Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

优秀的来源大模型有哪些

Answer

以下是一些优秀的大模型:

  • Google 的 T5:属于 encoder-decoder 类型的模型,适用于翻译和摘要等任务。
  • OpenAI 的 GPT-3:预训练数据量大,参数众多,能根据用户输入的任务描述或示例完成任务。
  • ChatGPT:用户通过像和人类对话的方式即可完成任务。
  • 国内的优秀大模型有:
    • 智谱清言(清华&智谱 AI):基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三,更擅长专业能力,但代码能力有优化空间,知识百科稍显不足。可应用于 AI 智能体、较复杂推理、广告文案、文学写作等场景。
    • 通义千问 2.0(阿里云):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡。聚焦在移动设备端的应用,涵盖知识、记忆、工具、创作等方向,支持多种工具和文生文、文生图等场景。
    • Baichuan2-13B-Chat(百川智能):百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
Content generated by AI large model, please carefully verify (powered by aily)

References

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

2023年度中文大模型基准测评报告.pdf

智谱清言是智谱AI和清华大学推出的大模型产品,基础模型为ChatGLM大模型。2023年10月27日,智谱AI于2023中国计算机大会(CNCC)上,推出了全自研的第三代基座大模型ChatGLM3及相关系列产品。[heading4]模型特点:[content]智谱清言在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。总体来看,智谱清言更擅长专业能力,但在代码能力上还有一定优化空间。除此之外,知识百科与其他第一梯队模型相比稍显不足。综合来看,智谱清言是一个很有竞争力的大模型。适合应用:智谱清言可应用的场景相对广泛,根据SuperCLUE测评结果,优先推进在AI智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。另外在较复杂推理应用上的效果会比较不错。广告文案、文学写作方面也是一个很好的选择。

2023年度中文大模型基准测评报告.pdf

AndesGPT在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三。在专业技能和语言任务上均有不俗表现,综合来看,AndesGPT是一个各项能力较为均衡的大模型,在国内大模型厂商中比较有竞争力。适合应用:AndesGPT聚焦在移动设备端的应用。主要涵盖四个方向:知识、记忆、工具、创作。目前AndesGPT已支持使用“系统设置、一方应用、三方服务、代码解释器”等各类工具。并且AndesGPT已全面支持文生文、文生图等场景,可以为用户提供真实有用的技能。优秀模型:Baichuan2-13B-Chat(百川智能)[heading4]简介:[content]Baichuan2-13B-Chat是百川智能自主训练的开源大语言模型。百川智能于6月15日开源Baichuan1、9月6日开源Baichuan2,10月31日发布Baichuan2192K。是中文开源模型的主导力量。

Others are asking
阅读大量特定网页并提取信息的大模型推荐
以下为您推荐几款能够阅读大量特定网页并提取信息的大模型: 1. 一款 AI 浏览器插件: 其 idea 来自早先挖的坑,在词生卡刚火时,想进一步发挥大模型对话产品的能力,做一个真正的提示词智能体。 目标是输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。 为达到这一效果,大模型对话产品需完成关键步骤:自行访问链接并解析网页内容、根据提示词要求提炼标题等信息、利用 qrcode.js 库生成二维码图片、基于特定模板设计要求生成卡片样式。 编写的「网页分享卡片生成」词生卡 Prompt 有新的组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”等独立模块,并结合“内容结构”进行要求提示。这种方式具有模型通用性、提示简易性和生成稳定性的优势。 2. 本地部署资讯问答机器人: 导入依赖库,包括 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型。 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,使用文本向量模型 bgem3,其具有支持多语言等特点。从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。 3. 伊登: 工作流程包括内容获取,只需输入新闻链接,系统就能自动提取核心内容。 开始节点输入新闻链接和视频合成插件 api_key,添加网页图片链接提取插件获取图片,使用链接读取节点提取文字内容,利用大模型节点重写新闻成为口播稿子,可使用 DeepseekR1 模型生成有吸引力的口播内容。
2025-03-18
我想在飞书云中用DeepSeek-R1模型提取链接中的信息,请问如何写指令呢?我刚刚进行了尝试,发现提取出的信息和我点开链接看到的信息不一致,这个问题又该如何解决呢?
在飞书云中使用 DeepSeekR1 模型提取链接中的信息并解决提取信息不一致的问题,您可以参考以下内容: 对于指令编写: 虽然 R1 推理能力较强,但您想表达的不一定完全与模型吻合,因此建议多加清晰指令。 模糊指令优化方面,比如对于宽泛需求可添加维度约束,如原句“写小说”可修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;对于主观表述可量化标准,如原句“写得专业些”可修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法包括首轮生成获取基础内容、特征强化(如加强第三段的技术细节描述)、风格调整(如改用学术会议报告语气,添加结论部分)、最终校验(检查时间逻辑一致性,列出可能的事实性错误)。 对于提取信息不一致的问题: 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 格式偏离:使用严格遵循以下模板:第一行...第二行... 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 另外,关于获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 1. 注册并登录火山引擎,点击立即体验进入控制台。 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若有提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通(免费)。 5. 确认无误后,点击“确认接入”按钮。 6. 自动返回创建页面,复制多出的接入点名为“DeepSeekR1”的推理点 ID 并保存。 7. 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 直接查看并复制,没有则点击【创建 API key】。 9. 复制并保存好 API key。 在实现新闻播报自动化工作流方面: 第一步是内容获取,输入新闻链接,系统自动提取核心内容。开始节点的入参包括新闻链接和视频合成插件 api_key。添加网页图片链接提取插件,获取网页里的图片。接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。然后使用链接读取节点,将文字内容提取出来。在提取链接后面接上一个大模型节点,用 DeepSeekR1 模型生成有吸引力的口播内容。若想加上自己的特征,可在提示词里写“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。
2025-03-18
多模态达模型排行
以下是一些常见的多模态模型排行及相关信息: 1. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能基础上具备 GUI 图像的 Agent 能力。代码链接:。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 2. Gemini 模型:Gemini Ultra 在表 7 中的各种图像理解基准测试中都是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中表现出强大的性能。在 zeroshot 评估中表现更好,超过了几个专门在基准训练集上进行微调的现有模型,适用于大多数任务。在 MMMU 基准测试中取得了最好的分数,比最先进的结果提高了 5 个百分点以上,并在 6 个学科中的 5 个学科中超过了以前的最佳结果。 3. 多模态思维链提示方法:Zhang 等人(2023)提出了一种多模态思维链提示方法,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-03-18
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
一句话阐述推理类模型的原理
推理类模型的原理主要包括以下方面: OpenAI 的推理模型通过强化学习进行训练,以执行复杂推理。此类模型在回答前会思考,能产生长链的思维过程。通过训练,它们学会优化思考过程、尝试不同策略并识别错误,从而遵循特定指南和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 例如 OpenAI o1 这样的推理模型基于链式思维,逐步推理问题的每个步骤来得到答案。 还有一些概率预测的快速反应模型,通过大量数据训练来快速预测可能的答案。
2025-03-18
用哪个大模型,在PDF和图片识别上精度高
在 PDF 和图片识别方面,对于图片,ChatGPT 依靠视觉模型解析,复杂图片建议使用最新模型(如 GPT4.5)。对于 PDF,ChatGPT 仅能识别文本,无法读取图表、图片,复杂布局可能导致误读。一些初步实验表明,一些开源的 PDF 解析方法可能无法达到高质量要求,而当辅以可以有效提取文档中的结构化信息并将其整合为提示词(Prompt)的 PDF 解析器时,大语言模型能够作出更准确的响应。
2025-03-18
如何构建一个优秀的ai的知识库
构建一个优秀的 AI 知识库可以参考以下步骤和要点: 1. 明确概念和原理:了解 AI 时代知识库的概念、实现原理以及能力边界。 2. 掌握获取资料的原理:比如在通往 AGI 之路大群中通过对话获取知识库中资料的原理。 3. 利用相关平台组件:更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更强大的智能体。 4. 规划内容: 数据库:让 Coze 拥有记忆的组件 1。 知识库:让 Coze 拥有记忆的组件 2。 变量:让 Coze 拥有记忆的组件 3。 JSON:让您更好地使用 Coze 插件。 API:外部应用程序接入 Coze 的方式。 操作系统与服务器:那些接入了 Coze 的微机器人的运行位置。 Docker:以最简单的方式部署微信机器人。 5. 确定功能范围:编写 prompt 提示词,设定 Bot 的身份和目标。 6. 整理对应关系:创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 支持的文档类型:本地文档、在线数据、飞书文档、Notion 等,可使用本地文档。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行操作。 同时,“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里,您既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。
2025-03-12
国内优秀Agent应用案例
以下是一些国内优秀的 Agent 应用案例: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 3. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 4. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色,提供更深入的环境感知和记忆功能。
2025-01-19
国内优秀智能体案例
以下是一些国内优秀智能体案例: 在车辆使用指南维度,多个大模型表现优异,达到 80 分以上,在操作指南、车辆故障诊断、维修保养等任务上具备较高交互成熟度。 在汽车场景中,部分 13 14B 中小模型超过云端闭源模型,展现出端侧模型满足用户需求的良好能力和巨大潜力。 在社交方向,有用户注册后先创建自己的智能体,让其与他人的智能体聊天,然后真人介入的有趣场景。 字节推出的“扣子”是用于开发下一代 AI 聊天机器人的构建平台。 国内存在如 Dify.AI 等智能体开发平台。
2025-01-19
有哪些优秀的AI copilot?
以下是一些优秀的 AI copilot: 1. 对于编程辅助方面: GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 通义灵码:阿里巴巴团队推出,提供多种编程相关能力。 CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,实时提供代码建议。 CodeGeeX:智谱 AI 推出的开源免费编程助手,基于 130 亿参数的预训练大模型。 Cody:Sourcegraph 推出的代码编写助手,借助强大的代码语义索引和分析能力了解开发者的整个代码库。 CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手。 Codeium:由 AI 驱动的编程助手工具,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具功能和适用场景不同,可根据需求选择。 2. 在 Agent 构建平台方面: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作等,并能部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识等,并能访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景表现出色。 3. 此外,还有一些新的 AI 产品和网站,如: SciSpace Copilot:由印度论文服务平台 SciSpace 开发,用于解释科学文献中的文本、数字和表格,输出内容更精确。链接:https://typeset.io/ AIPRM for ChatGPT:SEO Prompt 模板插件,支持 ChatGPT 和 Midjourney 等。链接:https://www.aiprm.com/ Teamsmart:有趣的文档助手,根据不同职业/技能提供不同能力点的机器人。链接:https://www.teamsmart.ai/ Boring Report:应对标题党的神器,去除文章夸张表述,保留客观事实。
2025-01-18
如何向chatgpt写一个优秀的关于论文修改的提示词
以下是一些关于向 ChatGPT 写优秀的论文修改提示词的建议: 1. 利用 ChatGPT 的对抗性演练生成提示词: 对指定文章进行改写。 对改写后的版本进行原创性检验。 根据检验结果,指导 ChatGPT 进一步优化。 重复上述过程,直至满足高度原创的标准。 采用逆向工程的方法,梳理 ChatGPT 的改写策略。 整合这些策略,形成一套提高文章原创性的高效提示词。 2. 对于文章修改的具体步骤: 先使用 ChatGPT 对一段文字进行改写。 对改写后的文字进行原创性检测。 把原创度检测工具的结果告诉负责二创的 ChatGPT 角色,让其继续改写。 不断重复上述步骤,让 ChatGPT 多次对文章进行二创。 让 ChatGPT 自己总结提示词。 整理 ChatGPT 返回结果,形成文字二次创作的通用提示词。 3. 对于 ChatGPT 给 DALL·E 3 优化提示词的元提示,需要注意: 不改变表情包、虚构角色的起源或未见过的人物,保持原始提示词的意图,优先考虑质量。 不创建任何具有冒犯性的图像。 对于传统上存在偏见的场景,确保指定关键特征,如性别和种族,且方式无偏见。 对于包含特定人物或名人的名字、暗示或参考的描述,进行谨慎的修改,用通用描述替代,不泄露其身份信息,除非是性别和体格。 对于提到的创意专业人士或工作室,用对其风格的描述替代名称,或在未知时删除该参考。 提示词必须详细、客观地描述图像的每个部分。思考描述的最终目标,并推断出能生成满意图像的内容。
2024-12-19
这样创造一个优秀的智能体
要创造一个优秀的智能体,可以考虑以下几个方面: 1. 前置概念: 省略:在人类日常交流中常有省略现象,因给定情境下有些信息可理解或已被暗示,无需明言。 不严格逻辑能力:人类语言使用受多种因素影响,日常沟通中会用情感驱使表达观点,可能使用不严格逻辑的俚语或造新词。 比喻:日常生活沟通中人们习惯用比喻,能使抽象复杂概念具象易懂,助于交流。 2. 例子: 省略 prompt 方面的例子。 不严格逻辑能力 prompt 方面的例子。 3. xAI 的使命:致力于更好地理解深度学习技术,创建能帮助理解宇宙的聪明智能体,解决重要问题是 AGI 的关键门槛,追求科学是工作基础。 4. 软件开发与智能体:当软件开发部分变得更快、更容易、更便宜时,大型语言模型可表现为智能体,能制定计划和决策,使用工具和逻辑链接的架构可完成复杂任务,已部署到帮助专业开发人员的工具中,但存在怀疑和争议。
2024-12-12
AI应用赛道中top应用介绍,实现的功能和应用场景,产品Launch时间:AIGC功能 Launch时间、当前月活用户数、营收利润、一年成本投入、市场占有率、目前融资金额及估值、创始团队介绍、公司员工规模、所属国家、用户来源、用户来自于哪些国家、用户profile、转化率、ROI等等, 盈利模式,优劣势与未来发展趋势。
以下是关于 AI 应用赛道的相关介绍: 应用场景:涵盖医疗、制造业、金融风控、消费端个性化服务、办公、农业、能源优化、娱乐等领域。 关键技术: 1. 包括大语言模型作为中枢神经系统,记忆模块实现长期和短期记忆,以及规划能力中的目标设定、任务拆解、生成策略、执行与反馈、资源管理和多智能体协同。 2. 强化学习用于环境感知和决策调整,多模态融合涉及多种数据类型,低成本训练是考虑成本的重要因素。 智能体特征:包括自主性、交互性和适应性,如通过自我对弈和博弈不断进化,在金融风控领域利用大量数据提升准确率。 AI 技术路线:从有语言能力的 AI 到有推理能力,再到能使用工具、发明创新以及形成组织,共五级。 智能体框架类型:分为任务驱动型、多智能体协作、强化学习型、具身智能体、应用型智能体,每种类型都有代表性框架。 智能体与大模型的关系:大模型是中枢和基石,智能体是行动引擎,两者协同演进,智能体产生的数据可反哺大模型。 未来趋势:智能体可能在中小企业中更具效益,人机协作中人类成为监督角色,但存在算力成本、伦理风险、技术瓶颈等挑战。 B 端变现与创业方向: 1. B 端变现细分包括高频率和大规模的内容生产细分,如文字、视频、3D 模型、AI 智能体等,底层是需求和数据收集及训练模型,算力和能源是关键。 2. 自媒体创业:视频号等平台尚有蓝海空间,需具备内容创新和差异化,内容成本低且更新迭代快。 3. 游戏创业:个人或团队可做轻量化游戏,结合 AI 技术,满足放松和社交需求,专注垂类赛道,避免与大厂竞争。 4. 影视创业:25 年将是拐点,更多内容会采用 AI 技术,如哪吒 2 因前期规划未用 AI 技术。 5. 广告营销创业:重点是 AI 虚拟人,数字插画可走治愈类型,要明确平台用户画像和产品定位,做好次留存和引入私域。 AI 虚拟人的发展与创业机遇: 1. 创业难点:创业对创业者综合能力要求极高,找到志同道合且能力互补的战友是创业前期最难的事。 2. AI 虚拟人发展:从早期以首位为核心的宅文化虚拟偶像,到以 CG 技术和动捕语音合成技术为核心的角色,再到如今以动捕和人工智能技术为核心的服务型虚拟人,其发展历程不断演进。 3. 虚拟人产业链:包括基础层的硬件和软件研发,平台层如商汤、百度等提供工具和系统,应用层涉及影视、传媒、游戏、金融、文旅等内容变现。 4. 未来创业机遇:AI 虚拟人是未来 310 年 Web 3.0 的风口,提前布局未来有潜力的赛道,准备好迎接机遇。 相关案例和产品信息: 1. 10 月 26 日,AI 翻译和口型匹配技术在视频制作中的应用逐渐流行,公司如 Captions、HeyGen 和 Verbalate 通过 AI 生成字幕、配音和口型匹配等功能,帮助用户轻松实现视频翻译本地化。 2. 10 月 25 日,Perplexity 最新估值约为 5 亿美元,较 3 月宣布的 1.5 亿美元估值上涨 300%以上,当前的付费用户数量达到了 1.5 万人,截止本月,Perplexity 的 ARR 达到 300 万美元,最新估值约为 ARR 的 150 倍。 3. 《100 个有意思的 AI 应用》由国盛证券出品,分为基于 LLM 自然语言能力的对话、写作、阅读、分析等应用;多模态技术持续发展,图像、视频、音频、3D 等 AIGC 应用;企业级应用等。
2025-03-14
怎样操作来源模型
以下是关于操作来源模型的相关内容: 对于某些模型,如 Llama3.1 8B Instruct,操作方式如下: 1. 选择自定义提示词(也可选择预定义的话题,即黑色按钮,黑色按钮会有新手使用指引)。然后左边会出现熟悉的 chat 界面。 2. 输入对话内容,等待左右两边的内容生成。若右边的分析未刷新,在相关按钮间切换。 3. Activation Mode 可获得整段的推理判断;Attribution Mode 需选中一个 token,它会分析对应的最大关联内容。 对于 ComfyUI 玩 SDXL 的模型,操作要点包括: 1. 添加噪波:disable,运行后操作:fixed,步数:30,开始降噪步数:20,结束降噪步数:30,返回噪波:disable。 2. 若将 refiner 的模型连上提示词导致第一个 base 模型的链接断开,可通过加入新节点(右键点击【新建节点】【实用工具】【Primitive 元节点】),在文本节点上单击右键选择【转换文本为输入】,将元节点与文本节点相连接,复制出正负提示词节点分别给 base 模型和 refiner 模型,再将 base 模型的一套输出给第一个采样器节点,refiner 模型的一套输出给第二个采样器节点,使两个模型同时起作用。 对于 Tusiart 模型: 1. 首页包括模型、帖子、排行榜,可查看大手子炼成的模型、图片,不同模型有 checkpoint 和 lora 等标签,还有 XL 标签属于 SDXL 新模型,点击可看模型详细信息及返图区。 2. 基础模型(checkpoint)是生图必需的,任何生图操作必须选定,lora 是低阶自适应模型,可有可无,但对细节控制有价值。 3. ControlNet 可控制图片中特定图像,VAE 类似于滤镜可调整生图饱和度,选择 840000 即可。 4. Prompt 提示词是想要 AI 生成的内容,负向提示词 Negative Prompt 是想要 AI 避免产生的内容。
2025-02-21
国内外最好的来源大模型有哪些 对比介绍一下
以下是国内外一些较好的大模型及其对比介绍: 国外大模型: GPT4 Turbo 总分 90.63 分遥遥领先,在各项能力上表现出色。 国内大模型: 文心一言 4.0(API)总分 79.02 分,过去 1 年有长足进步。 通义千问 2.0(阿里云):在代码、上下文对话基础能力上排名国内第一,各项能力较为均衡,位于国内大模型第一梯队,适合应用于金融、医疗、汽车等垂直专业场景及代码生成与纠错等场景。 AndesGPT(OPPO):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。 百川智能的 Baichuan213BChat:是中文开源模型的主导力量,在中文上表现优于国外开源模型。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,但国内外的平均水平差距在缩小。另外,国内开源模型在中文上表现要好于国外开源模型。
2024-12-28
自己的ai来源模型是什么
智谱·AI 的开源模型包括以下部分: 其他模型: WebGLM10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。 WebGLM2B MathGLM2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT4 在相同测试数据上 18.84%的准确率。 MathGLM500M MathGLM100M MathGLM10M MathGLMLarge:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLMlarge 和 GLM10B。此外,还使用 ChatGLM6B 和 ChatGLM26B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型。CogAgent18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。 CogVLM17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。 Visualglm6B:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求选择合适的部署方式。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等作为基础,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-12-27
AI数据来源
以下是关于生成式 AI 不同领域 2024 年 1 3 月的季度数据报告: 文字 社交: 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 3 月个人视频访问量为 71 万。 赛道方面:天花板潜力为 14 亿美金,对标公司无,总体趋势下滑严重,月平均增速为 5.7 万 PV/月,原生产品占比低,多为原有换脸产品升级。 竞争方面:Top1 占比 76%,Top3 占比 92%,马太效应较强,网络效应弱,大厂未入局,大厂占比低,技术门槛中。 Top1 公司(非大厂)为 Deepfakes Web,其最新月 PV 为 54 万。 音频大类: 网址:aiwatch.ai 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 赛道方面:天花板潜力为 200 亿美金,对标公司为 Spotify,总体趋势高速增长,月平均增速为 522 万 PV/月,原生产品占比高。 竞争方面:Top1 占比 33%,Top3 占比 53%,马太效应中,网络效应较高,大厂已入局,大厂占比低,技术门槛高。 Top1 公司(非大厂)为 sunoAI,其 3 月 PV 为 2192 万,单用户 PV 价值为 0.27 美元。 文字 教育: 网址:aiwatch.ai 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 赛道方面:天花板潜力约 30 亿,对标公司为 Chegg,总体趋势快速增长,月平均增速为 1793 万 PV/月,原生产品占比低。 竞争方面:Top1 占比 45%,Top3 占比 76%,马太效应弱,网络效应弱,大厂未入局,大厂占比低,技术门槛中。 Top1 公司(非大厂)为 Quizlet,其估值为 10 亿美元(2020.5),3 月 PV 为 1.3 亿,收入约 7500 万美元(2023),PS 为 13.3x,单用户 PV 价值为 7.5 美元。
2024-12-04
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15