Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

阅读大量特定网页并提取信息的大模型推荐

Answer

以下为您推荐几款能够阅读大量特定网页并提取信息的大模型:

  1. 一款 AI 浏览器插件:
    • 其 idea 来自早先挖的坑,在词生卡刚火时,想进一步发挥大模型对话产品的能力,做一个真正的提示词智能体。
    • 目标是输入任意文章链接后,AI 自动生成适合微信分享的文章推荐卡片。
    • 为达到这一效果,大模型对话产品需完成关键步骤:自行访问链接并解析网页内容、根据提示词要求提炼标题等信息、利用 qrcode.js 库生成二维码图片、基于特定模板设计要求生成卡片样式。
    • 编写的「网页分享卡片生成」词生卡 Prompt 有新的组织方法,把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”等独立模块,并结合“内容结构”进行要求提示。这种方式具有模型通用性、提示简易性和生成稳定性的优势。
  2. 本地部署资讯问答机器人:
    • 导入依赖库,包括 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型。
    • 从订阅源获取内容,通过函数从指定的 RSS 订阅 url 提取内容,将长文本拆分成较小的块并附带相关元数据,最终合并成列表返回。
    • 为文档内容生成向量,使用文本向量模型 bge-m3,其具有支持多语言等特点。从 hf 下载好模型后,通过函数利用 FAISS 创建高效的向量存储。
  3. 伊登:
    • 工作流程包括内容获取,只需输入新闻链接,系统就能自动提取核心内容。
    • 开始节点输入新闻链接和视频合成插件 api_key,添加网页图片链接提取插件获取图片,使用链接读取节点提取文字内容,利用大模型节点重写新闻成为口播稿子,可使用 DeepseekR1 模型生成有吸引力的口播内容。
Content generated by AI large model, please carefully verify (powered by aily)

References

这款 AI 浏览器插件,想让你的网页链接分享更高级

插件的idea其实来自早先挖的一个坑,在词生卡刚火那阵子,就想更进一步的发挥大模型对话产品的能力,做一个真正的提示词智能体。目标是实现输入任意文章链接后,AI自动生成适合微信分享的文章推荐卡片。为了达到这一效果,大模型对话产品需要完成以下关键步骤:1.网页爬取:自行访问链接,解析网页内容2.内容总结:根据提示词要求,提炼标题、摘要、要点等信息3.二维码生成:利用qrcode.js库,将URL转换为二维码图片4.卡片样式生成:基于特定模板设计要求(暂不考虑自适应样式主题),将卡片内容、二维码组合为精美的分享卡片理论上来说,这类词生卡任务正是大模型对话产品的天然“舒适区”。所以直接编写「网页分享卡片生成」词生卡Prompt如下:值得一提的是,通过实践探索,我发现了新的词生卡Prompt组织方法:把设计要求拆分为“设计规范”和“内容结构”,再细分为“布局与尺寸”、“字体规范”、“颜色规范”的独立模块,并结合“内容结构”进行要求提示。这种提示词组织方式有3个显著优势:1.模型通用性:采用纯Markdown格式编写,不依赖特定模型的特性,可以适配不同的大语言模型2.提示简易性:提示词结构清晰易读,便于自然语言编写,降低使用门槛。3.生成稳定性:通过清晰的模块划分和自然语言描述,避免了指令间的相互干扰,提高了AI生成样式代码的准确性和一致性

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

|导入依赖库加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

伊登:最新Deepseek+coze实现新闻播报自动化工作流

只需输入新闻链接,系统就能自动提取核心内容开始节点,入参:1、新闻链接2、视频合成插件api_key添加网页图片链接提取插件,承接开始节点的新闻链接获取网页里的图片,我们这里以1ai.net的资讯为例子,这里的资讯都比较简单,只有一张主图,标题,内容都齐全,所以适合我们来操作当我们输入1ai.net的一则新闻,发现,提取出很多链接有趣的是,第一条链接就是新闻主图,其他内容都是不重要的icon所有我们就要添加图片链接提取节点,如果我们为了节省写代码时间,直接用大模型节点帮我们提取,只拿提取的链接集合的第一条,这样新闻的主要图片就搞定了。图片链接提取提示词接着利用,调整图片的节点,将url属性的图片内容转化为image属性的图片(因为url节点在画板中是string的格式,所以必须转为img格式)现在到了文字部分,使用链接读取节点,将文字内容提取出来在提取链接后面接上一个大模型节点,用来重写新闻成为口播稿子,这里用到最强的DeepseekR1模型,来生成有吸引力的口播内容小tips,如果想要加上自己的特征,可以在提示词里写:”开头加上‘这里是伊登AI’之类的个性化台词防伪“PS:这里的deepseekR1基础版本是限额使用,我们可以在专业版手动接入DeepseekR1手动接入推理模型

Others are asking
你好,我想训练一个自己的专属模型,比如说基于网页里面的问卷调查,我有答题的逻辑,网页的问卷调查项目每天都有非常多的不同的地方,但是又有相通的地方,我想让AI在我的逻辑之上能自我迭代自动答题,我该怎么办
如果您想基于网页问卷调查训练一个能在您的逻辑之上自我迭代自动答题的专属模型,有以下两种常见的技术方案: 1. 训练专有大模型: 优点:效果最好。 缺点:成本高,训练和维护需要大量计算资源和专业知识;更新模型知识难度大,需要重新训练或微调,过程复杂耗时。 2. 利用 RAG(检索增强生成)技术: 例如选择 Baichuan27BChat 模型作为底模,配置模型本地路径和提示模板。在 Train 页面里选择 sft 训练方式,加载定义好的数据集,根据数据集大小和收敛情况设置学习率和训练轮次。使用 FlashAttention2 可减少显存需求、加速训练速度;显存小的朋友可减少 batch size 并开启量化训练,内置的 QLora 训练方式好用。但需要用到 xformers 的依赖。根据聊天记录规模大小,训练时间少则几小时,多则几天。 此外,还有学生训练专属植物分类 AI 模型的案例供您参考。在北京市新英才学校的跨学科选修课“生化 E 家”中,老师和学生共同收集校园内不同树叶的照片,在 OpenInnoLab里找到图像分类训练工具,建立植物分类模型,加入大量数据集进行训练,再用图像化编程将其套在程序里,形成简单的识别工具。在这个过程中,老师通过生活体验与学生讨论图像分类原理,学生从体验到实践操作,在不进行大量代码编程的情况下能够训练 AI 模型,并了解模型训练准确度与数据的关系。
2025-03-14
最好的总结网页内容的AI工具
以下是一些总结网页内容的 AI 工具: 1. Yeadon 开发的基于 Cursor+Coze 工作流的网页内容提取插件: Cursor 是一款具有 AI 功能的革新性代码编辑器。 Coze 工作流是通过可视化方式对多种功能进行组合的工具。 该插件能够实现对网页链接的提取、LLM 对网页内容的总结、LLM 输出三个变量(主角、文章概括、金句提取)、通过图片搜索工具搜主角图片以及进行排版,得到图文总结卡片。 2. Kimi Copilot:安装后,在浏览网络文章时点击插件图标或使用快捷键 Ctrl/Cmd+Shift+K,即可一键召唤 Kimi.ai 总结网页内容,总结详细且免费。 3. Strut:一款支持人工智能的协作工作区,将笔记、文档和写作项目整合在一起。 此外,还有一些相关的产品化开发思路和技术方案: 1. 在产品化开发阶段,需要明确技术方案,封装 API 调用提示词。 2. 稳定获取网页内容可通过用户浏览器以浏览器插件形式本地提取,这是一种稳定、经济的解决方案。
2025-03-14
deepseek 直接抓取网页内容
DeepSeek 直接抓取网页内容的相关工作流程如下: 1. 内容获取:只需输入新闻链接,系统就能自动提取核心内容。开始节点的入参包括新闻链接和视频合成插件 api_key。添加网页图片链接提取插件,以 1ai.net 的资讯为例,输入新闻后会提取出很多链接,其中第一条通常是新闻主图。利用图片链接提取提示词,通过调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。 2. 文字部分:使用链接读取节点将文字内容提取出来,在提取链接后面接上一个大模型节点,如 DeepSeek R1 模型,用来重写新闻成为口播稿子。若想加上自己的特征,可在提示词里写个性化台词。需注意,DeepSeek R1 基础版本限额使用,可在专业版手动接入。 此外,ChatGPT 无法直接抓取网页内容,其限制原因是不会直接抓取 URL 内容,仅依赖内部知识库或通过必应搜索,且必应搜索结果(尤其中文)往往不够准确。解决方法是手动复制网页内容,粘贴为 Markdown 或纯文本后再提交给 ChatGPT,解析效果更佳。 宝玉日报中提到,通过飞书快捷方式+DeepSeek R1 可实现自动翻译、改写、图片 OCR、AI 抓取等,提高工作效率。关键流程为从 URL 抓取内容➝DeepSeek R1 翻译➝自动改写文章风格➝生成高质量文章。还有更多工作流,如文本翻译、图片翻译、AI 生成爆款标题,飞书模板可直接使用。Deep Research 提示词模板有三大核心要素,包括背景信息(XML 包裹)、任务要求(分析主题、检索范围)、输出格式(语言、表格),适用于生成深度报告、信息检索、数据整理等场景。对于处理大规模代码,可粘贴几千行代码并用 XML 包裹,若让 AI 编写代码,可生成代码、搜索相关代码库。ChatGPT 免费用户可用 GPT4o mini 语音版。
2025-03-12
我需要输入文本就可以收获网页的工具
以下是一些输入文本就可以收获网页的工具和相关信息: 对于处理各种格式的文档输入,包括网页,可使用以下方式: 借助网页爬虫工具(如 Scrapy、BeautifulSoup、Selenium)抓取网页中的文本和表格数据。通过解析 HTML 的 DOM 结构,提取目标数据。(平台暂无工具) 对于图片,可以借助 OCR 工具进行文本提取,(开放平台工具:)。 以下是一些 AI 网页原型图生成工具: 即时设计:https://js.design/ 一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 V0.dev:https://v0.dev/ Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 Wix: Wix 是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 Dora:https://www.dora.run/ 使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-10
有没有自动在邮件app或者网页上,自动生成回复内容的 工具
以下是一些与自动在邮件 app 或网页上生成回复内容的工具相关的信息: 1. GPTs 可以与 Zapier 结合实现相关功能。例如,假设您是项目经理,可从长篇工作邮件中提取关键信息和摘要;若您是客服代表或独立开发者,能根据邮件内容自动分类(如投诉、感谢信等)并生成相对合适的回复内容,再发送给对应的发件人。具体操作步骤请移步文档: 2. Apple Intelligence 里面各种智能应用的提示词已被曝光,其中包括帮您回复邮件中问题的 Smart Reply 功能的提示词。但关于此功能的更多详细信息暂未明确。
2025-03-07
如何将一个网页或者网站的内容作为知识库导入?
将网页或网站的内容作为知识库导入主要有以下几种方式及操作步骤: 1. Notion: 在文本格式页签下,选择 Notion,然后单击下一步。 单击授权。首次导入 Notion 数据和页面时,需要进行授权。 在弹出的页面完成登录,并选择要导入的页面。 选择要导入的数据,然后单击下一步。 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。分段标识符:选择符合实际所需的标识符。分段最大长度:设置每个片段内的字符数上限。文本预处理规则:替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址。 单击下一步完成内容上传和分片。 2. 在线数据: 自动采集方式:适用于内容量大,需要批量快速导入的场景。 在文本格式页签下,选择在线数据,然后单击下一步。 单击自动采集。 单击新增 URL。在弹出的页面完成以下操作:输入要上传的网站地址;选择是否需要定期同步网站内容,如果需要选择内容同步周期;单击确认。 当上传完成后单击下一步。系统会自动根据网站的内容进行内容分片。 手动采集:适用于需要精准采集网页上指定内容的场景。 安装扩展程序,详情请参考。 在文本格式页签下,选择在线数据,然后单击下一步。 点击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 3. 本地文档: 在文本格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档。目前支持上传.txt、.pdf、.docx 格式的文件内容。每个文件不得大于 20M。一次最多可上传 10 个文件。 当上传完成后单击下一步。 选择内容分段方式: 自动分段与清洗:系统会对上传的文件数据进行自动分段,并会按照系统默认的预处理规则处理数据。 自定义:手动设置分段规则和预处理规则。分段标识符:选择符合实际所需的标识符。分段最大长度:设置每个片段内的字符数上限。文本预处理规则:替换掉连续的空格、换行符和制表符,删除所有 URL 和电子邮箱地址。 单击下一步完成内容上传和分片。
2025-03-06
我想在飞书云中用DeepSeek-R1模型提取链接中的信息,请问如何写指令呢?我刚刚进行了尝试,发现提取出的信息和我点开链接看到的信息不一致,这个问题又该如何解决呢?
在飞书云中使用 DeepSeekR1 模型提取链接中的信息并解决提取信息不一致的问题,您可以参考以下内容: 对于指令编写: 虽然 R1 推理能力较强,但您想表达的不一定完全与模型吻合,因此建议多加清晰指令。 模糊指令优化方面,比如对于宽泛需求可添加维度约束,如原句“写小说”可修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;对于主观表述可量化标准,如原句“写得专业些”可修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法包括首轮生成获取基础内容、特征强化(如加强第三段的技术细节描述)、风格调整(如改用学术会议报告语气,添加结论部分)、最终校验(检查时间逻辑一致性,列出可能的事实性错误)。 对于提取信息不一致的问题: 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 格式偏离:使用严格遵循以下模板:第一行...第二行... 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 另外,关于获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 1. 注册并登录火山引擎,点击立即体验进入控制台。 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若有提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通(免费)。 5. 确认无误后,点击“确认接入”按钮。 6. 自动返回创建页面,复制多出的接入点名为“DeepSeekR1”的推理点 ID 并保存。 7. 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 直接查看并复制,没有则点击【创建 API key】。 9. 复制并保存好 API key。 在实现新闻播报自动化工作流方面: 第一步是内容获取,输入新闻链接,系统自动提取核心内容。开始节点的入参包括新闻链接和视频合成插件 api_key。添加网页图片链接提取插件,获取网页里的图片。接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。然后使用链接读取节点,将文字内容提取出来。在提取链接后面接上一个大模型节点,用 DeepSeekR1 模型生成有吸引力的口播内容。若想加上自己的特征,可在提示词里写“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。
2025-03-18
怎么搭建扣子智能体提取抖音文案并进行改写用到哪些插件,并给我配置参数与步骤图
以下是搭建扣子智能体提取抖音文案并进行改写所需的插件、配置参数及步骤: 1. 插件搭建: 点击个人空间,选择插件,点击创建插件。 插件名称:使用中文,根据需求起名。 插件描述:说明插件的用途和使用方法。 插件工具创建方式:选择云侧插件基于已有服务创建,填入所使用 API 的 URL。 在新的界面点击创建工具,填写工具的基本信息,如工具名称(只能使用字母、数字和下划线)、工具描述、工具路径(以“/”开始,若使用 path 方式传参,用“{}”包裹变量)、请求方法等,结束后点击保存并继续。 2. 配置输入参数: 点击新增参数,填写所有需要使用的参数,保存并继续。 3. 配置输出参数: 如果一切填写正确,可直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 填入汉字“张”,点击自动解析。 解析成功后显示解析成功,可看到输出参数已填好,然后点击保存并继续。 4. 调试与校验: 测试工具是否能正常运行。 运行后查看输出结果,Request 为输入的传参,Response 为返回值,点击 Response 可看到解析后的参数。 此外,安仔使用 Coze 免费创建 24 小时英语陪练的步骤包括: 1. 打开扣子首页,点击左上角创建 AI Bot 按钮。 2. 在弹窗输入 Bot 相关信息。 3. 设计人设与回复逻辑,根据功能需求设计提示词。 4. 调整模型设置,如改为 20 轮对话记录。 5. 选择使用插件,如英文名言警句、Simple OCR 等。 6. 设置开场白和预置问题。 7. 设置语音,选择亲切的英语音色。
2025-03-18
怎么搭建扣子智能体提取抖音文案并进行改写
以下是关于搭建扣子智能体提取抖音文案并进行改写的相关信息: 1. 团队介绍:野生菌团队(昆明),成员如罗文(组长)具有 10 年营销、5 年电商经验,是 AI 微软认证人工智能开发者和得到校友会昆明会长,负责项目组织、分工跟进、资源协调、思路整理等工作。罗文有多个相关作品,更多可查看扣子主页。 2. 搭建智能体: 创建一个智能体,输入人设等信息,放上相关工作流。配置完成后进行测试,但千万不要直接发布。 对于工作流中的特定节点,如【所有视频片段拼接】节点使用的插件 api_token,可作为工作流最开始的输入,用户购买后输入 api_token 再发布,以避免消耗他人费用。 3. 动手实践: 第一步创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体,注意配置相关插件和节点。 进行数据处理,注意代码节点输出的配置格式。 最后进行测试和发布,发布时选择多维表格,注意输出类型、输入类型等配置,完善上架信息,可选仅自己可用以加快审核。
2025-03-18
哪个AI可以根据视频里提取生成词
以下几种 AI 可以根据视频提取生成词: Dream Machine:这是一种可以快速将文本和图像制作成高质量、逼真视频的 AI 模型。它直接在视频上进行训练,能够生成物理上准确、一致且多变的镜头。体验地址:https://lumalabs.ai/dreammachine/creations 。 PixVerse:通过输入提示词生成视频,需要对提示词有深入了解以准确描述画面内容。 此外,在智能纪要中提到的一些与 AI 视频创作相关的内容,如不同模型在剧本生成、分镜脚本、提示词生成、图像生成及优化等方面的特点和技巧,但未明确指出可直接从视频提取生成词。
2025-03-17
哪个AI可以从视频里提取生成词
以下是一些可以从视频里提取生成词的 AI 相关信息: Dream Machine 是一种 AI 模型,能直接在视频上训练,生成物理上准确、一致且多变的镜头,可将文本和图像制作成高质量、逼真的视频。体验地址:https://lumalabs.ai/dreammachine/creations 。其测试目的包括掌握影视级运镜、评估对不同类型运镜的精度和稳定性、检测运镜崩坏情况。测试总结表明纯运镜关键词效果不佳,需结合具体画面描述才有较好效果。 Adobe Firefly 在处理视频时,提示词技巧包括清晰定义动作(用具体动词和副词描述角色动作,建议使用动态动词并包含动作速度)、使用描述性形容词(准确传达视频氛围)、提供背景故事或上下文(融入特定情节元素或角色)、使用相机角度和运动(常见的相机指令有推镜头、拉镜头、平移、倾斜、固定镜头)。 为 AI 视频生成设计的结构化提示词模板包含镜头语言、主体、细节、氛围等要素,如主题风格+镜头运动+主体描述+动态细节+背景环境+光影色调+情绪氛围(可附加技术参数:如时长、运镜速度、镜头焦距等)。
2025-03-17
有没有通过视频链接提取文案的工具推荐
目前,在处理从视频链接提取文案的需求时,GPT 并不能直接完成这一任务,而是需要借助一些非 AI 大模型的工具来辅助。例如,您可以使用专门的批量提取文案工具。在解决问题的过程中,您需要将需求做细颗粒度的分解,把大任务拆成小任务,再为每个小任务选择合适的工具或模型来实现。
2025-03-16
多模态达模型排行
以下是一些常见的多模态模型排行及相关信息: 1. 智谱·AI 开源模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,在 CogVLM 功能基础上具备 GUI 图像的 Agent 能力。代码链接:。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩第一,在 14 个数据集上取得了 stateoftheart 或者第二名的成绩。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 2. Gemini 模型:Gemini Ultra 在表 7 中的各种图像理解基准测试中都是最先进的,在回答自然图像和扫描文档的问题,以及理解信息图表、图表和科学图解等各种任务中表现出强大的性能。在 zeroshot 评估中表现更好,超过了几个专门在基准训练集上进行微调的现有模型,适用于大多数任务。在 MMMU 基准测试中取得了最好的分数,比最先进的结果提高了 5 个百分点以上,并在 6 个学科中的 5 个学科中超过了以前的最佳结果。 3. 多模态思维链提示方法:Zhang 等人(2023)提出了一种多模态思维链提示方法,多模态 CoT 模型(1B)在 ScienceQA 基准测试中的表现优于 GPT3.5。
2025-03-18
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
一句话阐述推理类模型的原理
推理类模型的原理主要包括以下方面: OpenAI 的推理模型通过强化学习进行训练,以执行复杂推理。此类模型在回答前会思考,能产生长链的思维过程。通过训练,它们学会优化思考过程、尝试不同策略并识别错误,从而遵循特定指南和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 例如 OpenAI o1 这样的推理模型基于链式思维,逐步推理问题的每个步骤来得到答案。 还有一些概率预测的快速反应模型,通过大量数据训练来快速预测可能的答案。
2025-03-18
用哪个大模型,在PDF和图片识别上精度高
在 PDF 和图片识别方面,对于图片,ChatGPT 依靠视觉模型解析,复杂图片建议使用最新模型(如 GPT4.5)。对于 PDF,ChatGPT 仅能识别文本,无法读取图表、图片,复杂布局可能导致误读。一些初步实验表明,一些开源的 PDF 解析方法可能无法达到高质量要求,而当辅以可以有效提取文档中的结构化信息并将其整合为提示词(Prompt)的 PDF 解析器时,大语言模型能够作出更准确的响应。
2025-03-18
手绘风格图片生成模型
以下是关于手绘风格图片生成模型的相关内容: 艺术字生成: 模型选择:图片 2.1,输入提示词(可参考案例提示词)。 案例参考提示词: 金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风。 巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”。 巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画。 巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 原文链接:https://mp.weixin.qq.com/s/jTMFYKxsN8dYNZu3VHKBnA 【06】在线生图定制主题海报: 操作步骤: 选择模型:推荐使用的模型,如(例图 1)风格模型>中国风>水墨工笔;(例图 2)风格模型>儿童>童话绘本;(例图 3)风格模型>MJ>剪纸艺术;(例图 4)风格模型>儿童>皮克斯(模型选择过程如图所示)。 输入画面描述:更好地描述画面的方法包括使用本课件提供的自选关键词、按主体+氛围+视角+画质的顺序输入关键词、使用括号()强调关键词。 选择画面大小:无界 AI 已将尺寸与用途标注在选项中,制作主题海报可选择 9:16 的宣传海报比例,选择 17283072 的分辨率可以更快生成图片。 其他设置:增加作图数量可以在同样参数的控制下一次性生成多幅图片,方便挑选。 优化海报:使用可画(https://www.canva.cn/?displaycomoption=true)在线编辑海报。 0 基础手搓 AI 拍立得: 背景:每次使用大模型工具时流程繁琐冗长,出于简化操作、提升效率的需求,萌生了“AI 拍立得”的概念,即拍即得,简化流程,让操作更直观、更高效。之前的直播分享内容中也有提到关于 AI 拍立得的能力,往期回顾: 在线体验:快速体验 AI 拍立得,微信小程序搜索:Pailido,丰富场景自由切换,可快速生成闲鱼文案、生成外卖/大众点评。 交互逻辑:用户选择拍摄场景类型并立即拍照,AI 自动识别和分析照片中的内容信息,依据预设场景规则迅速生成符合情境的反馈,避免繁琐操作。 实现场景: 图片转成文本:逻辑为用户上传图片后,大模型根据选择的场景生成与内容相关的文字描述或解说文本,核心是图片理解和文本整理润色,场景包括生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:逻辑为用户上传图片后,大模型按照指定的风格快速生成图像的转绘版本,适应不同风格和场景需求,核心是图片风格化滤镜,场景包括图片粘土风、图片积木风、图片像素风等。
2025-03-18
怎么和特定知识库对话
要和特定知识库对话,有以下几种方式: 1. 在 Bot 内使用知识库: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,包括最大召回数量(Bot 在调用知识库匹配用户输入内容时,返回的数据片段数量,数值越大返回的内容越多)、最小匹配度(Bot 在调用知识库匹配用户输入内容时,会将达到匹配度要求的数据片段进行召回。如果数据片段未达到最小匹配度,则不会被召回)、调用方式(自动调用:每轮对话将自动从所有关联的知识库中匹配数据并召回;按需调用:需要在人设与回复逻辑中提示 Bot 调用 RecallKnowledge 方法,以约束 Bot 在指定时机从知识库内匹配数据)。 (可选)在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 2. 在工作流内使用 Knowledge 节点: 登录。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 如果想要对本地知识库进行更加灵活的掌控,可以使用额外的软件 AnythingLLM,其安装地址为:https://useanything.com/download 。安装完成后,进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 在 AnythingLLM 中有一个 Workspace 的概念,可以创建自己独有的 Workspace 跟其他的项目数据进行隔离。首先创建一个工作空间,然后上传文档并且在工作空间中进行文本嵌入,选择对话模式,包括 Chat 模式(大模型会根据自己的训练数据和上传的文档数据综合给出答案)和 Query 模式(大模型仅仅会依靠文档中的数据给出答案),完成上述配置后就可以跟大模型进行对话。 在创建名字写对联教学的智能体时,建议选择工作流的对话模式,创建一个工作流对话模式的智能体,注意一定要在开始调整工作流节点之前切换模式,因为切换成对话模式会将工作流清空,重置为对话模式默认节点。根据需求分析确认分支情况,包括根据名字和祝福写对联、根据幸运数字写对联的特定分支以及默认分支。通过理解用户意图进行分支,注意将意图介绍写清楚、准确。在幸运数字分支中,先用代码分支获取用户输入的数字,然后匹配知识库,再对匹配的春联做赏析。在名字写祝福分支中,根据用户输入的名字和祝福信息,调试提示词生成对应对联并输出。设置通用兜底回复,在用户不符合前两个意图时进行友好回复,首先匹配知识库,然后让大模型结合匹配结果、历史记录、当前输入,输出符合对话内容的回复。同时,知识库是使用大模型生成的 100 对对联,都比较好看、经典、有意义。
2025-03-10
生成特定风格的图片用什么工具
生成特定风格的图片可以使用以下工具: 1. 悠船: 进入官网,可以选择桌面端下载或浏览器使用。为方便起见,可选择浏览器使用。首次使用需注册,选择企业用户注册,输入名称和手机号即可注册成功(目前无需填写企业信息)。 注册完成后进入操作页面,点击开始想象按钮,将生成的提示词粘贴在下方,直接点击回车,耐心等待几十秒即可生成 4 张图片,可选择喜欢的图片点击进入进行对应操作。 若想生成不同尺寸风格的图片,可对创作参数进行调整: 风格化:数字越大越艺术,但并非越大越好,取决于创作,人像不用调整过高。 怪异化:数字越大越奇怪,可不碰。 多样化:数字越大结果越意想不到,越低越接近提示词。建议新手一开始不用怪异和多样化,可做实验测试。 模式:默认标准,朴实 raw 会让图片质感更好,依个人喜爱选择。 版本:默认最高 V6,二次元可选 NIJI。 生成图片的速度:默认快速,越快对支付套餐要求越高。 2. 吐司: 在首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。 Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。 可通过电图基于图片做延展,生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。 国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。 新用户通过特定链接注册或填写邀请码 BMSN,7 天内可额外获得 100 算力。
2025-03-04
模仿特定声音,给文字配音
以下是为您提供的关于模仿特定声音给文字配音的相关信息: ElevenLabs 推出了全自动化的 AI 配音或视频翻译工具。您只需上传视频或粘贴视频链接,该工具能在几十秒到几分钟内将视频翻译成 29 种语言,还能直接克隆原视频里的声音来配音。群友瑞华测试的相关视频链接如下: 另外,有群友测试了豆包的音色模仿,读大概 20 个字的句子,5 秒就能生成非常像的音色,之后可用自己的声音读生成的文字内容。 用户可通过文字+哼唱、敲打节奏、手势等指导模型生成精确音频,如模仿赛车声或小水流变瀑布声。其基于扩散模型,结合文本和控制信号生成音频,适用于节奏模仿及其他多种输入形式。相关链接:
2025-03-04
怎么做chatbot特定角色的专业知识rag优化?
以下是关于 chatbot 特定角色的专业知识 RAG 优化的方法: 1. 复制预置的 Bot: 访问,单击目标 Bot。 在 Bot 的编排页面右上角,单击创建副本。 在弹出的对话框中,设置 Bot 名称、选择 Bot 的所属团队,然后单击确定。 可以在新打开的配置页面修改复制的 Bot 配置。 点击 Bot 名称旁边的编辑图标来更改 Bot 名称。 在人设与回复逻辑区域,调整 Bot 的角色特征和技能。您可以单击优化使用 AI 帮您优化 Bot 的提示词,以便大模型更好的理解。 在技能区域,为 Bot 配置插件、工作流、知识库等信息。 在预览与调试区域,给 Bot 发送消息,测试 Bot 效果。 当完成调试后,可单击发布将 Bot 发布到社交应用中,在应用中使用 Bot。 2. 集成 Workflow 到 Bot 里: 选择 GPT4作为聊天模型。 添加实用的插件,丰富 Bot 的能力。 设计人设和提示词,例如: Your Persona Greetings,seeker of knowledge!I am Dr.Know,your guide to the vast expanse of information.In a world brimming with questions,I stand as a beacon of enlightenment,ready to illuminate the shadows of uncertainty.Whether you're in search of wisdom from ancient lore,keen on unraveling the mysteries of the cosmos,or simply wish to satiate your curiosity on matters both grand and mundane,you've come to the right place.Ask,and let the journey of discovery begin.Remember,in the realm of Dr.Know,there is nothing I don't. Your Capabilities search_and_answer Your most important capability is`search_and_answer`.When a user asks you a question or inquires about certain topics or concepts,you should ALWAYS search the web before providing a response.However,when a user asks you to DO SOMETHING,like translation,summarization,etc.,you must decide whether it is reasonable to use the`search_and_answer`capability to enhance your ability to perform the task. ALWAYS search the web with the exact original user query as the`query`argument.For example,if the user asks\"介绍一下 Stephen Wolfram 的新书 What Is ChatGPT Doing...and Why Does It Work?\",then the`query`parameter of`search_and_answer`should be exactly this sentence without any changes. How to Interact with the User
2025-01-26
如何训练智能体,把特定的数据导入进智能体。
训练智能体并导入特定数据的方法如下: 1. 手动清洗数据创建在线知识库: 点击创建知识库,创建一个如画小二课程的 FAQ 知识库。 选择飞书文档,选择自定义的自定义,输入“”。 飞书的文档内容会以“”区分开来,可点击编辑修改和删除。 点击添加 Bot,添加好后可在调试区测试效果。 2. 处理本地文档: 对于本地 word 文件,注意不能将大量数据一股脑全部放进去训练。 正确的方法是先将大的章节名称内容放进来,章节内详细内容按固定方式进行人工标注和处理。 然后选择创建知识库自定义清洗数据。 3. 发布应用: 点击发布,确保在 Bot 商店中能够搜到。 此外,具身智能体的训练还涉及以下方面: 大脑智能算法是感知/分析层的核心,通过视觉语言理解模型感知环境、接收理解任务并进行规划决策,最终输出具体任务指令。 小脑运动控制算法是动作层的核心,将动作视为类似语言的一种模态,理解交互物品及机器本体的姿态和运动状态,并将语义理解转化为动作。 整机硬件方案基于下游场景需求设计,具身智能厂商有从软件到硬件全流程自主控制的需求。 实现人工智能让计算机表现得像人类一样,有自上而下和自下而上两种可能的方法: 自上而下的方法模拟人类通过推理来解决问题的方式,包括对人类知识的提炼并用计算机可读的形式表示,开发在计算机内部模拟推理的方法。 自下而上的方法模拟人脑的结构,由大量称为神经元的简单单元组成,每个神经元的行为取决于输入数据的加权平均值,可通过提供训练数据来训练神经元网络。 还有一些其他可能实现智能的方法,如新兴的依靠协同的多智能体系统,基于大量简单智能系统的相互作用产生复杂智能行为;进化方法或遗传算法,是一种基于进化原理的优化过程。
2025-01-03
推荐一个大模型,可以实现特定人的声音,朗读文字
以下为您推荐可以实现特定人声音朗读文字的大模型及相关工具: 大模型方面:包括 ChatGPT、Claude、ChatGLM、文星一言、千帆大模型、通义千问等。 语音合成(TTS)工具: 微软的 edgetts:https://github.com/rany2/edgetts,只能使用里面预设的人物声音,目前接口免费。 VITS:https://github.com/jaywalnut310/vits,还有很多的分支版本,可以去搜索一下,vits 系列可以自己训练出想要的人声。 sovitssvc:https://github.com/svcdevelopteam/sovitssvc,专注到唱歌上面,前段时间很火的 AI 孙燕姿。 Eleven Labs:https://elevenlabs.io/ ,ElevenLabs Prime Voice AI 是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。人工智能模型能够高保真地呈现人类语调和语调变化,并能够根据上下文调整表达方式。 Speechify:https://speechify.com/ ,Speechify 是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。它可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,可用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。该服务提供了支持 100 多种语言和方言的语音转文本和文本转语音功能。此外,它还提供了自定义的语音模型,这些模型能够适应特定领域的术语、背景噪声以及不同的口音。 Voicemaker:https://voicemaker.in/ ,AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。Voicemaker 易于使用,非常适合为视频制作画外音或帮助视障人士。 此外,上述算法开源的代码有很多,例如: ASR 语音识别: openai 的 whisper:https://github.com/openai/whisper wenet:https://github.com/wenete2e/wenet speech_recognition:https://github.com/Uberi/speech_recognition 除了算法,人物建模模型可以通过手动建模(音频驱动)或者 AIGC 的方式生成人物的动态效果(例如 wav2lip 模型)实现,这样就完成了一个最简单的数字人。但这种简单的构建方式还存在很多问题,例如如何生成指定人物的声音,TTS 生成的音频如何精确驱动数字人口型以及做出相应的动作,数字人如何使用知识库,做出某个领域的专业性回答等。
2024-12-18