Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

coze 如何 100% 调用插件

Answer

在 Coze 中调用插件并非能 100% 保证成功,以下是一些相关信息:

  • Coze 的工作流中,节点是基本单元,插件节点可用于扩展大语言模型本身的限制,实现特定功能,如抓取网页内容。
  • 加入智能体后,会有调用次数的统计。
  • 即使是官方插件也可能存在不稳定的情况,需要自行尝试找到适合当前场景的插件。
  • 例如在微信图片助手的打造中,有以下操作:
    • 任务 1 总结图片内容对应【识图小能手】等任务与相应插件存在对应关系,已在 Coze 插件商店上架,搜索关联即可。
    • 配置插件时,需准备好 Glif 的 Token,在 Coze 中编辑参数选项填入 Token 并保存,同时关闭对大模型的可见按钮。
  • 通过已有服务 api 创建插件时:
    • 进入 Coze 个人空间选择插件,新建并命名,填入 ngrok 随机生成的 https 链接地址,配置输出参数,测试后发布。
    • 手捏插件后可创建 bot 并接入插件,在 prompt 中要求调用插件。

需要注意的是,Coze 调用插件有一定随机性,对输入输出内容会有过滤,如果多次尝试不成功,可优化提示词使其更准确识别输入意图,且不要使用违规字词和图片内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

大雨:coze工作流节点大全

在Coze的工作流中,节点是构成工作流的基本单元。每个节点代表一个特定的功能或操作。下面,我们来详细了解各类节点的功能和配置方法。[heading2]开始节点:[content]定义工作流的输入参数,是工作流的起点。[heading2]结束节点:[content]设置工作流的输出内容,是工作流的终点。节点命名建议,含义在前,类型不加也可以。比如一个大语言模型节点,目的是为了方便选择的是看的清,同类节点不会选错。[heading2]插件[content]通过插件扩展大语言模型本身的限制。用于调用外部插件,实现特定功能。例如,可以使用插件节点抓取网页内容。调用加入智能体以后,调用的次数,比如A插件被加入智能体B,我们使用了6次,就是6.引用就是被其他工作流或者智能体使用,比如A插件加入智能体,A插件的引用就是1.运行耗时平均耗时,如果很长,增加失败概率,也容易造成整个工作流运行超时成功率如果成功率不高,调用次数也不高,就有点尴尬了即使官方插件也会有不稳定的情况,需要自己去尝试,找到适合当前场景的插件。

通过 Coze API 打造强大的微信图片助手

设置任务的参考提示词说明:1.任务1,任务3,任务4,任务5,任务6是调用我自定义封装的插件,背后使用了Glif的能力,更强大且免费。已经在Coze插件商店中上架,搜索关联即可。对应关系为:任务1总结图片内容—>【识图小能手】任务3重新绘制图片—>【重绘小能手】任务4微调图片—>【微调小能手】任务5分析图表类图片数据—>【分析小能手】任务6文字生成图片—>【绘图小能手】1.任务2解答图片中习题,对比下来Coze自己提供的OCR插件识别题目内容更准确,使用【OCR/Image2Text】插件。[heading3]插件的配置[content]一,准备好Glif的Token1.先在[Glif官网](https://glif.app/glifs)上注册登录2.打开[Token注册](https://glif.app/settings/api-tokens)的页面二,打开Coze中这几个自定义的插件编辑参数选项在【token】参数中填入上面准备的token,保存即可关闭对大模型的可见按钮,防止大模型给token修改导致错误。Bot通过API渠道发布更新即可。然后,就没有然后,在微信里愉快的玩耍吧~注意,Coze调用插件有一定的随机性和对输入输出内容会有过滤,如果多次尝试不成功。1.优化Coze Bot中提示词,让其更准确识别输入的意图。2.不要用违规的字词和图片内容。

CT: coze插件---通过已有服务api创建

饶了一大圈,终于到了coze。为啥要用Ngrok(泥脑壳),不是吃饱没事干,纯属coze要你干。进入coze,个人空间中,选择插件。新建一个插件,起个名字api_1(这名字就是这么随意,连描述都叫test)在插件的URL部分,填入刚才ngrok(泥脑壳)随机生成的https的链接地址。刚才开着服务的朋友,你的terminal应该还没关吧,关了的话,请重新从上一步开始。服务还开着的请继续。有一说一,coze的指引做的真不错,输出参数配置你的message输出就行。测试后发布插件[heading2]捏个简单的bot[content]手捏插件搞定之后,就开始搓bot。不过这个bot简单到手都没搓热就好了。创建了一个测试api的bot。将自己创建的api_1的插件接进来。prompt里面简单粗暴让它一定要调用我们的插件。然后就大功告成。[heading2][heading2]后续说明[content]这个整体过程仅仅为了说明coze的插件指引挺好用的。如果生产环境中已经有准备好的https的api,直接就可以接上来。PS:本案例中用的是coze国内版,反正是玩插件,对模型没啥要求。PPS:ngrok本案例中仅供娱乐,生产环境中勿用。PPPS:果然不会写代码,做个案例都这么简单。PPPPS:动手干,哪怕再简单,都是踏出去的第一步。(给自己菜也找个台阶下.......)Read in,Bot out.

Others are asking
coze中使用搜索插件,是不是无法搜索最新的新闻
Coze 集成了新闻搜索插件,其中的头条新闻插件能够持续更新,让您了解最新的头条新闻和新闻文章。所以在 Coze 中使用搜索插件是可以搜索到最新新闻的。Coze 还提供了多样化的插件库,涵盖了从基础的文本处理到高级的机器学习功能,以及众多符合平民生活化的插件,如天气预报、出行必备、生活便利等方面的插件。
2025-02-04
forge diffusion的layer diffuse插件不管用是什么原因
Forge Diffusion 的 layer diffuse 插件不管用可能有以下原因: 1. 未正确安装 SD WebUI 的 Forge 版本:在安装 layer diffuse 插件之前,需要确保已安装正确的 。 2. 插件安装步骤有误:应在 Forge 界面点击“Extensions”,选中“layerdiffusion”插件,然后点击安装,并等待安装完成。 3. 部分功能未完成:透明 img2img 功能尚未完成(大约一周内完成)。 4. 代码处于动态变化阶段:插件的代码非常动态,可能在接下来的一个月内发生大幅变化。 此信息来自标记狮社区,原文链接:https://mmmnote.com/article/7e8/03/articlee395010da7c846a3.shtml
2025-01-29
目前最好用的ai整合插件
目前一些好用的 AI 整合插件如下: Coze 插件: 提供了多样化的插件库,涵盖从基础的文本处理到高级的机器学习功能,如文本分析插件可帮助理解用户输入意图,情感分析插件能识别情绪倾向,自然语言处理(NLP)插件支持复杂对话生成,还有图像识别、语音识别、数据分析等插件,其数量和种类不断增加以适应变化。 整合了符合平民生活化的插件,如新闻资讯(头条新闻)、天气预报(墨迹天气)、出行必备(飞常准、猫途鹰)、生活便利(快递查询助手、国内快递查询、食物大师、懂车帝、幸福里、猎聘)等。 Excel 相关的 AI 工具和插件: Excel Labs:是 Excel 插件,新增生成式 AI 功能,基于 OpenAI 技术,可在 Excel 中利用 AI 进行数据分析和决策支持。 Microsoft 365 Copilot:微软推出,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后自动完成任务。 Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,可通过自然语言交互式进行数据分析和生成 Excel 公式。 Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,能公式生成、根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 随着技术发展,未来可能会有更多 AI 功能集成到相关软件中,提高工作效率和智能化水平。请注意,部分内容由 AI 大模型生成,请仔细甄别。
2025-01-28
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
coze插件工具使用
使用 Coze IDE 创建插件的操作步骤如下: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入插件页面,或者在某一 Bot 的编排页面,找到插件区域并单击“+”图标。 4. 单击“创建插件”。 5. 在新建插件对话框,根据以下信息完成配置并单击“确认”: 插件图标:(可选)单击默认图标后,您可以上传本地图片文件作为新的图标。 插件名称:自定义插件名称,用于标识当前插件。建议输入清晰易理解的名称,便于大语言模型搜索与使用插件。 插件描述:插件的描述信息,一般用于记录当前插件的用途。 插件工具创建方式:选择在 Coze IDE 中创建。 IDE 运行时:选择 Node.js 或者 Python3。 6. 在插件详情页,单击“在 IDE 中创建工具”。 7. 在弹出的创建工具对话框,设置工具名称和介绍,以明确工具的用途,并单击“确定”。工具名称和介绍越清晰,大语言模型就越能理解并使用它。创建后,您将跳转到 Coze IDE 页面进行编码。 8. (可选)在 IDE 左上角工具列表区域,单击“+”图标,向插件添加更多工具。您还可以通过单击列表内某一工具的设置图标,来编辑、删除或重置代码。 9. (可选)在 IDE 左下角依赖包区域,管理依赖包,所有工具共用该依赖列表。 以下是一个网页搜索工具的元数据配置说明: |配置项|描述| ||| |名称|工具名称。建议输入清晰易理解的名称,便于后续大语言模型搜索与使用工具。| |描述|工具的描述信息,一般用于记录当前工具的用途。| |启用|是否启用当前工具。使用说明:<br>如果工具未开发测试完成,建议先禁用该工具,只启用并发布已通过测试的工具。<br>如果需要下线某一工具,可将该工具设置为禁用,并再次发布插件。<br>如果插件中只有一个工具,则不支持禁用该工具。如需下线该工具,您可以选择直接删除该插件,或者创建另一个工具并完成开发测试后,再禁用该工具,最后发布插件。| |输入参数|当前工具对应接口的输入参数信息。准确、清晰易理解的参数名称、描述等信息,可以让大语言模型更准确的使用工具。| |输出参数|当前工具对应接口的输出参数信息。准确、清晰易理解的参数名称、描述等信息,可以让大语言模型更准确的使用工具。| 在页面右侧单击测试代码图标并输入所需的参数,然后单击“Run”测试工具。如果您在元数据设置了输入参数,可单击自动生成图标,由 IDE 生成模拟数据,您只需要调整参数值即可进行测试。您可以在控制台区域查看运行日志、在输出区域查看运行结果,单击更新输出参数,IDE 会自动把输出结果中的参数,更新到元数据的输出参数中。 Coze 提供了丰富的插件,涵盖了从搜索引擎、文本分析以及图像识别等各种领域。这些插件的能力如果我们个人接入都是要收费的,但是在 Coze 平台则是免费使用的,例如: Coze 国内版本:https://www.coze.cn/store/plugin 必应搜索 LinkReader:读取文档 知乎热榜 而且国内版本还提供了很多便民的服务,例如: 新闻资讯 头条新闻:持续更新,了解最新的头条新闻和新闻文章。 天气预报 墨迹天气:提供省、市、区县的未来 40 天的天气情况,包括温度、湿度、日夜风向等。 出行必备 飞常准:通过 VariFlight 覆盖的全球商业客运航班,您的终端用户可以轻松获得他们的航班状态、办理登机手续柜台、预计出发时间、登机口、登机状态、行李转盘等信息,并能在整个航程中随时掌握。 猫途鹰:查询实时酒店搜索,航班价格,餐厅,吸引人的旅游地点等信息以创建一个旅行网站。 生活便利 快递查询助手、国内快递查询:查询快递单号,快递公司,快递进度等信息。 食物大师:Food Master 提供食物搜索功能。 懂车帝:如果你想要查询汽车信息,包括二手车、新车、某些车型的信息时可以使用此插件进行查询。 幸福里:提供二手房、新房、租房信息的插件,想要查询某个城市、区域、户型的房产信息时,可以使用此插件。 猎聘:帮助用户根据工作经验、教育经历、地理位置、薪水、职位名称、工作性质等条件搜索猎聘上提供的招聘信息。
2025-01-23
有哪些比较好用的AI价格比较插件
以下是一些比较好用的 AI 相关价格插件: AiTC 车辆执行项:由吉利研究院提供。根据输入车辆操作参数,输出车辆操作结果,包含空调、后视镜等多种执行项。链接: 懂车帝:由懂车帝提供。SecondHandCar 是一款专为二手车市场设计的信息查询工具,可对二手车进行深度的数据挖掘和分析。CarSeries 可以查询新车或特定车系信息。链接: 此外,在价格对比方面: 主流 AI 视频会员价格对比中,可灵最近开放全球价格体系,中国以外可付美金享受。价格情况为 Runway 最贵,Haiper 其次,Luma 中规中矩,可灵最便宜。链接:
2025-01-18
100 万 tokens 什么概念
100 万 tokens 具有以下重要意义和影响: 算法视角:更宽的上下文窗口允许模型在推理时纳入训练数据中未找到的大量新的、特定于任务的信息,从而提高各种自然语言或多模式任务的性能。对越来越长的上下文进行数据建模的能力经历了从 Shannon 1948 提出的 2gram 语言模型、到 1990 年代和 2000 年代的现代 ngram 模型(5 个上下文 token),2010 年代的循环神经网络(RNN)达到数百个 token(Jozefowicz 等),到 2023 年 Anthropic 将上下文扩展到几十万 token 的发展历程。 产品视角:长上下文意味着 LLM 理解能力增强。从提示词到 RAG,都是为了增加给模型的上下文,进而让需求更明确,让模型理解得更好。从用数据训练模型、到指令微调,到提示词和 RAG,到大模型的超长下文,机器越来越像人了。提示词和 RAG 正在快速被弱化,但出于工程和商业考量,目前在很多领域还是主流,未来依然可能是一个混合状态。模型上下文长度覆盖了书籍、电影、长视频等产品的通用长度,应该会引发相关链路上产品交互层的变化。 具体应用:Gemini1.5 支持 100 万 token,可以一次性处理大量信息,比如 1 小时的视频,11 小时的音频,超过 30,000 行代码或超过 700,000 个单词的代码库。Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 Token。ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 Token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 Token。Token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时,会遗忘最前面的对话。若想直观查看 GPT 如何切分 token,可以打开。此外,英文的 Token 占用相对于中文较少,因此很多中文长 Prompt 会被建议翻译成英文设定,然后要求中文输出。
2025-01-28
分析一下a16z 的ai top100榜单
以下是对 a16z 的 AI top100 榜单的分析: A16Z 的 AI top100 榜单聚焦生成式 AI 应用。自 ChatGPT 将生成式 AI 引入公众视野以来,已涌现出成千上万面向消费者的相关产品。 在 AI 陪伴方面,它已成为生成式 AI 的主流应用场景之一。例如,Character.AI 在网页端和移动端榜单上表现出色。网页端有八家 AI 陪伴公司进入榜单,移动端有两家。其中,多数产品自诩“无限制”,用户可进行不受限的对话或互动,且访问主要通过移动网页,平均 75%的流量来自移动设备。对于有移动应用的陪伴产品,用户参与度高,如 Character.AI 每位用户平均每月会话次数达 298 次,Poly.AI 为 74 次。 时隔六个月更新分析,超过 40%的公司是首次出现在榜单上。与六个月前相比,有 30%的新公司。名次进步最大的是 Suno,从第 36 名到第 5 名。移动端最多的应用是图像和视频编辑,占 22%。Luzia 服务西班牙语用户值得关注。字节多款应用上榜,包括 Coze、豆包、CiCi、醒图、Gauth。美学和约会应用开始增加,为用户提供相关建议。此外,Discord 流量值得关注,相当多的应用在其平台完成 PMF 验证。 原文链接:https://a16z.com/100genaiapps/ 作者:A16Z Olivia Moore 发布时间:2024.03.13 去年 9 月的报告:
2025-01-02
AI 100天学习日志
以下是关于雪梅 May 的 AI 学习日记的相关内容: 1. 适合人群:适合纯 AI 小白,若还在观望不知如何入手,可参考此日记。 2. 学习模式:学习模式为输入→模仿→自发创造。若对费曼学习法没自信,可尝试此模式。 3. 学习内容:日记中的学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区发现感兴趣的领域并学习最新内容。 4. 学习时间:在半年多时间跨度中,其中 100 天学习 AI,并非每天依次进行,有空时学习,目前作者已进行到 90 天。 5. 学习费用:学习资源免费开源。 此外,作者在第九阶段的感受是,想明白从让个人更优秀角度前进就有很多灵感,其学习路径为迈出第一步→大量的学习输入→疯狂的模仿→开始自己创造→学的越来越宽越来越杂→积累的量变产生质变→开始分享。在第二阶段,作者因自身工作选择了 AI agent 领域的 coze 进行学习,认为可根据自身熟悉领域选择学习方向,coze 适用所有人,无需代码基础和图文审美,只要能发现智能体需求,就可用工作流实现。
2025-01-02
coze 如何 100% 调用工作流或插件
要 100% 调用 Coze 的工作流或插件,您可以参考以下内容: 实现工作流方面: 上传输入图片。 理解图片信息,提取图片中的文本内容信息。 进行场景提示词优化/图像风格化处理。 返回文本/图像结果。 搭建流程时,主要步骤包括上传图片(将本地图片转换为在线 OSS 存储的 URL,以便在平台中进行调用),以及将图片理解大模型和图片 OCR 封装为工作流插件(若市场中有可直接使用)。 Coze 简介: 插件:Coze 提供丰富的插件选项,允许通过 API 连接集成各种平台和服务,扩展 Bot 功能,可轻松调用或创建定制插件。 工作流:是强大的工具,用于设计和实施复杂的功能逻辑,通过拖拽不同任务节点构建多步骤任务,提高 Bot 处理任务效率。 图像流:提供可视化操作界面,允许灵活添加处理节点,设计图像处理流程。 触发器:允许 Bot 在设定的特定时间或发生特定事件时自动执行任务,是自动化处理的关键组件。 知识库:使您能够添加和利用本地或在线的文本内容和数据表,支持 Bot 提供更准确和实用的回答。 变量:帮助 Bot 存储用户的个人信息,如语言偏好,使回复更加个性化和精准。 数据库:提供简单高效的方式管理和操作结构化数据,支持自然语言的数据插入和查询,还支持多用户模式,提供灵活读写权限控制。 长期记忆:使 Bot 能够形成对用户的个人记忆,基于这些记忆提供个性化回复,提升用户体验。 卡片:允许自定义 Bot 生成内容的格式,以卡片形式展示,增强交互体验。 大模型:通过人设与回复逻辑中的一系列设定,编排 Bot 的具体执行任务和执行逻辑。 此外,判断任务/Prompt 是否需要拆解为工作流时,通常先从当前性能最强的 LLM 着手,用单条 Prompt 或 Prompt Chain 测试任务执行质量和稳定性,再根据实际情况逐步拆解子任务。对于场景多样、结构复杂、对输出格式要求严格的内容,基本可预见需要拆解为工作流。鉴于 LLM 只能处理文本输入输出的特性,涉及生成多媒体内容或从网络自主获取额外信息等能力时,必然需要通过工作流来调用相应的插件。
2024-12-28
撰写一篇汽车领域人工智能自动驾驶应用系统方案,参照以下要求:(1) 选题应为课程相关的技术或者原理的应用。 (2) 重点撰写第2部分技术与服务,必须要使用到课程中所学到或者相关技术。 (3) 第6部分财务分析可根据情况适当缩减。 (4) 整体架构可以根据选题进行调整,可适当增加章节或者删减。 (5) 字体大小、标题等必须和模板相同。篇幅20页以上,不少于10000字,小四,宋体。 以下为一篇样稿,可参考其框架撰写 城市智能停车服务系统建设方案 目 录 1 项目背景 1 1.1 项目背景
以下是为您撰写的汽车领域人工智能自动驾驶应用系统方案的部分内容,您可以根据实际需求进行进一步的完善和补充: 一、项目背景 人工智能在汽车行业的应用已经十分广泛,正在深刻改变汽车的各个方面。自动驾驶技术利用 AI 进行图像识别、传感器数据分析和决策制定,使汽车能够自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在积极开发和测试自动驾驶汽车。车辆安全系统中,AI 用于增强自动紧急制动、车道保持辅助和盲点检测等功能,通过分析摄像头和传感器数据预防事故。个性化用户体验方面,AI 可根据驾驶员偏好调整车辆设置,包括座椅位置、音乐选择和导航系统。预测性维护通过分析车辆实时数据,预测潜在故障和维护需求,提高车辆可靠性和效率。在汽车制造中,AI 用于自动化生产线,优化生产流程和质量控制。汽车销售和市场分析中,AI 帮助分析市场趋势、消费者行为和销售数据,优化营销策略和产品定价。电动化和能源管理方面,AI 在电动汽车的电池管理和充电策略中发挥作用,提高能源效率和延长电池寿命。共享出行服务借助 AI 优化路线规划、车辆调度和定价策略,提升服务效率和用户满意度。语音助手和车载娱乐由 AI 驱动,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。车辆远程监控和诊断利用 AI 系统远程监控车辆状态,提供实时诊断和支持。 二、技术与服务 1. 自动驾驶技术 传感器融合:采用多种传感器,如激光雷达、摄像头、毫米波雷达等,收集车辆周围环境信息。利用 AI 算法对这些多源数据进行融合和分析,提高环境感知的准确性和可靠性。 深度学习决策:基于深度神经网络,训练车辆的决策模型。通过大量的真实驾驶数据,让模型学习如何在各种复杂场景下做出最优的驾驶决策,如加速、减速、转向等。 模拟训练:利用虚拟仿真环境进行大规模的自动驾驶训练。在模拟环境中,可以快速生成各种复杂和罕见的交通场景,加速模型的训练和优化。 2. 车辆安全系统 实时监测与预警:利用 AI 实时分析来自车辆传感器的数据,如车速、加速度、转向角度等,以及外部环境信息,如道路状况、天气条件等。当检测到潜在的危险情况时,及时向驾驶员发出预警。 自动紧急制动:基于 AI 的图像识别和距离检测技术,当判断车辆即将与前方障碍物发生碰撞且驾驶员未采取制动措施时,自动启动紧急制动系统,降低事故风险。 3. 个性化用户体验 偏好学习:通过收集驾驶员的日常操作数据,如座椅调整习惯、音乐播放喜好、常用导航路线等,利用机器学习算法分析和学习驾驶员的偏好模式。 智能推荐:根据学习到的偏好,为驾驶员提供个性化的推荐,如座椅自动调整、音乐推荐、导航路线规划等。 4. 预测性维护 数据采集与分析:安装各类传感器收集车辆的运行数据,如发动机转速、油温、轮胎压力等。利用 AI 算法对这些数据进行分析,挖掘潜在的故障模式和趋势。 故障预测模型:建立基于机器学习的故障预测模型,提前预测可能出现的故障,并及时通知驾驶员和维修人员,安排预防性维护。 5. 生产自动化 质量检测:利用机器视觉技术和 AI 算法,对生产线上的汽车零部件进行自动检测,识别缺陷和瑕疵,提高产品质量。 生产流程优化:通过分析生产数据,如设备运行状态、生产节拍等,利用 AI 优化生产流程,提高生产效率,降低生产成本。 三、财务分析(可根据情况适当缩减) 1. 初始投资 技术研发费用:包括自动驾驶算法开发、硬件设备采购、测试场地建设等方面的费用。 车辆改装和设备安装成本:为实现自动驾驶功能,对车辆进行改装和安装相关传感器、计算设备等的成本。 2. 运营成本 数据采集和处理费用:持续收集车辆运行数据和环境数据,并进行处理和分析的费用。 维护和升级成本:对自动驾驶系统进行定期维护、软件升级和硬件更换的费用。 3. 收益来源 车辆销售增值:配备自动驾驶和智能功能的汽车可以提高售价,增加销售收入。 服务订阅费用:为用户提供个性化服务、远程监控和诊断等服务的订阅收费。 4. 盈利预测 根据市场需求、成本控制和收益增长情况,进行短期和长期的盈利预测。 以上内容仅供参考,您可以根据具体的项目需求和实际情况进一步完善和细化各个部分。
2024-12-27
如何利用ai日赚100元
以下是一些利用 AI 日赚 100 元的方式和相关信息: 1. 开发基于通义千问的 AI 助理模型,例如高一的“小朱婷”开发的“航天小飞侠”,通过设计抽奖环节等方式吸引用户,从而获得收益。 2. 利用 AI 进行调酒,如在 AI 玩聚摊位,根据用户的 MBTI 和星座生成专属的鸡尾酒配方,并现场调制售卖。 3. 利用以下 2023 年的 AI 工具进行创作或相关服务以获取收益: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow、Midjourney 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 设计:Canva、Clipdrop、Designify、Microsoft Designer 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。 市场营销。
2024-12-24
飞书文档如何作为知识库输入到coze平台
要将飞书文档作为知识库输入到 Coze 平台,主要有以下步骤: 1. 在线知识库: 点击创建知识库,创建一个画小二课程的 FAQ 知识库。 选择飞书文档,选择自定义的自定义,输入。 飞书的文档内容会以区分开来,可以点击编辑修改和删除。 点击添加 Bot,添加好可以在调试区测试效果。 2. 本地文档: 注意如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面。 画小二这个课程 80 节课程,分为了 11 个章节,不能一股脑全部放进去训练。 正确的方法是首先将 11 章的大的章节名称内容放进来,章节内详细内容按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用: 点击发布,确保在 Bot 商店中能够搜到。 此外,创建知识库并上传文本内容有以下方式: 1. 在线数据: 自动采集方式:适用于内容量大,需要批量快速导入的场景。 在文本格式页签下,选择在线数据,然后单击下一步。 单击自动采集。 单击新增 URL。在弹出的页面完成输入要上传的网站地址、选择是否需要定期同步网站内容及周期等操作。 当上传完成后单击下一步,系统会自动根据网站的内容进行内容分片。 手动采集方式:适用于需要精准采集网页上指定内容的场景。 安装扩展程序,详情请参考。 在文本格式页签下,选择在线数据,然后单击下一步。 点击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 Coze 的知识库功能不仅支持上传和存储外部知识内容,还提供了多样化的检索能力,主要包括两大核心能力:一是能够存储和管理外部数据;二是增强检索能力。Coze 支持从多种数据源,如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。上传后,系统会自动将知识内容切分成多个片段进行存储,并允许用户自定义内容分片规则。Coze 还提供了多种检索方式来对存储的内容片段进行高效检索,例如全文检索可以通过关键词快速找到相关的内容片段并召回。基于这些召回的内容片段,大模型将生成最终的回复内容。Coze 支持上传文本内容及结构化表格数据,以适应各种使用场景。
2025-02-04
coze的主要应用
Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,主要应用包括: 1. 简化 AI 机器人的开发过程,使开发者和非技术用户都能快速搭建基于 AI 模型的各类问答 Bot,处理从简单问答到复杂逻辑对话的任务。 2. 支持多语言模型,如 GPT48K 和 GPT4128K,并提供云雀语言模型等,以支持不同场景下的对话和交互。 3. 集成超过 60 款插件,涵盖资讯阅读、旅游出行、效率办公、图片理解等功能,同时支持用户创建自定义插件,扩展 Bot 的能力。 4. 允许用户上传和管理数据,支持 Bot 与用户数据交互,可上传多种格式的文档,或基于 URL 获取在线内容和 API JSON 数据。 5. 提供数据库功能,允许 Bot 访问会话内存和上下文,持久记住用户对话中的重要参数或内容。 6. 用户可以通过拖拉拽的方式快速搭建工作流,处理逻辑复杂的任务流,提供大量灵活可组合的节点。 7. 支持多代理模式,在一个机器人中运行多个任务,允许添加多个代理,每个代理都能独立执行特定任务。 8. 对用户完全免费。 9. 易于发布和分享,用户可将搭建的 Bot 发布到各类社交平台和通讯软件上。 此外,Coze 在移动端的排名表现出色,如在 TikTok 母公司字节跳动的相关产品中,Coze 首次出现在榜单上,排名第 45 位。
2025-02-04
coze工作流搭建
以下是在 Coze 上搭建工作流的步骤: 1. 进入 Coze ,点击「个人空间 工作流 创建工作流」,打开创建工作流的弹窗。 2. 根据弹窗要求,自定义工作流信息,点击确认完成工作流的新建。 3. 新建完成后,可以看到整个编辑视图与功能。在左侧「选择节点」模块中,根据子任务需要,实际用到的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。例如本案例中涉及的思维导图、英文音频,因无法通过 LLM 生成,需依赖插件实现。 大模型:调用 LLM ,实现各项文本内容的生成。如本案例中的中文翻译、英文大纲、单词注释等都依赖大模型节点。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 4. 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 5. 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 此外,在“用 Coze 搭建一个神奇宠物诞生器”的工作流中,“定制召唤”工作流是“随机召唤”工作流的变种。对于“定制召唤”工作流,需要修改的节点包括: 开始节点:新增一个输入变量,定义为 keywords ,用于接收用户输入的宠物种类(动物或者植物)。 代码节点:要将特定的宠物种类关键词嵌入到描述 prompt 里。例如,如果召唤师输入“熊猫”,R 属性的宠物描述就要修改为“一个朴素小熊猫宠物,可爱,圆滚滚的,大眼睛,毛茸茸的。画风参考著名动画片《神奇宝贝》”,SR 和 SSR 依次类推。描述 prompt 变成三段字符串相加的情况,即原描述第一段+宠物种类+原描述第二段。其余节点均与“随机召唤工作流一致”。
2025-02-03
coze平台有没有DeepSeek的mml可以调用
在 Coze 平台上,DeepSeek 是可以调用的。以下是相关的具体信息: 效果对比:用 Coze 做了个小测试,大家可以对比看看,相关视频 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对您来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 这个项目是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。
2025-02-03
COZE相关内容
以下是关于 Coze 的相关内容: 扣子案例合集:包括智能对话科学防癌 AI 赋能肿瘤防治行动、打造私人播客助手、开发 AI chatbot 短视频爆款案例初探、制作 MidJourney 提示词专家、创建 AI 绘画助手、搓一个乞丐版的秘塔搜索、搞一个简单的安全 AI 助手、手搓英语陪练教师、为开源 AI 社区搞社群运营机器人等案例。 通俗易懂的 Coze 数据库文章:作者大圣致力于使用 AI 技术将自己打造为超级个体的程序员。本文是关于数据库概念的细化,旨在从非编程人士角度讲清数据库概念和基本使用,不会陷入传统教学讲 SQL 语法,而是通过和 Excel 对比让读者了解本质概念,从而更好利用 ChatGPT 等工具。另外作者还预告了关于 AI 时代应具备的编程基础系列大纲。 大圣的胎教级教程:Coze 是新一代一站式 AI Bot 开发平台,无论有无编程基础都可快速搭建各类问答 Bot。字节针对 Coze 部署了国内版和海外版两个站点,国内版使用字节自研的云雀大模型,国内网络可正常访问;海外版使用 GPT4、GPT3.5 等大模型,访问需突破网络限制。Bot 的开发和调试页面布局主要分为提示词和人设区块、Bot 的技能组件、插件、工作流、Bot 的记忆组件(包括知识库、变量、数据库、长记忆、文件盒子)、一些先进的配置(如触发器、开场白、自动建议、声音)等,后续会逐一讲解每个组件的能力及使用方式。
2025-02-02
Dify如何调用飞书智能表格
Dify 调用飞书智能表格的方法如下: 1. 部署完成后,可以通过以下方式使用飞书·稍后读助手: 得益于飞书 app 的多平台支持,在电脑、手机端通过飞书机器人与稍后读助手进行对话。 直接在 Coze 商店中与 bot 进行对话。 如果还选择了部署到微信服务号、订阅号,也可以通过这些渠道调用 bot。 2. 设置稍后读存储地址: 首次使用,按以下步骤操作: 访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 另外,还可以发送“查询存储位置”、“修改存储位置”,来更换飞书多维表格链接,调整稍后读存储位置。 3. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接。如果是第一次使用,会要求授权共享数据。授权通过后,再次输入需要收藏的页面链接,即可完成收藏。 目前部分页面链接可能会小概率保存失败,暂未定位原因。 4. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 此外,关于 Dify 在微信上的调用,可参考以下信息: GitHub: https://github.com/zhayujie/chatgptonwechat Gitee: https://gitee.com/zhayujie/chatgptonwechat 这里先暂时不过多介绍 Dify,它跟 AutoGPT、MetaGPT、FastGPT 等都是可以自己构建 Agent、工作流的 LLM 应用开发平台。AM 就是搭建在 Dify 上面的。 说回 LlamaEdge,可以自建一个 API 扩展来实现调用上面的 FLUX.1 API Server(套娃)。 API 扩展说明,可以查看:https://docs.dify.ai/zhhans/guides/extension/apibasedextension,但貌似 0.8.3 的版本不再使用了(dify 里面有不少功能更新缺陷或版本冲突,所以使用时需要自行修改或提交 PR)。 也可以引入项目,在 bot/dify/新建一个 dify_image.py 的程序,将画图程序的调用过程写到 dify bot 中,如用 query“画”开头接提示来触发调用。dify_image.py 后续会更新到代码仓库中。 图片服务器,很简单,分别写一个 Flask app 程序和一个 html: app.py template/index.html 以上代码都可以由 Phind、Copilot、Cursor、Zed + ollama + 一个代码大模型代劳,但架构感觉整复杂了不够优雅,后面整理好打包一个解决方案再提交一个 repo。
2025-01-24
以豆包为例,如何通过API调用豆包大模型?
要通过 API 调用豆包大模型,以下是一些相关步骤和信息: 1. 直接调用大模型(之前完成过 coze 对接的同学,直接去二、百炼应用的调用): 百炼首页:https://bailian.console.aliyun.com/ 以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。 获取 key 的视频教程: 获取 key 的图文教程:以下是参考配置。 注意:需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 2. 创建大模型问答应用: 首先可以通过创建一个百炼应用,来获取大模型的推理 API 服务,用于实现 AI 助手。 创建应用: 进入百炼控制台的,在页面右侧点击新增应用。在对话框,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以选择输入一些 Prompt,比如设置一些人设以引导大模型更好的应对客户咨询。 在页面右侧可以提问验证模型效果。不过您会发现,目前它还无法准确回答你们公司的商品信息。点击右上角的发布,我们将在后面的步骤中去解决这一问题。 获取调用 API 所需的凭证: 在我的应用>应用列表中可以查看所有百炼应用 ID。保存应用 ID 到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY。保存 APIKEY 到本地用于后续配置。 3. 配置 FastGpt、OneAPI: 首先配置 OneAPI,还记得刚刚让您白嫖的大模型 API 吗?阿里的接口,这时要派上用场了,去阿里模型的链接里创建 ApiKey,并复制下来。然后在 OneAPI 的页面,点击【渠道】添加新渠道。添加时,类型选择阿里通义千问,名称自己取个,类型选择好后模型是会默认加进去,您不用删减,还有就把刚刚阿里那复制的 ApiKey 粘贴到秘钥里去。这样就 OK 了。后续有其他的大模型也是一样的添加方式。
2025-01-23
怎么调用qwen?
要调用 qwen ,有以下几种情况和步骤: 1. 调用百炼“应用”: 创建一个百炼应用,假设命名为“苏苏”。 在/root/chatgptonwechat/文件夹下,打开config.json文件。 更改"model":"qwen",并添加"qwen_access_key_id"、"qwen_access_key_secret"、"qwen_agent_key"、"qwen_app_id"四项配置。 配置项获取可参考视频教程: 图文教程及参考配置也有提供。 注意:需要“实名认证”后,这些key才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 2. 直接调用大模型: 百炼首页:https://bailian.console.aliyun.com/ 在/root/chatgptonwechat/文件夹下,打开config.json文件。 以调用“qwenmax”模型为例,需要更改"model",和添加"dashscope_api_key"。 获取 key 可参考视频教程: 图文教程及参考配置也有提供。 注意:需要“实名认证”后,这些key才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 3. 创建知识库应用并调用: 地址输入浏览器:http://这里替换为您宝塔左上角的那一串:3000/ 进入后,点击应用并创建,选择 qwen 模型。 创建知识库。点击知识库 选择 qwen Embedding 1 点击确认创建。 上传文件,等待处理,最后文本状态是“已就绪”。 回到刚刚创建的应用,关联上创建的知识库。 点击两个发布。之前第一个叫做保存。 点击新建,创建 key。创建后保存同时将 API 根地址最后加上/v1 也保存下来。 回到宝塔,打开【终端】 依次粘贴并回车:cd/root git clone https://github.com/zhayujie/chatgptonwechat cd chatgptonwechat/ pip install r requirements.txt pip install r requirementsoptional.txt 等待执行完成。 到“文件”菜单中去执行,点击文件 找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。
2025-01-20
国内有哪些开源ai可以调用?
国内有以下一些开源 AI 可供调用: MiniMax 推出的 Hailuo Audio HD 此外,还有一些应用于不同领域的 AI 技术和产品,如: 在游戏领域,有根据玩家需求推荐游戏道具的 AI 游戏道具推荐系统。 在天气领域,彩云天气的分时预报利用了 AI 提供精准的分时天气预报。 在医疗领域,医渡云的病历分析系统利用 AI 分析医疗病历,辅助诊断。 在会议领域,讯飞听见的会议总结功能利用 AI 自动总结会议发言内容。 在书法领域,书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2025-01-20