Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

一句话阐述推理类模型的原理

Answer

推理类模型的原理主要包括以下方面:

  • OpenAI 的推理模型通过强化学习进行训练,以执行复杂推理。此类模型在回答前会思考,能产生长链的思维过程。通过训练,它们学会优化思考过程、尝试不同策略并识别错误,从而遵循特定指南和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。
  • 例如 OpenAI o1 这样的推理模型基于链式思维,逐步推理问题的每个步骤来得到答案。
  • 还有一些概率预测的快速反应模型,通过大量数据训练来快速预测可能的答案。
Content generated by AI large model, please carefully verify (powered by aily)

References

o3-mini-system-card.pdf

OpenAI reasoning models are trained with reinforcement learning to perform complex reasoning.Models in this family think before they answer they can produce a long chain of thought before responding to the user.Through training,the models learn to refine their thinking process,try1Deliberative alignment is a training approach that teaches LLMs to explicitly reason through safety specifications before producing an answer.1different strategies,and recognize their mistakes.Reasoning allows these models to follow specific guidelines and model policies we’ve set,helping them act in line with our safety expectations.This means they are better at providing helpful answers and resisting attempts to bypass safety rules,to avoid producing unsafe or inappropriate content.OpenAI o3-mini is the latest model in this series.Similarly to OpenAI o1-mini,it is a faster model that is particularly effective at coding.As can be seen in the capability results below,o3-mini surpasses previous models on science(GPQA Diamond),math(AIME),coding(Codeforces).Table 1:Performance across models.GPT-4o o1-preview o1 o3-miniGPQA Diamond 0.510.68 0.78 0.77AIME 2022-2024 0.100.44 0.78 0.80Codeforces ELO 9001250 1841 2036We also plan to allow users to use o3-mini to search the internet and summarize the results in ChatGPT.We expect o3-mini to be a useful and safe model for doing this,especially given its performance on the jailbreak and instruction hierarchy evals detailed in Section 4 below.

换位思考:大语言模型模拟故事情景代入角色

问小孩:“你的气球去哪了?”从小孩的视角,他可能会回答:“我不知道,它就消失了。”问风筝主人:“小孩的气球怎么丢的?”从风筝主人的视角,他可能会回答:“风筝碰到了它,然后它飞走了。”在这个例子中,模型需要使用心智理论来推理出每个角色的知识和信念,从而得出他们可能的回答。通过SimToM框架,模型可以更准确地预测和理解各个角色的心理状态。对我们日常工作与生活的启发这个两个故事,给我们一个事实性真理启发。我们只是生活中的一部分,在我们的世界,我们是主角别人是配角;在别人的世界,我们只是配角。想要具有换位思考的能力,可以借助大语言模型。那么,这项技术可能有哪些用途呢?1.方便小说家写出更丰富的任务心理和更精彩的对话。小说家写小说的时候通常会涉及不同角色,如果缺乏换位思考很容易以上帝视角设计和撰写故事情节与对话。这样的作品会很失真,只能是爽文风格,《陈情令》、《雪中悍刀行》、《庆余年》都是这样风格的故事。应用这种技术,大语言模型(LLMs)可以帮你幻化出不同的角色来协助你设计更灵活和更逼真的情节细节。

张翼然:AI 赋能教学,创新引领未来.pdf

数据大小(D):指用于训练模型的token数量。计算量(C):指训练过程中使用的计算资源。AI领头羊们,不断增加数据、算力,改进模型但是,GPT-5却一直难产,传说效果不达预期人类师傅,用自己的优秀案例教导出来的语言模型能力的上限由人类师傅的本领决定。60分到80分容易,90往95分难24年9月,OpenAI推出推理模型o1概率预测(快速反应模型,如ChatGPT 4o)链式推理(慢速思考模型,如OpenAI o1)性能表现响应速度快,算力成本低慢速思考,算力成本高运算原理基于概率预测,通过大量数据训练来快速预测可能的答案基于链式思维(Chain-of-Thought),逐步推理问题的每个步骤来得到答案决策能力依赖预设算法和规则进行决策能够自主分析情况,实时做出决策创造力限于模式识别和优化,缺乏真正的创新能力能够生成新的创意和解决方案,具备创新能力人机互动能力按照预设脚本响应,较难理解人类情感和意图更自然地与人互动,理解复杂情感和意图问题解决能力擅长解决结构化和定义明确的问题能够处理多维度和非结构化问题,提供创造性的解决方案伦理问题作为受控工具,几乎没有伦理问题引发自主性和控制问题的伦理讨论

Others are asking
推理类模型,以deepseek为代表,与此前的聊天型ai,比如chatgpt3.5,有什么差异
推理类模型如 DeepSeek 与聊天型 AI 如 ChatGPT3.5 存在以下差异: 1. 内部机制:对于大语言模型,输入的话会被表示为高维时间序列,模型根据输入求解并表示为回答。在大模型内部,是根据“最大化效用”或“最小化损失”计算,其回答具有逻辑性,像有自己的思考。 2. 多模态能力:ChatGPT3.5 是纯语言模型,新一代 GPT 将是多模态模型,能把感官数据与思维时间序列一起作为状态,并装载在人形机器人中,不仅能对话,还能根据看到、听到的事进行判断,甚至想象画面。 3. 超越人类的可能性:有人假设人按最大化“快乐函数”行动,只要“效用函数”足够复杂,AI 可完全定义人,甚至超越人类。如在“短期快乐”与“长期快乐”的取舍上,人类难以找到最优点,而 AI 可通过硬件算力和强化学习算法实现,像 AlphaGo 击败世界冠军,在复杂任务上超越人类。 4. 应用领域:文字类的总结、润色、创意是大语言模型 AI 的舒适区,如从 ChatGPT3.5 问世到 ChatGPT4 提升,再到 Claude 3.5 sonnet 在文学创作领域取得成绩,只要有足够信息输入和合理提示词引导,文案编写可水到渠成。
2025-03-18
推理行大模型对于RAG的准确性提升,带来哪些改变
推理行大模型对 RAG 准确性提升带来了以下改变: 1. 当辅以能有效提取文档中结构化信息并整合为提示词的 PDF 解析器时,大语言模型能作出更准确的响应,提高了提供给模型的数据质量和相关性,从而提升模型输出质量。 2. 大模型应用领域常用的 RAG 方法,能让模型用自定义数据生成结果,处理无尽私有数据,将模型当成高效推理机器。但 RAG 存在一些常见误区: 随意输入任何文档不一定能得到准确回答,RAG 流程中的多个环节都会影响最终质量。 RAG 虽能减少幻觉,但不能完全消除,只要有大模型参与就可能产生幻觉。 RAG 仍消耗大模型的 Token,最终需大模型处理检索结果生成通顺回答。 未来,将研究分享更多基于深度学习的文档解析方法,以更全面理解 RAG 质量和文档解析质量的关系。同时,前沿模型研发团队力争做到吞吐量、速度和准确度的最佳平衡。
2025-03-03
推理模型的技术原理
推理模型是一种新的范式,专注于解决复杂、多步骤的问题。其技术原理主要包括以下方面: 1. 思考输入意图:通过对输入内容的深入理解,明确问题的核心和需求。 2. 逐步提供答案:不像传统模型一次性给出结果,而是分步骤进行推理和回答。 3. 擅长领域:在解谜和高级数学等具有挑战性的任务中表现出色。 4. 与传统模型的区别:传统模型可能更倾向于直接给出结果,而推理模型会通过逐步思考来提供答案。 5. 成本和易错性:推理模型成本高昂且容易出错,适用场景有限。 6. 模型变体:如 DeepSeek 推出的多种变体(如 R1Zero 和 R1Distill)展示了不同的训练策略和性能表现。 7. 思考过程:类似于人类的慢思考过程,结合行业特点给出重要事项和先后顺序。 8. 运算原理:快思考是概率预测,脱口而出但不一定对;慢思考在概率预测基础上做二层逻辑,即链式思维,展开问题找多条路径并互相验证。 9. 适用场景:指令遵循领域 instruct 模型效果好,推理和创造性问题适合用慢思考的推理模型。
2025-03-01
如何让推理大模型回答的更准确,使用什么样的提示词
要让推理大模型回答得更准确,可以通过以下提示词相关的设置和方法: 1. 参数设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更多随机、多样化或具创造性的产出。对于质量保障等任务,设置更低值以促使模型基于事实返回真实简洁结果;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确和事实的答案时,调低参数值;想要更多样化答案时,调高参数值。一般建议改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,是控制响应长度和结构的方法之一。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少响应中单词的重复。 2. 提示词示例: 对于推理任务,目前已有一些涉及数学能力的改进。执行推理任务可能有难度,需要更高级的提示词工程技术,后续会介绍相关高级技术。 可以通过示例给模型说明,可能获得更准确结果,后面章节会介绍更多常见应用示例。 3. 调教方法: 像打字和写作一样,不断尝试和大模型交互是最佳方法,方法论不是关键。 可以在提示词里设定规则,也可临时更改,交互时无需遵循规则,重点是是否达成目的,未达成可重新尝试或更换模型。 用 Markdown 格式清晰表达问题,具有结构清晰、格式化强调、适用性广等优点,有助于模型更好地理解用户意图。
2025-02-26
复杂推理的产品,给模型灌什么能够更好训练推理能力?以及怎么优化模型的推理准确度?
以下是一些能够更好训练模型推理能力以及优化推理准确度的方法: 1. OpenAI 的推理模型通过强化学习进行训练,在训练过程中,模型学会在回答前思考,产生长链的思维过程,并不断尝试不同策略,识别错误,从而能够遵循特定的指导方针和模型政策,提供更有用的回答,避免产生不安全或不适当的内容。 2. 蒙特卡洛树搜索(MCTS)对推理模型有积极影响,例如在数学定理证明中,能探索非确定性证明路径,将解决 IMO 几何题的耗时从传统方法的 30 分钟降至 90 秒;在多跳问答系统中,结合 MCTS 的模型在 HotpotQA 数据集上准确率提升 12%,因其能回溯验证中间推理步骤。 3. 动态知识融合机制方面,传统基于规则的推理无法处理模糊知识,而 MCTS 增强方案在医疗诊断中可将误诊率从纯规则引擎的 23%降至 9%。 4. 资源分配优化方面,在逻辑谜题求解任务中,MCTS + Transformer 能达到 85%准确率且耗时 3 秒,而纯 Transformer 为 62%准确率且耗时 8 秒;在法律条文推导任务中,MCTS + Transformer 有 92%合规性且耗时 5 秒,纯 Transformer 为 88%合规性且耗时 2 秒。 OpenAI 于 9 月 12 日发布的新模型 o1 旨在实现通用复杂推理,通过强化学习和思维链的方式提升推理能力,尤其在数学和编程领域表现出色,但用户反馈显示其实际表现与宣传存在差距,成本高于 GPT4o,且在某些任务上优势不明显,OpenAI 仍在探索如何优化模型的推理性能。
2025-02-21
偏推理型的内容,怎么提升模型的推理深度及准确度?
提升模型推理深度及准确度的方法包括以下几个方面: 1. 扩大模型规模:随着模型规模的扩大,其推理能力会得到提升,类似于 AlphaGo 或 AlphaZero 的工作方式,通过蒙特卡罗推演来修改评估函数,从而提高推理精度。 2. 引入多模态学习:引入图像、视频和声音等多种模式将极大地改变模型的理解和推理能力,特别是在空间理解方面。多模态模型可以通过更多的数据和更少的语言来进行学习。 3. 优化训练方法: RLHF(Reinforcement Learning from Human Feedback):模型在这个过程中的目标是最大程度地获得人类的认可,通过奖励模型来衡量。 结合不同的推理能力提高途径:将生成不同的思维链(CoT)并选择有效路径的方法,与在部署时用大量计算进行推理的方法结合起来。 4. 改进模型结构和算法: 规模和算法是科技进步的关键因素,数据和计算规模具有决定性作用。 在模型之上添加启发式方法或增加模型本身的规模。 此外,Hinton 还提到了一些相关观点,如最合理的模型是将符号转换成大向量并保留符号的表面结构,大型语言模型通过寻找共同的结构来提高编码效率,以及即使训练数据中有错误,大型神经网络也具有超越训练数据的能力等。
2025-02-21
一句话阐述工作流的原理
工作流的原理通常包括以下几个方面: 1. 由多个节点构成,节点是基本单元,如大语言模型、自定义代码、判断逻辑等。默认包含起始的 Start 节点和末尾的 End 节点。 2. 不同节点可能需要不同的输入参数,包括引用前面节点的参数值和自定义的输入值。 3. 一些工作流通过特定插件实现特定功能,如 SDXL Prompt Styler 插件结合 ControlNet 实现图片风格转化,其原理是在 prompt 中加入预设好的风格关键词组合。 4. 对于复杂任务场景,通过对插件、大语言模型、代码块等功能的可视化组合,实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。 5. 像生成图文短句的工作流,会包含多个步骤,如大模型生成标题、通过代码节点获取标题、生成简介、生成文案、归纳总结、传递给图像流等,并对图像流进行提示词优化和文生图等操作。
2025-03-18
一句话阐述ai agent的原理。
AI Agent 的原理主要包括以下几个方面: 1. 其核心通常是大型语言模型(LLM)或大模型。 2. 为 LLM 增加了工具、记忆、行动、规划这四个能力。 工具:如长期记忆,相当于给大模型一个数据库工具来记录重要信息。 记忆:提供长期记忆能力。 行动:将目标进行每一步的拆解,并输出不同的固定格式 action 指令给工具。 规划:在大模型的 prompt 层做逻辑处理,如目标拆解。 3. 目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 4. 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 多重层次:从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。 分布式智能:智能通过多个相互关联的 Agent 共同实现,提高系统的灵活性和鲁棒性。 5. AI Agent 包括 Chain(步骤,可接受输入变量并产生输出变量)、Router(通过判定让 Agent 走向不同的 Chain)、Tool(工具调用)等概念。同时,还需要 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本等)等不同类型的 Agent 协同工作。
2025-03-18
一句话阐述chatgpt的原理。
ChatGPT 的原理可以概括为以下几点: 1. 实质功能是词语接龙,即给定任意长的上文,它会用自己的模型生成下一个词,然后将生成的词与上文组合成新的上文,不断重复生成任意长的下文,此过程称为自回归生成。 2. 训练的主要目的不是记忆,而是学习以单字接龙的方式训练模型,让模型学习提问和回答的通用规律,以便在遇到未记忆过的提问时,能利用所学规律生成用户想要的回答,这种举一反三的目的也称为泛化。 3. 从网络、书籍等来源获取大量人类创作的文本样本,训练神经网络生成“类似”的文本,能够从“提示”开始,继续生成“类似于训练内容”的文本。 4. 其神经网络由简单元素组成,基本操作是为每个新单词生成“输入”,然后将其“通过其元素”。 5. 最终,ChatGPT 从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但结果非常类似于人类生成的文本,这表明人类语言及背后的思维模式结构比想象的更简单和具有“法律属性”。同时,ChatGPT 的基本人工神经网络结构基于大脑的理想化模型,人类生成语言时的许多方面与之相似。
2025-03-18
在办公领域,Deepseek如何进行效率提升,请详细进行原理及操作阐述,我要做成培训课程
以下是关于 DeepSeek 在办公领域提升效率的原理及操作阐述: 原理方面: 1. 强化学习和联网搜索能力改变信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。 2. 利用“专家混合”和“多头潜在注意力”技术,展现了高效的算力利用。 3. 其开源策略打破了技术垄断,让国内大模型能力迅速提升。 操作方面: 1. 飞书多维表格与 DeepSeek R1 结合,实现批量处理信息,如批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单、便捷,普通人无需编程知识也能轻松使用。 2. 有手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 此外,DeepSeek R1 赏析分享会专为非技术人群设计,通俗易懂地介绍了 R1 和 V3 的技术亮点,深入探讨了业界的困惑与 DeepSeek 的解决方案。同时,也有相关文章通过虚构故事结合真实案例,讲述 AI 在日常工作中的效率提升作用,如分析意图、生成任务说明,并拆分复杂任务成结构化内容,强调最终成果需人工审核、拼接,并以人类主导全流程。
2025-02-25
最喜欢的AI产品,阐述亮点和原因
以下为一些受欢迎的 AI 产品及其亮点和原因: 爱设计 PPT: 亮点:背后有实力强大的团队,技术过硬且对市场需求有敏锐洞察力;成功把握 AI 与 PPT 结合的市场机遇;在国内 AI 生成 PPT 产品中确立市场领先地位。 原因:团队的持续创新推动产品进步,前瞻性的市场洞察和快速执行能力使其成功,产品的优秀品质和用户的高度认可证明其价值。对于经常制作 PPT 的人,能提高效率并保证高质量输出,随着 AI 技术进步,未来有望带来更多惊喜功能和性能提升。 Grammarly、秘塔写作猫: 亮点:利用自然语言处理技术辅助用户进行高质量写作。 原因:Grammarly 可检查语法、拼写错误并提供改进建议,秘塔写作猫能进行智能润色和内容创作辅助。 淘宝拍照搜商品: 亮点:通过图像识别为用户推荐相似商品。 原因:在 AI 技术支持下,用户上传图片后系统能快速推荐类似商品。 小爱同学、Siri: 亮点:为不同需求定制专属语音助手。 原因:小爱同学可控制智能家居、回答问题等,Siri 能进行语音交互和任务处理。 Keep 智能训练计划: 亮点:根据用户数据制定个性化健身方案。 原因:结合用户身体状况和目标生成专属健身方案。 大众点评智能推荐: 亮点:基于用户口味偏好推荐美食。 原因:通过用户评价和偏好数据为用户推荐餐厅和美食。 阿里小蜜等电商客服: 亮点:为企业提供智能客服解决方案。 原因:可自动回答客户问题,处理订单查询等任务。 AI 游戏道具推荐系统: 亮点:根据玩家需求推荐游戏道具。 原因:利用 AI 分析玩家的游戏风格和进度,提供合适道具推荐。 AI 天气预报分时服务: 亮点:提供精准的分时天气预报。 原因:利用 AI 提供每小时的天气预报,方便用户安排出行和活动。 AI 医疗病历分析平台: 亮点:分析医疗病历,辅助诊断。 原因:利用 AI 分析病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 AI 会议发言总结工具: 亮点:自动总结会议发言内容。 原因:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。 AI 书法作品临摹辅助工具: 亮点:帮助书法爱好者进行临摹。 原因:利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2024-12-26
最喜欢的AI产品,阐述亮点和原因
以下为一些受欢迎的 AI 产品及其亮点和原因: 爱设计 PPT: 亮点:背后有实力强大的团队,技术过硬且对市场需求洞察力敏锐;成功把握 AI 与 PPT 结合的市场机遇;在国内 AI 生成 PPT 产品中确立市场领先地位。 原因:团队的持续创新推动产品进步,前瞻性的市场洞察和快速执行能力使其成功,产品的优秀品质和用户的高度认可证明其价值。对于经常制作 PPT 的人,能提高效率并保证高质量输出,随着 AI 技术进步,未来有望带来更多惊喜。 Grammarly、秘塔写作猫: 亮点:利用自然语言处理技术辅助用户进行高质量写作。 原因:Grammarly 可检查语法、拼写错误并提供改进建议,秘塔写作猫能进行智能润色和内容创作辅助,满足用户对优质写作的需求。 淘宝拍照搜商品: 亮点:通过图像识别为用户推荐相似商品。 原因:在电商领域,方便用户快速找到心仪的商品,提升购物体验。 小爱同学、Siri: 亮点:为不同需求定制专属语音助手。 原因:能实现语音交互和任务处理,如控制智能家居、回答问题等,满足多样化的生活需求。 Keep 智能训练计划: 亮点:根据用户数据制定个性化健身方案。 原因:结合用户身体状况和目标生成专属健身计划,帮助用户科学健身。 大众点评智能推荐: 亮点:基于用户口味偏好推荐美食。 原因:通过用户评价和偏好数据为用户推荐餐厅和美食,方便用户选择。 阿里小蜜等电商客服: 亮点:为企业提供智能客服解决方案。 原因:可自动回答客户问题,处理订单查询等任务,提高客服效率。 AI 游戏道具推荐系统: 亮点:根据玩家需求推荐游戏道具。 原因:在游戏中分析玩家风格和进度,提供合适道具,增强游戏体验。 AI 天气预报分时服务: 亮点:提供精准的分时天气预报。 原因:利用 AI 提供每小时的天气预报,方便用户安排出行和活动。 AI 医疗病历分析平台: 亮点:分析医疗病历,辅助诊断。 原因:利用 AI 分析病历中的症状、检查结果等信息,为医生提供辅助诊断建议。 AI 会议发言总结工具: 亮点:自动总结会议发言内容。 原因:在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。 AI 书法作品临摹辅助工具: 亮点:帮助书法爱好者进行临摹。 原因:利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2024-12-26
用哪个大模型,在PDF和图片识别上精度高
在 PDF 和图片识别方面,对于图片,ChatGPT 依靠视觉模型解析,复杂图片建议使用最新模型(如 GPT4.5)。对于 PDF,ChatGPT 仅能识别文本,无法读取图表、图片,复杂布局可能导致误读。一些初步实验表明,一些开源的 PDF 解析方法可能无法达到高质量要求,而当辅以可以有效提取文档中的结构化信息并将其整合为提示词(Prompt)的 PDF 解析器时,大语言模型能够作出更准确的响应。
2025-03-18
手绘风格图片生成模型
以下是关于手绘风格图片生成模型的相关内容: 艺术字生成: 模型选择:图片 2.1,输入提示词(可参考案例提示词)。 案例参考提示词: 金色立体书法,“立冬”,字体上覆盖着积雪,雪山背景,冬季场景,冰雪覆盖,枯树点缀,柔和光影,梦幻意境,温暖与寒冷对比,静谧氛围,传统文化,唯美中国风。 巨大的春联,金色的书法字体,线条流畅,艺术美感,“万事如意”。 巨大的字体,书法字体,线条流畅,艺术美感,“书法”二字突出,沉稳,大气,背景是水墨画。 巨大的奶白色字体“柔软”,字体使用毛绒材质,立在厚厚的毛绒面料上,背景是蓝天。 原文链接:https://mp.weixin.qq.com/s/jTMFYKxsN8dYNZu3VHKBnA 【06】在线生图定制主题海报: 操作步骤: 选择模型:推荐使用的模型,如(例图 1)风格模型>中国风>水墨工笔;(例图 2)风格模型>儿童>童话绘本;(例图 3)风格模型>MJ>剪纸艺术;(例图 4)风格模型>儿童>皮克斯(模型选择过程如图所示)。 输入画面描述:更好地描述画面的方法包括使用本课件提供的自选关键词、按主体+氛围+视角+画质的顺序输入关键词、使用括号()强调关键词。 选择画面大小:无界 AI 已将尺寸与用途标注在选项中,制作主题海报可选择 9:16 的宣传海报比例,选择 17283072 的分辨率可以更快生成图片。 其他设置:增加作图数量可以在同样参数的控制下一次性生成多幅图片,方便挑选。 优化海报:使用可画(https://www.canva.cn/?displaycomoption=true)在线编辑海报。 0 基础手搓 AI 拍立得: 背景:每次使用大模型工具时流程繁琐冗长,出于简化操作、提升效率的需求,萌生了“AI 拍立得”的概念,即拍即得,简化流程,让操作更直观、更高效。之前的直播分享内容中也有提到关于 AI 拍立得的能力,往期回顾: 在线体验:快速体验 AI 拍立得,微信小程序搜索:Pailido,丰富场景自由切换,可快速生成闲鱼文案、生成外卖/大众点评。 交互逻辑:用户选择拍摄场景类型并立即拍照,AI 自动识别和分析照片中的内容信息,依据预设场景规则迅速生成符合情境的反馈,避免繁琐操作。 实现场景: 图片转成文本:逻辑为用户上传图片后,大模型根据选择的场景生成与内容相关的文字描述或解说文本,核心是图片理解和文本整理润色,场景包括生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片:逻辑为用户上传图片后,大模型按照指定的风格快速生成图像的转绘版本,适应不同风格和场景需求,核心是图片风格化滤镜,场景包括图片粘土风、图片积木风、图片像素风等。
2025-03-18
2025.3.18 新的大模型新闻
以下是 2025 年 3 月 18 日的一些新的大模型新闻: DeepSeek 深夜发布大一统模型 JanusPro,将图像理解和生成统一在一个模型中。其官网发声渠道包括微信公众号:DeepSeek;小红书:@DeepSeek(deepseek_ai);X:DeepSeek(@deepseek_ai);知乎账号(2025 年 3 月 1 日注册)。模型(7B)和(1B)的相关信息可参考特定链接。 2025 年 3 月 10 日的新闻:《大模型的未来,是 Agent 还是 App?》中提到 OpenAI 的 Deep Research 被视为一种新型的研究语言模型,具备自主执行搜索任务的能力。 2025 年 3 月 3 日的新闻:2025 年将是智谱的开源年,即将发布全新大模型并开源。2024 年 12 月,智谱已完成 D+轮 30 亿元人民币融资。
2025-03-18
写学术论文用哪一个 AI大模型比较好
在写学术论文时,以下 AI 大模型可供选择: 1. 智谱 AI 大模型开放平台:其 GLM 系列模型凭借强大的语义理解能力,能够快速总结论文内容、进行精准翻译。模型通用性强,能适应不同学科和复杂文本,提炼核心观点,为研究工作提速。在使用前,需将文献转换为可供模型解析的文本格式,可借助平台工具高效完成文件内容的提取。 2. 对于论文排版,有以下工具: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:广泛用于学术论文排版,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 通常是受欢迎的选择;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2025-03-18
哪些模型的视频理解能力比较好?
以下是一些视频理解能力较好的模型: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. Sora 模型:周鸿祎认为其技术思路完全不同,能像人一样理解现实世界,将大语言模型和 Diffusion 结合起来训练,实现了对现实世界的理解和模拟两层能力,对物理世界的模拟将对机器人具身智能和自动驾驶带来巨大影响。 3. 腾讯的混元模型:在语义理解方面表现出色,能够精准还原复杂的场景和动作,例如一只银渐层在游乐园里奔跑跳到小女孩怀里、一位紫衣女修在竹林中抚琴、星系边缘宇宙战舰引爆反物质引擎等场景。
2025-03-18
大语言模型的技术原理
大语言模型的技术原理包括以下几个方面: 1. 相关概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 2. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 3. 工作原理: 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。 Transformer 是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 Transformer 模型通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。 4. 可能存在的问题:大模型可能因错误数据导致给出错误答案,即大模型幻觉,优质数据集对其很重要。 5. 相关应用: 国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 Prompt 分为 system prompt、user prompt 和 assistant prompt,写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调是基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。
2025-03-18
comfy ui 九宫格生图保持人物一致性的原理
Comfy UI 九宫格生图保持人物一致性的原理主要基于 PuLID 技术,具体如下: PuLID 是一种用于在文本生成图像时自定义图像中人物或物体身份(ID)的新技术,它结合了两个不同的模型分支(Lightning T2I 分支和标准扩散模型),引入了两种损失(对比对齐损失和精确 ID 损失)。 Lightning T2I 分支是一个快速、高效的文本到图像生成模型。 标准扩散模型是常见的、生成高质量图像的模型。 对比对齐损失帮助模型学习将输入的文本和生成的图像内容对齐,使生成的图像更符合文本描述。 精确 ID 损失确保生成的图像中的特定身份特征(比如人物的脸部特征)与目标 ID 一致。 此外,在保持人物一致性方面,还有一些操作步骤: 生成图像(提示词加入分割描述,让一张图生成多张同空间小图)。 通过目标图像不断的重复生成,获取更多一致性的角色图像,下载分类(按照视角不同分类)。 上传图像,调用 prefer option set 命令,先写命令名称(一个视角操作一次),再放入该视角的照片(4 5 张)。 放开角色限制生成图像,在确认好的图像上进行局部重绘,框选头部,在原来的命令下加入—快捷命令名称,确认生成即可。 同时,Eva CLIP 也是相关的技术: Eva CLIP 是一种基于对比学习的视觉文本模型,将文本描述和图像内容映射到一个共享的嵌入空间。 对比学习架构:使用对比学习方法,将图像和文本嵌入到一个共享的空间,通过最大化匹配图像和文本对的相似度,同时最小化不匹配对的相似度,学习到图像和文本之间的关联。 强大的特征提取能力:编码器擅长提取图像中的细节特征,并将其转换为有意义的嵌入向量,用于下游任务。 多模态应用:能够处理图像和文本两种模态,广泛应用于多模态任务中,如生成、检索、标注等。 其应用场景包括图像生成、图像检索、图像标注等。Eva CLIP 编码器通常与深度神经网络结合使用,如卷积神经网络(CNN)用于图像特征提取,Transformer 网络用于处理文本描述。 项目地址:https://github.com/ToTheBeginning/PuLID 相关资源: instant ID 脸部特征抓取得比 pulid 好,放在最后一步重绘,先 pulid,再 instantID https://pan.baidu.com/s/1Tro9oQM85BEH7IQ8gVXKsg?pwd=cycy 工作流与模型地址:https://pan.quark.cn/s/2a4cd9bb3a6b 说明文档:https://xiaobot.net/post/6544b1e8 1d90 4373 94cf 0249d14c73c8 测试案例:
2025-03-17
manus的原理是怎样的
Manus 是一款由中国团队研发的全球首款通用型 AI 代理工具,于 2025 年 3 月 5 日正式发布。 其原理包括以下方面: 1. 当前的 Manus 相当于 AI 操纵着一个没有图形界面的 Linux 虚拟机和浏览器,能够感知电脑环境,执行各类操作。它能运行各种 Linux 下的指令、库、程序(如 cd、ls 指令、python 等),也能访问各种网页、获取一些 API 接口的数据,但由于没有图形界面,无法运行图形程序。 2. Manus AI 代理工具的具体技术架构主要基于多智能体(Multiple Agent)架构,运行在独立的虚拟机中。通过规划、执行和验证三个子模块的分工协作,实现对复杂任务的高效处理。其核心功能由多个独立模型共同完成,这些模型分别专注于不同的任务或领域,如自然语言处理、数据分析、推理等。 3. 技术架构还包括以下关键组件: 虚拟机:Manus AI 运行在云端虚拟机中,用户可以随时查看任务进度,适合处理耗时任务。 计算资源:Manus AI 利用计算资源生成算法,用于筛选简历等具体任务。 生成物:Manus AI 能够生成各种类型的输出,如文本、表格、报告等。 内置多个 agents:Manus AI 通过内置多个智能体,实现任务的分解和协同工作。 此外,Manus AI 还采用了“少结构,多智能体”的设计哲学,强调在数据质量高、模型强大、架构灵活的情况下,自然涌现 AI 的能力。这种设计使得 Manus AI 在处理复杂任务时更加高效和准确。
2025-03-15