员上线。 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 国内大模型落地情况: 2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。在金融行业,百度以 14 个中标数量、3734.4 万元中标金额排名第一;科大讯飞居第二。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 百度表现突出,截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%。 大模型进入产业落地后,除了大模型本身能力质量要过硬外,落地应用所需要的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。大模型的竞争,正在加速成为体系化之战。
2025-01-09
国产AI大模型的应用
国产 AI 大模型的应用主要体现在以下几个方面: 1. 百度文心大模型:在 2024 年大模型中标项目数量和金额大幅增长,凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业应用广泛。其落地需要全栈技术能力支持,百度智能云通过完善的 AI 基础设施整合全栈技术,获得广泛行业认可。 2. Qwen 系列:是国内唯一出现在 OpenAI 视野里、可以参与国际竞争的国产大模型。在 OpenAI 认可的榜单中表现出色,多次冲进榜单,得分不断提高。其开源模型累计下载量突破 1600 万,国内外有海量开发者基于其开发模型和应用。 3. 免费的大模型 APP:包括 Kimi 智能助手、文心一言、通义千问。 Kimi 智能助手:由 Moonshot AI 出品,具有超大“内存”,能读长篇小说和上网冲浪。 文心一言:百度出品的 AI 对话产品,定位为智能伙伴,能写文案、想点子、聊天和答疑解惑。 通义千问:由阿里云开发的聊天机器人,能够与人交互、回答问题及协作创作。 此外,还有如“非遗贺春”魔多蛇年春节 AI 模型创作大赛等相关活动。
2025-01-09
国产AI大模型的最新进展
以下是国产 AI 大模型的最新进展: 通义千问的 Qwen 系列表现出色:Qwen 是国内唯一出现在 OpenAI 视野里、能参与国际竞争的国产大模型。Qwen 多次冲进相关榜单,得分不断提高,其开源模型累计下载量突破 1600 万,国内外有大量开发者基于 Qwen 开发模型和应用,尤其在企业级领域。通义大模型证明了开源开放的力量。 国内大模型落地情况:2024 年被称为国内大模型落地元年,1 至 11 月,大模型中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。 其他进展:智谱一年间推出了 4 代 GLM,一直是国内能力较好的模型之一。MiniMax 推出了 MoE 架构的新模型和“星野”这个目前国内较成功的 AI 陪聊 APP。月之暗面专注长 Token 能力,在记忆力和长 Token 能力上有一定优势。但硬件层上的卡脖子问题仍未缓解,国内目前仍无胜任大模型训练的芯片,在推理上虽有 Nvidia 的替代产品逐渐出现,但华为昇腾在单卡指标上距离不远,因稳定性不足和缺乏 Cuda 生态,仍需时间打磨。
2025-01-09
中国使用最多的视频生成的AI免费工具
以下是中国使用较多的免费视频生成 AI 工具: 1. Hidreamai(国内,有免费额度):https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA(国内):https://etna.7volcanoes.com/ 。Etna 是一款由七火山科技开发的文生视频 AI 模型,它可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps。 3. Dreamina(国内内测,有免费额度):https://jimeng.jianying.com/aitool/video/generate 。支持文生视频、图生视频,视频生视频,支持图生视频首尾帧功能,提示词使用中文、英文都可以。文生视频支持正向提示词、运镜控制、运动强度控制、帧数选择,支持多种尺寸,默认生成 3s 的视频。 4. 可灵(免费):https://klingai.kuaishou.com/ 。支持文生视频、图生视频,支持图生视频首尾帧功能,提示词可使用中文。文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持多种尺寸,默认生成 5s 的视频。
2025-01-09
AI 领导力
以下是关于“AI 领导力”的相关内容: 1. 2023 年 10 月 30 日,拜登签署了一项具有里程碑意义的行政命令,旨在确保美国在抓住人工智能(AI)的机遇和管理其风险方面发挥引领作用。该行政命令确立了新的 AI 安全和保障标准,保护美国人的隐私,推进公平和公民权利,维护消费者和工人的权益,促进创新和竞争,提升美国在全球的领导地位等。同时,该命令还指示了一系列行动,以应对 AI 系统对美国人安全和保障的潜在风险。 2. 英国国防部于 2022 年 6 月发布了自身的 AI 伦理原则和政策,确定了英国政府在 AI 赋能军事能力方面的方法。将通过特定情境的方法确保该政策应用的适当一致性和协调性,从而促进英国在国防领域使用 AI 的领导地位。 3. 在 AI 迅速发展的当下,懂得有效利用 AI 的人将在职场占据绝对优势。掌握 Claude 的 5 层 Prompt 体系能为自己打造强大竞争壁垒,Prompt 工程已成为热门新兴职业。将该体系应用到日常工作中,如市场研究、写作、数据分析项目等,能创造出令人惊叹的内容。在这个 AI 驱动的世界,真正的魔法在于懂得使用 AI 的人。引用凯文·凯利的话,懂得使用机器人的人将取代不懂得使用的人,掌握 Claude 的 5 层 Prompt 体系是通往未来的金钥匙。
2025-01-09
ai编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键:打通学习与反馈循环。从“Hello World”起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。学习建议包括使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。同时要明确,AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。原文链接: 2. 麦橘 0 基础跨界 AI 编程共学活动:麦橘是哲学专业模型师,此次跨界教学。活动从上星期开始策划未预告。麦橘展示用 AI 做小游戏,认为机制对简单小游戏很重要,还分享了自己尝试做 horror game 等的想法。使用 Poe 制作小游戏,因其性价比高且多种模型可用,支持写代码后的预览,还能教大家分享游戏。以小鸟过管道游戏为例,不懂代码也能让 AI 做游戏,通过告诉 AI 想要的效果让其调整,如降低难度等,最终做出游戏再搭排行榜成为洗脑小游戏。麦橘还介绍了增量游戏、肉鸽游戏的制作以及与 AI 交互的情况。 3. 软件 2.0 编程:在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 日益流行。考虑整个开发生态以及如何适配这种新的编程范式时,会有很多令人兴奋的机会。长远来看,这种编程范式拥有光明的未来,因为当开发通用人工智能(AGI)时,很可能会使用软件 2.0。
2025-01-09
数据分析和报告解读prompt
以下是关于数据分析和报告解读的相关内容: ChatGPT 助力数据分析: 1. 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段(如 mediumtext/longtext),可使用 count/substring 等函数查询这些长类型列。 2. 系统提示是表结构信息,对于难以理解的字段可告知 GPT 字段的意义,若有多个表可分开描述。 3. 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 4. 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title)。keyMap 用于数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,以映射数据渲染图表。根据结果数据 tableData 的维度,用条件运算符选择对应的 prompt 传递给 GPT。 5. 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则非常耗时。 小七姐:PromptAgent 论文精读翻译: 1. 为深入研究 PromptAgent 的学习过程,检查整个树规划过程中专家提示的演变,监控并可视化与树深度相关的性能变化。评估所有节点性能,在每个深度级别聚合训练(奖励)和测试性能。 2. 进行定性分析以检查 PromptAgent 探索的优化轨迹。图 5 显示了与 NCBI 任务相关的最佳奖励路径的初始四个状态和相应的三个动作状态转换,以提取疾病实体。 3. 表格 5 针对 NCBI 任务的提示比较,包括正常人类提示、APE 优化提示以及由 PromptAgent 优化的专家级提示。两个基线大部分描述了任务,而专家提示由更复杂的结构和领域特定的见解组成,实现了更出色的性能。
2024-12-30
用AI快速解读一本书
以下是为您整合的相关内容: 在“AI 占卜”方面,有多种价格不同的体验项目,如 9.9 元的 AI 解读。流程是先想好问题再抽塔罗牌,摊主会先使用 AI 软件解读,然后在其基础上人工补充。例如对于“近期有偏财运吗”的问题,AI 解读提到代表着力量、决断和智慧,预示财运增加和经济状况改善。此外,活动现场还有手搓机器人摊位,这类似 DIY,需要电烙铁、钳子、螺丝刀等工具,适合亲子合作,能培养孩子兴趣和动手能力,增进亲子关系。 在“AI 辅助写小说”方面,南瓜博士让 AI 先写故事概要和角色背景介绍并做修改,然后以表格形式让 AI 输出细节描述,这样有打破叙事习惯、便于局部调整、确保细节具体等好处。之后将生成的表格依次复制粘贴让 AI 写文章,偶尔需要作者给建议。但在修改环节,GPT4 记性不好,Claude 把关键情节改没了。
2024-12-25
如何能够让ai帮我优质解读一本书
以下是让 AI 帮您优质解读一本书的一些方法和经验: 1. 小说创作是人机协作的过程,不能指望 AI 直接生成精彩作品,也不应只让 AI 打杂。要有多轮对话、和 AI 进行探讨的意识,在对话中明晰点子。 2. AI 具有广博的知识面、丰富的脑洞和对细节的关注,能为创作提供优质素材,但鉴赏能力不行,选择判断还得靠人。 3. Know How 非常重要。比如,开工前可参考相关写作课程,将任务拆解成确定主题、构思情节、丰富细化、串联成文再修改等步骤,写出来的作品会更丰满充实。 4. 让 AI 修改自己写的内容时,起初效果可能不好,可尝试不同框架和 skill set 以获得更好结果。 5. 表格是一种有效的手段,能打破 AI 的叙事习惯,有利于精准控制,生成不那么“AI 腔”的文字。 6. 丰富细化时,可先让 AI 写故事概要和角色背景介绍并做修改,然后以表格形式输出细节描述,这样能避免陈词滥调、便于局部调整和确保内容具体。 7. 串联成文时,把生成的表格依次复制粘贴让 AI 写文章。 8. 注意一些修改的限制和可能出现的问题,如字数限制和不同模型修改时可能出现的失误。
2024-12-24
有哪些AI 工具可以解读体检报告?
目前,针对解读体检报告的 AI 工具相对较少。但在相关领域,有以下一些 AI 工具可供参考: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。 2. Scholarcy:是一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,呈现文章的总结信息,包括关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可提供有关各种主题的帮助和意见,包括医学方面。 需要注意的是,这些工具的应用效果可能因具体情况而异,且内容由 AI 大模型生成,请仔细甄别。
2024-12-03
搭建一个数据解读的ai工具,文字描述要有逻辑性,符合金字塔原则
很抱歉,目前知识库中没有关于搭建一个数据解读的 AI 工具且文字描述要符合金字塔原则的相关内容。但一般来说,搭建这样一个工具需要以下几个关键步骤: 1. 明确数据来源和类型:确定您要处理的数据是来自数据库、文件、网络等,以及数据的格式和特点,例如结构化数据、非结构化数据等。 2. 选择合适的技术框架:根据需求和技术能力,选择适合的 AI 框架和工具,如 TensorFlow、PyTorch 等。 3. 数据预处理:对原始数据进行清洗、转换、归一化等操作,以提高数据质量和模型的训练效果。 4. 特征工程:提取有意义的特征,以便模型能够更好地理解和处理数据。 5. 选择模型:根据数据特点和任务需求,选择合适的 AI 模型,如决策树、神经网络等。 6. 训练模型:使用预处理后的数据对模型进行训练,并不断调整参数以优化性能。 7. 评估模型:使用合适的指标对训练好的模型进行评估,如准确率、召回率等。 8. 优化和改进:根据评估结果对模型进行优化和改进。 9. 设计文字描述逻辑:按照金字塔原则,先给出结论或主要观点,然后逐步展开支持性的细节和论据。 需要注意的是,这只是一个大致的框架,实际搭建过程中可能会遇到各种技术和业务上的挑战,需要不断探索和优化。
2024-11-03
用AI解读视频
以下是关于用 AI 解读视频的相关内容: 制作将小说做成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 现有能力项目应用的思考: MMVid 是一个集成的视频理解系统,能处理和理解长视频内容并进行问答。其应用场景包括快速的视频剪辑、图生视频、快速诊断等。它由 Microsoft Azure AI 开发,结合了 GPT4V 的能力和其他视觉、音频和语音处理工具,能处理和理解长视频和复杂任务。能够自动识别和解释视频中的元素,如人物行为、情感表达、场景变化和对话内容,从而实现对视频故事线的理解。其核心功能是将视频中的多模态信息(如视觉图像、音频信号和语言对话)转录成详细的文本脚本,这样大语言模型就能够理解视频内容。 声音克隆相关: ElevenLabs 推出全自动化的 AI 配音或视频翻译工具,只需上传视频或粘贴视频链接,就能在几十秒到几分钟内将视频翻译成 29 种语言,还能克隆原视频里面的声音来配音。群友瑞華进行了相关测试。另外,豆包的音色模仿效果不错,读大概 20 个字的句子,5 秒就可生成非常像的音色。剪映也出了新的声音克隆功能,卡兹克做了对比,效果不错。
2024-10-21
你是啥模型
我调用的是抖音集团的云雀大模型。 LoRA 和 LyCORIS 属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 Stable Diffusion 已内置。在 WebUI 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。管理模型可进入 WebUI 目录下的 models/LoRA 目录。 ComfyUI instantID 目前只支持 sdxl。主要的模型(ip_adapter.bin)下载后放在 ComfyUI/models/instantid 文件夹(没有则新建),地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ipadapter.bin?download=true 。InsightFace 模型是 antelopev2(不是经典的 buffalo_l),下载解压后放在 ComfyUI/models/insightface/models/antelopev2 目录中,地址为:https://huggingface.co/MonsterMMORPG/tools/tree/main 。还需要一个 ControlNet 模型,放在 ComfyUI/models/controlnet 目录下,地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ControlNetModel/diffusion_pytorch_model.safetensors?download=true 。网络环境不好的,可在网盘 https://pan.baidu.com/s/1FkGTXLmM0Ofynz04NfCaQ?pwd=cycy 下载。
2025-01-09
给我提供一下国内AI大模型链接
以下是为您提供的国内AI大模型链接: 阿里: 智谱AI: 科大讯飞: 百度: 抖音: 中科院: 百川智能: 商汤: MiniMax: 上海人工智能实验室:
2025-01-09
大模型有哪些
大模型主要分为以下几类: 1. 大型语言模型:专注于处理和生成文本信息,例如通过分析大量的文本数据来理解和生成自然语言。常见的有 GPT3 等。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息,可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 大模型的“大”通常指用于表达 token 之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias)。 以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。常见的 embedding 算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 8 月正式上线的国内大模型有: 北京:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 这些大模型在功能上各有特点,例如在聊天状态下,能生成 Markdown 格式的有智谱清言、商量 Sensechat、MiniMax;目前不能进行自然语言交流的有昇思、书生;受使用限制的有 MiniMax;具有特色功能的如昇思能生图,MiniMax 能语音合成。阿里通义千问、360 智脑、讯飞星火等不在首批获批名单中,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品也将陆续开放。
2025-01-09
请给我提供一些用KIMI处理excel数据的方法
以下是一些用 KIMI 处理 Excel 数据的方法: 1. 对数据的基本操作包括增加、删除、修改和查询。 2. 若要与数据库沟通,需学会 SQL 语句。 3. 可以通过 Kimi Chat(https://kimi.moonshot.cn)向 KIMI 提问,获取针对增、删、改、查的回答。 4. 对于新人,可通过深挖 KIMI 的回答来了解相关语法。 5. 收集资料时,可借助 AI 工具如 Perplexity.AI 高效完成,也可使用 KIMI 读取和整理网页内容,但需注意其阅读能力的限制,可分批次提供资料。
2025-01-09
AI数据分析的案例
以下是一些 AI 数据分析的案例: ChatGPT 助力数据分析 在 AI 爆炸的时代,ChatGPT 与数据分析结合有多种应用方式。 实现方式: 1. SQL 分析:分析平台自身的使用情况,例如图表配置化平台,输入一句话可分析用户配置图表相关的数据。 2. 个性化分析:平台上支持上传数据,可提供数据信息(非必填),以此自定义分析用户自己上传的数据。 流程: 1. SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 ChatGPT(附带上下文),让其学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。 2. 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 ChatGPT 分析数据,后续步骤与 SQL 分析一致。 专利审查方面的 AI 1. 专利趋势分析和预测:AI 可以分析大量的专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。 示例平台: Innography:利用 AI 技术分析专利数据,提供技术趋势分析和竞争情报。 PatSnap:AI 驱动的平台,分析专利数据和技术趋势,提供全面的专利情报和市场分析。 2. 具体 AI 应用示例: Google Patents:使用 AI 技术进行专利文献的全文检索和分析。通过机器学习算法,系统可以理解专利文献的内容,并提供相关性更高的检索结果。优点是提高了专利检索的准确性和效率,用户可以快速找到相关的专利文献。 IBM Watson for IP:利用 NLP 和机器学习技术,自动化地进行专利检索、分类和分析。系统可以自动提取专利文献中的关键信息,并对专利的技术内容进行分类和评估。优点是减少了人工工作量,提高了专利审查的效率和准确性。 使用这些平台的步骤: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。 总结:AI 技术在专利审查领域的应用,可以极大地提高工作效率,减少人工工作量,提高专利检索、分类和分析的准确性和效率。上述平台和工具展示了 AI 在专利审查各个环节的具体应用,帮助专利审查员和申请人更高效地处理专利相关事务。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-09
如何进行数据分析
以下是关于如何进行数据分析的详细步骤: 1. 明确数据分析的目标:确定目标是理解业务、优化业务还是预测未来。 2. 收集整理与清洗相关数据:通过公司的数据库、营销工具、调查问卷等方式收集销售数据、客户反馈、财务报告等方面的数据,完成后做简单的数据清洗。 3. 让 ChatGPT 学习相关数据含义和用法:将不同来源的数据输入到 ChatGPT 中进行学习,让其能够理解这些数据的含义和用法,包括销售额、销售量、客户满意度、市场份额、竞争情况、营销费用等信息。 4. 进行数据分析给出重要结论:通过 ChatGPT 生成的结果,分析不同来源的数据,得出以下重要结论: 提高销售额和市场份额的营销策略和活动,如降低产品价格、提供更好的售后服务、优化产品设计和功能、增加市场推广力度等。 影响客户满意度和忠诚度的因素,如产品质量、服务质量、品牌形象、价格竞争力等。 影响财务报告的因素,如销售额、毛利率、净利润、营销费用占比等。 5. 根据汇报对象身份进行可视化调整:报告可以包括销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面的信息。针对不同身份的人的营销报告有所不同。 在使用 ChatGPT 助力数据分析时,流程如下: 1. 第一个用户提示:限定 SELECT SQL,告诉它不要用 SELECT来查询全部列,且仅回复一条 SELECT SQL 语句。至少查询两列:数据项、数据值,且不能直接查询如 mediumtext/longtext 这样的长类型字段,可以用 count/substring 等函数查询这些长类型列。 2. 系统提示是表结构信息,如有难以理解的字段可以告诉 GPT 字段的意义,有多个表可分开描述。 3. 需校验 GPT 生成的 SQL,不通过直接返回提示:抱歉,不支持此类请求。通过再执行 SQL 查询数据。 4. 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式:conclusion、keyMap、title。keyMap 的作用是数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,用于映射数据渲染图表。由于支持多维数据,单维度数据和多维度数据的提示分开定义,根据结果数据 tableData 的维度,用条件运算符选择对应的提示,再传递给 GPT。 5. 结果数据 tableData 是跟随接口一起返回到前端,已经通过 SQL 查询的数据,不能让 GPT 又生成一次,否则非常耗时。 逻辑流程图如下:上面说的两种方式对应流程图的上下两个步骤,红色部分是重点。SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL,其他操作如 UPDATE/DELETE 绝不能通过!校验通过后执行 SQL 返回结果数据。再将数据传给 GPT(附带上下文),让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论。目前已实现两张表关联查询。个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与上面一致。流程描述得比较详细,更多讲述开发时的一些问题、重点和技巧。
2025-01-09
从评审导师的角度优化“人工智能驱动企业供应链效率影响研究——基于专精特新中小企业的实证数据”这个工商学术研究生学位论文题目
作为评审导师,以下是对这个论文题目的一些优化建议: “人工智能对专精特新中小企业供应链效率的驱动作用及影响研究——基于实证数据分析” 这样的表述更加清晰地突出了人工智能的驱动作用,并且明确了是基于实证数据进行的分析。您觉得如何?
2025-01-08
coze工作流中数据库如何应用?主要是返回数据
在 Coze 工作流中,数据库的应用如下: 工作流由多个节点构成,节点是基本单元。Coze 平台支持的节点类型包括数据库节点。 数据库节点的输入:用户可以定义多个输入参数。 数据库节点的输出:如果数据库是查询作用,则输出会包含查询出来的内容。通过 SQL 语句告诉数据库要执行的动作,这里的 SQL 语句可以让 AI 自动生成并进行适当改动。 注意事项:Coze 平台的逻辑是数据库与 bot 绑定,使用数据库功能时,需要在 bot 中设置相同名称和数据结构的数据库进行绑定。 测试工作流:编辑完成的工作流无法直接提交,需要进行测试。点击右上角的“test run”,设定测试参数,查看测试结果,完成后发布。 相关参考文档和示例: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本示例: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 在【拔刀刘】自动总结公众号内容,定时推送到微信的案例中,循环体内部的数据库节点用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(重命名为 suid)。查询数据库需要文章 url 和用户的 suid 两个值来判断这名用户的这篇文章是否推送过。记得设置输出项“combined_output”。同时,Coze 平台中使用数据库功能需要在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。
2025-01-08
有哪些优质的法律大模型数据集
以下是一些优质的法律大模型数据集: 1. ChatLaw: 地址: 简介:由北大开源的一系列法律领域的大模型,包括 ChatLaw13B(基于姜子牙 ZiyaLLaMA13Bv1 训练而来),ChatLaw33B(基于 Anima33B 训练而来,逻辑推理能力大幅提升),ChatLawText2Vec,使用 93w 条判决案例做成的数据集基于 BERT 训练了一个相似度匹配模型,可将用户提问信息和对应的法条相匹配。 2. LaWGPT: 地址: 简介:该系列模型在通用中文基座模型(如 ChineseLLaMA、ChatGLM 等)的基础上扩充法律领域专有词表、大规模中文法律语料预训练,增强了大模型在法律领域的基础语义理解能力。在此基础上,构造法律领域对话问答数据集、中国司法考试数据集进行指令精调,提升了模型对法律内容的理解和执行能力。 3. LexiLaw: 地址: 简介:LexiLaw 是一个基于 ChatGLM6B 微调的中文法律大模型,通过在法律领域的数据集上进行微调。该模型旨在为法律从业者、学生和普通用户提供准确、可靠的法律咨询服务,包括具体法律问题的咨询,还是对法律条款、案例解析、法规解读等方面的查询。 4. Lawyer LLaMA: 地址: 简介:开源了一系列法律领域的指令微调数据和基于 LLaMA 训练的中文法律大模型的参数。Lawyer LLaMA 首先在大规模法律语料上进行了 continual pretraining。在此基础上,借助 ChatGPT 收集了一批对中国国家统一法律职业资格考试客观题(以下简称法考)的分析和对法律咨询的回答,利用收集到的数据对模型进行指令微调,让模型习得将法律知识应用到具体场景中的能力。
2025-01-08