Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

自己的ai来源模型是什么

Answer

智谱·AI 的开源模型包括以下部分:

  • 其他模型:
    • WebGLM-10B:利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统,旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。
    • WebGLM-2B
    • MathGLM-2B:在训练数据充足的情况下,20 亿参数的 MathGLM 模型能够准确地执行多位算术运算,准确率几乎可以达到 100%,其结果显著超越最强大语言模型 GPT-4 在相同测试数据上 18.84%的准确率。
    • MathGLM-500M
    • MathGLM-100M
    • MathGLM-10M
    • MathGLM-Large:采用 GLM 的不同变体作为骨干来训练 MathGLM,包括具有 335M 参数的 GLM-large 和 GLM-10B。此外,还使用 ChatGLM-6B 和 ChatGLM2-6B 作为基座模型来训练 MathGLM。这些骨干模型赋予 MathGLM 基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。
  • 多模态模型:
    • CogAgent-18B:基于 CogVLM-17B 改进的开源视觉语言模型。CogAgent-18B 拥有 110 亿视觉参数和 70 亿语言参数,支持 1120*1120 分辨率的图像理解,在 CogVLM 功能的基础上,具备 GUI 图像的 Agent 能力。
    • CogVLM-17B:强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM 可以在不牺牲任何 NLP 任务性能的情况下,实现视觉语言特征的深度融合。
    • Visualglm-6B:一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM-6B,具有 62 亿参数;图像部分通过训练 BLIP2-Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。

部署和训练自己的 AI 开源模型的主要步骤如下:

  1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求选择合适的部署方式。
  2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。
  3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等作为基础,也可以自行训练一个基础模型。
  4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。
  5. 部署和调试模型,将训练好的模型部署到生产环境,对部署的模型进行在线调试和性能优化。
  6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。

总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。

Content generated by AI large model, please carefully verify (powered by aily)

References

智谱·AI 开源模型列表

以下模型,以便用户使用我们多元化的产品。|模型|介绍|代码链接|模型下载||-|-|-|-||WebGLM-10B|利用百亿参数通用语言模型(GLM)提供高效、经济的网络增强型问题解答系统。它旨在通过将网络搜索和检索功能集成到预训练的语言模型中,改进现实世界的应用部署。|[WebGLM](https://github.com/THUDM/WebGLM)|[Huggingface](https://huggingface.co/THUDM/WebGLM)||WebGLM-2B|||[Huggingface](https://huggingface.co/THUDM/WebGLM-2B)||MathGLM-2B|在训练数据充足的情况下,20亿参数的MathGLM模型能够准确地执行多位算术运算,准确率几乎可以达到100%,其结果显著超越最强大语言模型GPT-4在相同测试数据上18.84%的准确率。|[MathGLM](https://github.com/THUDM/MathGLM)|[THU-Cloud](https://cloud.tsinghua.edu.cn/d/cf429216289948d889a6/)||MathGLM-500M|||[THU-Cloud](https://cloud.tsinghua.edu.cn/d/c80046ec7e234be4831b/)||MathGLM-100M|||[THU-Cloud](https://cloud.tsinghua.edu.cn/d/a6ca369a212c4df08359/)||MathGLM-10M|||[THU-Cloud](https://cloud.tsinghua.edu.cn/d/16a914d6db2a4b8f80f5/)||MathGLM-Large|采用GLM的不同变体作为骨干来训练MathGLM,包括具有335M参数的GLM-large和GLM-10B。此外,还使用ChatGLM-6B和ChatGLM2-6B作为基座模型来训练MathGLM。这些骨干模型赋予MathGLM基本的语言理解能力,使其能够有效理解数学应用题中包含的语言信息。||[THU-Cloud](https://cloud.tsinghua.edu.cn/d/3d138deaf93441b196fb/)|

智谱·AI 开源模型列表

,我们推出了具有视觉和语言双模态的模型。|模型|介绍|代码链接|模型下载||-|-|-|-||CogAgent-18B|基于CogVLM-17B改进的开源视觉语言模型。CogAgent-18B拥有110亿视觉参数和70亿语言参数,支持1120*1120分辨率的图像理解,在CogVLM功能的基础上,具备GUI图像的Agent能力。|[CogVLM&CogAgent](https://github.com/THUDM/CogVLM)|[Huggingface](https://huggingface.co/THUDM/CogVLM)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/cogagent-chat/summary)|[Swanhub](https://swanhub.co/ZhipuAI/cogagent-chat-hf)|始智社区||CogVLM-17B|强大的开源视觉语言模型(VLM)。基于对视觉和语言信息之间融合的理解,CogVLM可以在不牺牲任何NLP任务性能的情况下,实现视觉语言特征的深度融合。我们训练的CogVLM-17B是目前多模态权威学术榜单上综合成绩第一的模型,在14个数据集上取得了state-of-the-art或者第二名的成绩。||[Huggingface](https://huggingface.co/THUDM/cogvlm-chat-hf)|[魔搭社区](https://modelscope.cn/models/AI-ModelScope/cogvlm-chat/summary)||Visualglm-6B|VisualGLM-6B是一个开源的,支持图像、中文和英文的多模态对话语言模型,语言模型基于[ChatGLM-6B](https://github.com/THUDM/ChatGLM-6B),具有62亿参数;图像部分通过训练[BLIP2-Qformer](https://arxiv.org/abs/2301.12597)构建起视觉模型与语言模型的桥梁,整体模型共78亿参数。|[VisuaGLM](https://github.com/THUDM/VisualGLM-6B)|[Huggingface](https://huggingface.co/THUDM/visualglm-6b)|[魔搭社区](https://modelscope.cn/models/ZhipuAI/visualglm-6b/summary)|

问:如何部署和训练自己的AI开源模型

根据搜索结果,以下是部署和训练自己的大模型的主要步骤:1.选择合适的部署方式本地环境部署云计算平台部署分布式部署模型压缩和量化公共云服务商部署根据自身的资源、安全和性能需求选择合适的部署方式。2.准备训练所需的数据和计算资源确保有足够的训练数据覆盖目标应用场景准备足够的计算资源,如GPU服务器或云计算资源3.选择合适的预训练模型作为基础可以使用开源的预训练模型如BERT、GPT等作为基础也可以自行训练一个基础模型4.针对目标任务进行模型微调训练根据具体应用场景对预训练模型进行微调训练优化模型结构和训练过程以提高性能5.部署和调试模型将训练好的模型部署到生产环境对部署的模型进行在线调试和性能优化6.注意安全性和隐私保护大模型涉及大量数据和隐私信息,需要重视安全性和合规性总的来说,部署和训练自己的大模型需要综合考虑多方面因素,包括部署方式、数据准备、模型训练、部署调试以及安全性等。需要根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。内容由AI大模型生成,请仔细甄别

Others are asking
我是一名会计从业者,可以怎样利用AI赚钱
作为一名会计从业者,您可以通过以下方式利用 AI 赚钱: 1. 利用生成式 AI 改进金融服务团队的内部流程,简化财务团队的日常工作流程。例如,帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析的自动化;发现模式,并从更广泛、更复杂的数据集中为预测建议输入,为公司决策提供依据。 2. 借助生成式 AI 自动创建文本、图表、图形等内容,并根据不同的示例调整报告,无需手动将数据和分析整合到外部和内部报告中。 3. 利用生成式 AI 综合、总结税法和潜在的扣除项,并就其提出可能的答案。 4. 利用生成式 AI 自动生成和调整合同、采购订单和发票以及提醒。 此外,您还可以研究 Prompt 提示词,例如像雪梅 May 那样,尝试不同的方法,让 AI 识别会计分类,训练出一个在会计专业领域能提高效率的 AI。
2025-01-31
总结一下当前AI发展现状以及指导非开发者一类的普通用户如何使用及进阶使相关工具
当前 AI 发展现状: 涵盖了不同领域的应用和发展,如电子小说行业等。 包括了智能体的 API 调用、bot 串联和网页内容推送等方面。 对于非开发者一类的普通用户使用及进阶相关工具的指导: 可以先从国内模型工具入手,这些工具不花钱。 学习从提示词开始,与模型对话时要把话说清,强调提示词在与各类模型对话中的重要性及结构化提示词的优势。 对于技术爱好者:从小项目开始,如搭建简单博客或自动化脚本;探索 AI 编程工具,如 GitHub Copilot 或 Cursor;参与 AI 社区交流经验;构建 AI 驱动的项目。 对于内容创作者:利用 AI 辅助头脑风暴;建立 AI 写作流程,从生成大纲开始;进行多语言内容探索;利用 AI 工具优化 SEO。 若想深入学习美学概念和操作可报野菩萨课程。国内模型指令遵循能力较弱时,可使用 launch BD 尝试解决。
2025-01-31
怎么制作一个AI agent?
制作一个 AI Agent 通常有以下几种方式和步骤: 方式: 1. Prompttuning:通过 Prompt 来构建大脑模块,但一般适合拟人化不是很重的情况,其缺点是使用的 Prompt 越长,消耗的 Token 越多,推理成本较高。 2. Finetuning:针对“有趣的灵魂”,通过微调一个定向模型来实现,能将信息直接“记忆”在 AI 的“大脑模块”中,提高信息提取效率,减少处理数据量,优化性能和成本。 3. Prompttuning + Finetuning:对于复杂情况,一般是两种方式结合。 步骤(以工作流驱动的 Agent 为例): 1. 规划: 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。
2025-01-31
ai发展现状
目前 AI 的发展现状呈现出以下特点: 1. 持续学习和跟进是关键:AI 是快速发展的领域,新成果和技术不断涌现。要通过关注新闻、博客、论坛和社交媒体,加入社群和组织,参加研讨会等方式保持对最新发展的了解。 2. 《2024 年度 AI 十大趋势报告》发布:从技术、产品、行业三个维度勾勒 AI 现状和未来走势,基于长期理解和积淀,持续跟踪领域创新、洗牌和动态,并结合与众多机构的交流。 3. 2024 年人工智能现状: 更多资金投入:预计明年会有团队花费超 10 亿美元训练单个大型模型,生成式 AI 热潮持续且更“奢华”。 计算压力挑战:政府和大型科技公司承受计算需求压力,逼近电网极限。 AI 介入选举:虽预期影响尚未成真,但不能掉以轻心。 总之,人工智能领域充满惊喜、伦理挑战和大量资金,各方势力竞相角逐,像一场激动人心的 UFC 比赛。
2025-01-31
如何用AI写新闻
以下是关于如何用 AI 写新闻的相关内容: 好用的 AI 新闻写作工具: 1. Copy.ai:功能强大,提供丰富的新闻写作模板和功能,可快速生成新闻标题、摘要、正文等,节省写作时间并提高效率。 2. Writesonic:专注写作,提供新闻稿件生成、标题生成、摘要提取等功能,智能算法能根据用户信息生成高质量新闻内容,适合新闻写作和编辑人员。 3. Jasper AI:主打博客和营销文案,也可用于生成新闻类内容,写作质量较高,支持多种语言。 儿童新闻百事通的相关内容: 1. 新闻获取:通过插件实现新闻搜索。 2. 新闻可信度分析:根据搜索的新闻内容,通过大模型推理,列出判断依据,包括来源检查、信息一致性、官方通知、详细性与具体性、社会知晓度、矛盾信息等,并对新闻进行评分。 3. 新闻转写:用户提供新闻关键词,bot 调用插件搜索对应的新闻信息,并转写成 6 12 岁儿童能听懂(看懂)的新闻,工作流内嵌入新闻搜索插件,运用大模型进行转写,再采用卡片形式输出。 4. 新闻故事创作:根据转写后的新闻内容,生成适合儿童读的新闻故事,对新闻内容进行拓展和再次创作,采用两层工作流嵌套的方式实现。 搭建 AI 工作流: 搭建 AI 工作流不是一蹴而就的,是一个不断迭代优化的过程。要培养 AI 工作流思维习惯,遇到事情思考“这个事情 AI 能帮我做什么”。接下来会用公众号写作场景实战演示如何梳理一套 AI 工作流,详细拆解公众号写作的工作流,梳理出可嵌入 AI 工具的关键节点,提供可落地执行的 AI 写作提效方案。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-31
如何用AI写作
利用 AI 写作可以参考以下步骤和方法: 1. 确定课题主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具帮助撰写文献综述部分,确保内容准确完整。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术设计研究方法。 7. 数据分析:若课题涉及数据收集和分析,使用 AI 数据分析工具处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具撰写课题各部分,并进行语法和风格检查。 9. 生成参考文献:使用 AI 文献管理工具生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具检查课题的逻辑性和一致性,并根据反馈修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具确保课题的原创性,并进行最后的格式调整。 要写出比人更好的文字,需注意: 1. 选好模型:模型能力差异大,不适合任务的模型调优费力,应选适合的模型。 2. 评估模型:写作任务无标准答案,需从实际角度自行评估模型的文风和语言能力、是否有过度道德说教与正面描述趋势、in context learning 能力和遵循复杂指令的能力等。 3. 克服文风:去除“AI 味”,避免出现如“首先、其次、再者、引人入胜”这类套话。 但需记住,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维,使用时应保持批判性思维,确保研究质量和学术诚信。
2025-01-31
deepseek的多模态大模型?
DeepSeek 发布了大一统模型 JanusPro,将图像理解和生成统一在一个模型中。以下是关于该模型的一些重要信息: 最新消息:DeepSeek 深夜发布该模型,它是一个强大的框架。 特点: 统一了多模态理解和生成,通过将视觉编码解耦为独立路径解决先前方法的局限性,利用单一的统一 Transformer 架构进行处理,缓解了视觉编码器在理解和生成中的角色冲突,增强了框架的灵活性。 超越了之前的统一模型,匹配或超过了特定任务模型的性能,其简单性、高灵活性和有效性使其成为下一代统一多模态模型的有力候选者。 规模:提供 1B 和 7B 两种规模,适配多元应用场景。 开源及商用:全面开源,支持商用,采用 MIT 协议,部署使用便捷。 测试案例: 模型直接支持中文交互(图像理解+图像生成)。 云上 L4 测试,显存需 22GB。 图像生成速度约 15s/张。 图像理解质量方面,文字和信息识别基本准确,内容理解完整清晰,局部细节有欠缺。 Colab(需 Pro,因需 20GB 以上显存):https://colab.research.google.com/drive/1V3bH2oxhikj_B_EYy5yRG_9yqSqxxqgS?usp=sharing 模型地址: 7B 模型:https://huggingface.co/deepseekai/JanusPro7B 1B 模型:https://huggingface.co/deepseekai/JanusPro1B 下载地址:https://github.com/deepseekai/Janus
2025-01-30
怎样构建一个自己专业的AI小模型
构建一个自己专业的 AI 小模型可以参考以下步骤: 1. 搭建 OneAPI:这是为了汇聚整合多种大模型接口,方便后续更换使用各种大模型,同时了解如何白嫖大模型接口。 2. 搭建 FastGpt:这是一个知识库问答系统,将知识文件放入,接入上面的大模型作为分析知识库的大脑,最后回答问题。如果不想接到微信,搭建完此系统就可以,它也有问答界面。 3. 搭建 chatgptonwechat 并接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。若想拓展功能,可参考 Yaki.eth 同学的教程,里面的 cow 插件能进行文件总结、MJ 绘画等。 部署和训练自己的 AI 开源模型的主要步骤如下: 1. 选择合适的部署方式,包括本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 大模型的构建过程包括: 1. 收集海量数据:像教孩子成为博学多才的人一样,让模型阅读大量的文本数据,如互联网上的文章、书籍、维基百科条目、社交媒体帖子等。 2. 预处理数据:清理和组织收集到的数据,如删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。 3. 设计模型架构:为模型设计“大脑”结构,通常是一个复杂的神经网络,如使用 Transformer 架构。 4. 训练模型:让模型“阅读”提供的数据,通过反复尝试预测句子中的下一个词等方式,逐渐学会理解和生成人类语言。
2025-01-29
现在最好的AI大模型
目前较为出色的 AI 大模型包括: 1. GPT4(免费可用):是 OpenAI 在深度学习规模扩大方面的最新里程碑,是一个大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。 2. Midjourney v5(免费):具有极高的一致性,擅长以更高分辨率解释自然语言 prompt,并支持像使用 tile 这样的重复图案等高级功能,能生成令人惊叹的逼真 AI 图像。 3. DALL·E 3(免费可用):代表了生成完全符合文本的图像能力的一大飞跃,能轻松将想法转化为极其精准的图像。 4. Mistral 7B(免费):是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 此外,在主要的大语言模型方面: 1. OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型。 2. 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是一个名叫 PaLM 2 的模型。 3. Anthropic 发布了 Claude 2,其最值得注意的是有一个非常大的上下文窗口。
2025-01-29
你好,你是什么模型?
您好,我是一名 AI 知识专家,能够为您提供全面的 AI 知识指导和解答相关问题。 关于模型方面的知识: LoRA 和 LyCORIS 都属于微调模型,常用于控制画风、生成的角色、角色姿势等。它们的后缀均为.safetensors,体积较主模型小,一般在 4M 300M 之间,使用 LoRA 模型较多,LyCORIS 可调节范围更大,现在 SD 已内置。在 WebUl 中使用时,可在 LoRA 菜单中点击使用,也可直接使用 Prompt 调用。 在 Tusiart 中,首页有模型、帖子、排行榜,展示了大手子炼成的模型和图片。生图必需基础模型(Checkpoint),任何生图操作必须选定一个 Checkpoint 模型才能开始,lora 是低阶自适应模型,可有可无,但对细节控制有价值。ControlNet 可控制图片中特定图像,VAE 类似于滤镜调整生图饱和度,选择 840000 即可。Prompt 提示词是想要 AI 生成的内容,负向提示词是想要 AI 避免产生的内容。还有图生图,即上传图片后 SD 会根据相关信息重绘。 如果您想搭建类似的群问答机器人,可以参考以下内容:
2025-01-28
为什么要布置大模型到本地
布置大模型到本地主要有以下原因: 1. 无需科学上网,也无需支付高昂的 ChatGPT 会员费用。 2. 可以通过 Web UI 实现和大模型进行对话的功能,如 Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题),这也是构建知识库的基础之一。 3. 能够更加灵活地掌握个人知识库。 但需要注意的是,运行大模型需要很高的机器配置: 1. 生成文字大模型,最低配置为 8G RAM + 4G VRAM,建议配置为 16G RAM + 8G VRAM,理想配置为 32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型)。 2. 生成图片大模型(比如跑 SD),最低配置为 16G RAM + 4G VRAM,建议配置为 32G RAM + 12G VRAM。 3. 生成音频大模型,最低配置为 8G VRAM,建议配置为 24G VRAM。 个人玩家的大多数机器可能负担不起,最低配置运行速度非常慢。但亲自实操一遍可以加深对大模型构建的知识库底层原理的了解。
2025-01-27
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
优秀的来源大模型有哪些
以下是一些优秀的大模型: Google 的 T5:属于 encoderdecoder 类型的模型,适用于翻译和摘要等任务。 OpenAI 的 GPT3:预训练数据量大,参数众多,能根据用户输入的任务描述或示例完成任务。 ChatGPT:用户通过像和人类对话的方式即可完成任务。 国内的优秀大模型有: 智谱清言(清华&智谱 AI):基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三,更擅长专业能力,但代码能力有优化空间,知识百科稍显不足。可应用于 AI 智能体、较复杂推理、广告文案、文学写作等场景。 通义千问 2.0(阿里云):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡。聚焦在移动设备端的应用,涵盖知识、记忆、工具、创作等方向,支持多种工具和文生文、文生图等场景。 Baichuan213BChat(百川智能):百川智能自主训练的开源大语言模型,是中文开源模型的主导力量。
2024-12-28
国内外最好的来源大模型有哪些 对比介绍一下
以下是国内外一些较好的大模型及其对比介绍: 国外大模型: GPT4 Turbo 总分 90.63 分遥遥领先,在各项能力上表现出色。 国内大模型: 文心一言 4.0(API)总分 79.02 分,过去 1 年有长足进步。 通义千问 2.0(阿里云):在代码、上下文对话基础能力上排名国内第一,各项能力较为均衡,位于国内大模型第一梯队,适合应用于金融、医疗、汽车等垂直专业场景及代码生成与纠错等场景。 AndesGPT(OPPO):在语言理解与抽取、角色扮演能力上排名国内前一,在代码、生成与创作、上下文对话能力上排名国内前三,各项能力较为均衡,聚焦在移动设备端的应用。 百川智能的 Baichuan213BChat:是中文开源模型的主导力量,在中文上表现优于国外开源模型。 在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,但国内外的平均水平差距在缩小。另外,国内开源模型在中文上表现要好于国外开源模型。
2024-12-28
AI数据来源
以下是关于生成式 AI 不同领域 2024 年 1 3 月的季度数据报告: 文字 社交: 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 3 月个人视频访问量为 71 万。 赛道方面:天花板潜力为 14 亿美金,对标公司无,总体趋势下滑严重,月平均增速为 5.7 万 PV/月,原生产品占比低,多为原有换脸产品升级。 竞争方面:Top1 占比 76%,Top3 占比 92%,马太效应较强,网络效应弱,大厂未入局,大厂占比低,技术门槛中。 Top1 公司(非大厂)为 Deepfakes Web,其最新月 PV 为 54 万。 音频大类: 网址:aiwatch.ai 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 赛道方面:天花板潜力为 200 亿美金,对标公司为 Spotify,总体趋势高速增长,月平均增速为 522 万 PV/月,原生产品占比高。 竞争方面:Top1 占比 33%,Top3 占比 53%,马太效应中,网络效应较高,大厂已入局,大厂占比低,技术门槛高。 Top1 公司(非大厂)为 sunoAI,其 3 月 PV 为 2192 万,单用户 PV 价值为 0.27 美元。 文字 教育: 网址:aiwatch.ai 数据来源:Similarweb,Visit,单位为万,变化公式为 3 月/2 月 1 100%。 赛道方面:天花板潜力约 30 亿,对标公司为 Chegg,总体趋势快速增长,月平均增速为 1793 万 PV/月,原生产品占比低。 竞争方面:Top1 占比 45%,Top3 占比 76%,马太效应弱,网络效应弱,大厂未入局,大厂占比低,技术门槛中。 Top1 公司(非大厂)为 Quizlet,其估值为 10 亿美元(2020.5),3 月 PV 为 1.3 亿,收入约 7500 万美元(2023),PS 为 13.3x,单用户 PV 价值为 7.5 美元。
2024-12-04
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
你的知识库来源于哪里
我的知识库来源较为广泛,包括以下方面: 符号人工智能的早期成就之一——专家系统,其基于从人类专家提取的知识库,并包含推理引擎进行推理。专家系统包含问题记忆、知识库、推理引擎等部分。 “通往 AGI 之路「WaytoAGI」,这是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。 扣子的知识库,功能强大,可上传和存储外部知识内容,并提供多种查找知识的方法,能解决大模型的某些问题,使其回复更准确。
2024-11-13
字节跳动旗下的即梦AI的模型来源是什么?以及它的数据训练库
目前没有关于字节跳动旗下即梦 AI 的模型来源以及数据训练库的准确和详细信息。但一般来说,AI 模型的训练数据可能来自多种来源,如维基百科、书籍、期刊、网络采集的图片/标题等。同时,在训练过程中可能会使用开源架构,并进行原创性的优化和突破。但对于即梦 AI 具体的情况,还需要更多确切的官方公布内容。
2024-08-25