Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

用哪个大模型,在PDF和图片识别上精度高

Answer

在 PDF 和图片识别方面,对于图片,ChatGPT 依靠视觉模型解析,复杂图片建议使用最新模型(如 GPT-4.5)。对于 PDF,ChatGPT 仅能识别文本,无法读取图表、图片,复杂布局可能导致误读。一些初步实验表明,一些开源的 PDF 解析方法可能无法达到高质量要求,而当辅以可以有效提取文档中的结构化信息并将其整合为提示词(Prompt)的 PDF 解析器时,大语言模型能够作出更准确的响应。

Content generated by AI large model, please carefully verify (powered by aily)

References

宝玉 日报

图片:ChatGPT依靠视觉模型解析,复杂图片建议使用最新模型(如GPT-4.5)。PDF:仅能识别文本,无法读取图表、图片,复杂布局可能导致误读。Excel:Python处理数据结构良好,但对文本分析效果较差,建议手动复制文本输入。音视频:目前ChatGPT处理能力有限,推荐使用Gemini处理。🔗[https://x.com/dotey/status/1898213778354782520](https://x.com/dotey/status/1898213778354782520)📖详细分析:[https://www.linkedin.com/posts/peter-gostev_when-you-upload-attachments-to-chatgpt-you-activity-7303469122942631936-1NY6](https://www.linkedin.com/posts/peter-gostev_when-you-upload-attachments-to-chatgpt-you-activity-7303469122942631936-1NY6)4⃣️💸AI初创公司→NVIDIA→政府:资金流动的“真实现状”100万美元投资→最终到AI初创公司手里仅4.3万美元!资金链:初创公司融资→购买NVIDIA GPU→42.4%交税→剩余资金再流转。讽刺现实:投资的钱最终大部分进了NVIDIA和政府口袋,初创公司拿到的资金寥寥无几。

3月9日 社区动态速览

图片:ChatGPT依靠视觉模型解析,复杂图片建议使用最新模型(如GPT-4.5)。PDF:仅能识别文本,无法读取图表、图片,复杂布局可能导致误读。Excel:Python处理数据结构良好,但对文本分析效果较差,建议手动复制文本输入。音视频:目前ChatGPT处理能力有限,推荐使用Gemini处理。🔗[https://x.com/dotey/status/1898213778354782520](https://x.com/dotey/status/1898213778354782520)📖详细分析:[https://www.linkedin.com/posts/peter-gostev_when-you-upload-attachments-to-chatgpt-you-activity-7303469122942631936-1NY6](https://www.linkedin.com/posts/peter-gostev_when-you-upload-attachments-to-chatgpt-you-activity-7303469122942631936-1NY6)4⃣️💸AI初创公司→NVIDIA→政府:资金流动的“真实现状”100万美元投资→最终到AI初创公司手里仅4.3万美元!资金链:初创公司融资→购买NVIDIA GPU→42.4%交税→剩余资金再流转。讽刺现实:投资的钱最终大部分进了NVIDIA和政府口袋,初创公司拿到的资金寥寥无几。

通过增强PDF结构识别,革新检索增强生成技术(RAG)

一些初步实验表明,一些开源的PDF解析方法可能无法达到高质量RAG的要求。通过上述分析,我们能够发现:当辅以可以有效提取文档中的结构化信息并将其整合为提示词(Prompt)的PDF解析器时,大语言模型能够作出更准确的响应。这个过程提高了提供给模型的数据质量和相关性,从而提高了模型输出的质量。未来,我们将研究分享更多基于深度学习的文档解析方法,以便更全面地理解RAG质量和文档解析质量之间的关系。

Others are asking
那些ai工具可以world转pdf
以下是一些可以将 Word 转换为 PDF 的 AI 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-04-15
那个ai可以world转pdf
以下是一些可以将 Word 转换为 PDF 的 AI 产品和方法: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 另外,还有一种将 PDF 变成可交互网页的方法: 1. 生成 PDF:将文件转换为 PDF 格式,其他文件格式也可以,但 PDF 效果更好。如果希望在文章中加入图片,需要将图片转换为 markdown 格式。如果是网络图片,直接复制图片的 url,右键图片,选择复制 url,然后用 markdown 格式写入文档。如果是自己的图片,可以使用图床服务(比如如 https://sm.ms/)托管图片,生成一个公链。如果想插入视频,也很简单,找到公网的视频地址(自己的本地视频先上传到公网,比如 B 站之类的)。在视频页面寻找“分享”按钮,点击“嵌入”或“嵌入代码”选项。在得到 url 后,依旧是使用 markdown 格式来写入视频地址。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-04-15
有没有把pdf转成word的ai
以下是一些可以将 PDF 转换成 Word 的 AI 工具和方法: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-04-14
如何通过提交的pdf文件自动生成流程图。
目前在 AI 领域,直接通过提交的 PDF 文件自动生成流程图还存在一定的技术挑战。通常情况下,需要先将 PDF 文件中的内容进行解析和提取,然后利用专门的流程设计工具或软件来手动创建流程图。但随着技术的不断发展,未来可能会有更便捷和高效的方法来实现这一功能。
2025-04-13
ai的好用pdf工具有哪些
以下是一些好用的 AI 相关 PDF 工具: 1. DeepL(网站):点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML/TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 内容由 AI 大模型生成,请仔细甄别。
2025-03-27
pdf生成视频
以下是关于 PDF 生成视频的相关信息: 将 PDF 转换为可交互网页: 先将文件转换为 PDF 格式,其他格式也可行,但 PDF 效果更佳。 若在文章中加入图片,网络图片可直接复制其 URL,右键图片选择复制 URL 后用 Markdown 格式写入文档;自己的图片可使用图床服务(如 https://sm.ms/)托管生成公链。 插入视频时,先将本地视频上传至公网(如 B 站),在视频页面寻找“分享”按钮,点击“嵌入”或“嵌入代码”选项获取 URL,用 Markdown 格式写入。 使用 Adobe Firefly 生成带有文本提示和图像的视频: 在 Advanced 部分,可用 Seed 选项添加种子编号,控制 AI 创建内容的随机性。相同种子、提示和控制设置可重新生成类似视频剪辑。 在 Adobe Firefly 网站(https://firefly.adobe.com/)选择“生成视频”。 在 Generate video 页面的 Prompt 字段输入文本提示,也可在 Image 部分的 Upload 选项使用图像作为第一帧并提供方向参考。添加图像可使生成的视频更符合预期。 在 General settings 部分可确定Aspect ratio 和 Frames per second。
2025-03-22
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是 5 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在人才获取与配置中的应用 What:利用 AI 技术对求职者的简历和技能进行自动筛选和匹配,以快速找到最适合岗位的人才。 Why:节省招聘时间和成本,提高招聘效率和准确性,确保企业能够吸引到最合适的人才。 How:通过收集和分析大量的求职者数据,训练 AI 模型来识别关键技能和经验;将企业的岗位需求与求职者的简历进行智能匹配。 场景二:AI 在薪酬管理中的应用 What:借助 AI 分析市场数据和员工绩效,为企业提供合理的薪酬建议。 Why:确保薪酬公平合理,提高员工满意度,有助于吸引和留住优秀人才。 How:收集同行业薪酬数据和员工绩效数据,利用 AI 算法进行分析和预测;根据分析结果为企业制定个性化的薪酬方案。 场景三:AI 在员工关系管理中的应用 What:使用 AI 监测员工的情绪和满意度,及时发现问题并提供解决方案。 Why:改善员工工作体验,增强员工忠诚度,减少员工流失。 How:通过员工在工作中的交流、反馈等数据,运用自然语言处理技术分析员工情绪;根据分析结果采取相应的措施,如组织团队活动、提供心理支持等。 场景四:AI 在学习与发展中的应用 What:利用 AI 为员工提供个性化的培训课程和学习计划。 Why:提升员工的能力和绩效,促进员工的职业发展,适应企业的发展需求。 How:分析员工的技能水平和职业发展目标,利用 AI 推荐适合的学习资源和课程;跟踪员工的学习进度和效果,不断优化学习计划。 场景五:AI 在 HR 共享与 HRIS 中的应用 What:通过 AI 实现 HR 流程的自动化和智能化,如请假审批、福利申请等。 Why:提高 HR 工作效率,减少人工错误,提升服务质量。 How:将 HR 流程进行数字化和标准化,利用 AI 技术实现自动审批和处理;建立智能客服,解答员工常见的 HR 问题。
2025-04-15
如何识别网页内容
识别网页内容通常可以通过以下步骤实现: 1. 内容识别:使用智能算法分析网页的 HTML 结构,确定网页的主要内容区域。 2. 文本提取:在识别出内容区域后,提取这些区域的文本内容,包括从 HTML 标签中获取可见文本,同时忽略脚本、样式和其他无需翻译的代码。 3. 预处理:对提取出的文本进行处理,清除不必要的空格、特殊字符和格式信息,进行标准化。 4. 翻译调用:将预处理后的文本拼接到 Prompt 模板中请求相关模型的 API 进行翻译。 5. 结果整合:翻译完成后,将原文和译文对照整合回网页、字幕中,常见的展示形式有原文保持不变,译文以悬浮框、下划线注释或平行文本呈现。 6. 用户界面交互:用户可通过鼠标悬停、点击等操作控制翻译的显示与否,工具会根据用户操作实时显示或隐藏译文。 另外,在获取网页内容时,初版提示词实验中对大模型对话产品的外链解析能力依赖较大,但这种方式易受平台反爬机制制裁。转换思路,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时,可拿着初版提示词询问 AI 来确定需要插件获取哪些网页元素。例如 SeeAct 能力可以在多种不同网站上识别网页上的各种元素,执行不同任务。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
人脸识别软件
以下是为您整合的关于人脸识别软件的相关信息: 在“【已结束】AI 创客松 参与同学自我介绍和分类”中,Dylan 擅长人脸识别算法和动作捕捉产品。 在“SmartBotX 模块化桌面机器人——说明文档”中,桌面客户端提供面部识别或跟踪功能的展示,可能用于安全监控、用户识别或交互式体验。 在“14、LayerStyle 副本”中,使用 YoloV8 模型可以检测人脸、手部 box 区域或者人物分割,支持输出所选择数量的通道。同时,Mediapipe 模型可以检测人脸五官,分割左右眉、眼睛、嘴唇和牙齿。
2025-04-12
本地人脸识别工具
以下为一些本地人脸识别工具的相关信息: PersonMaskUltra:为人物生成脸、头发、身体皮肤、衣服或配饰的遮罩。具有超高的边缘细节,模型代码来自。节点选项包括:face(脸部识别)、hair(头发识别)、body(身体皮肤识别)、clothes(衣服识别)、accessories(配饰识别)、background(背景识别)、confidence(识别阈值)、detail_range(边缘细节范围)、black_point(边缘黑色采样阈值)、white_point(边缘黑色采样阈值)、process_detail(设为 False 将跳过边缘处理以节省运行时间)。还有 V2 升级版 PersonMaskUltraV2,增加了 VITMatte 边缘处理方法,在 PersonMaskUltra 的基础上改变了 detail_method(边缘处理方法)、detail_erode(遮罩边缘向内侵蚀范围)、detail_dilate(遮罩边缘向外扩张范围)。 YoloV8Detect:使用 YoloV8 模型检测人脸、手部 box 区域,或者人物分割。支持输出所选择数量的通道。需在下载模型文件并放到 ComfyUI/models/yolo 文件夹。节点选项包括:yolo_model(yolo 模型选择)、mask_merge(选择合并的遮罩)。输出包括 mask(输出的遮罩)、yolo_plot_image(yolo 识别结果预览图)、yolo_masks(yolo 识别出来的所有遮罩)。 MediapipeFacialSegment:使用 Mediapipe 模型检测人脸五官,分割左右眉、眼睛、嘴唇和牙齿。节点选项包括:left_eye(左眼识别开关)、left_eyebrow(左眉识别开关)、right_eye(右眼识别开关)、right_eyebrow(右眉识别开关)、lips(嘴唇识别开关)、tooth(牙齿识别开关)。 此外,关于 AI 换脸,有开源免费的解决方案 facefusion: 本机解决方案:需要 python 环境及安装多个依赖软件,对编程知识有一定要求,且运行推理计算速度依赖 GPU,本地计算机若无 GPU 或 GPU 显存较小,执行速度缓慢,不推荐本地化安装。 云服务解决方案:可利用云厂商如阿里云的 PAI 和 AutoDL 已提供的大模型运行环境和计算能力,需产生一定费用。以 AutoDL 为例,注册后在算力市场中选择可接受价格的算力服务器,建议选取 GPU 配置更高的算力设备。通过在算法社区查找 facefusion 镜像,选择合适的镜像启动 GPU 服务器。
2025-04-12
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14
coze搭建工作流调用deepseek如何把模型的输出存入到多维表中
以下是将模型的输出存入到多维表中的步骤: 1. 逐步搭建 AI 智能体: 搭建整理入库工作流。 设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000,以确保能完整解析长内容网页。 进行日期转时间戳,后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需要使用「日期转时间戳time_stamp_13」插件进行格式转化。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以必须将之前得到的元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,只需要设置{{app_token}}与{{records}}参数,将元数据写入飞书表格。 2. 搭建 Coze 工作流: 打开 Coze 的主页,登录后,在【工作空间】创建一个智能体。 在编排页面,给智能体编辑好人设,可先写一个简单的,然后点右上角自动优化,系统会自动补全更精细的描述。点击工作流的+,创建一个工作流。 大模型节点把 input 给到 DeepSeek,让 DeepSeek 按照提前规定的输出框架生成对应文案。 生图节点将输出给到图像生成组件画图。 结束输出时,两个输出给到最终的 end 作为最终的输出。注意在编写系统提示词时,如果需要 input 可被 DeepSeek 调用,需要用{{input}}作为参数引入,不然大模型不知道自己需要生成和这个 input 相关的结果。编排完,点击【试运行】,调试至满意后点击发布。
2025-04-14