Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI无法替代人工的行业

Answer

以下是一些 AI 无法替代人工的行业:

  1. 医疗行业:虽然 AI 在医疗领域有一定应用,但在一些方面仍无法替代人工。例如,AI 诊疗存在模型准确性问题,责任界定复杂,商业模式也面临诸多挑战,如患者付费意愿低、医院采购动力不足等。在医疗保健和生物技术领域,仍大量依赖受过专业培训的科学家和医生提供服务,这些服务是算法难以替代的。
  2. 服务行业:如需要与人进行深度情感交流、提供个性化关怀和复杂问题解决的服务。

需要注意的是,随着技术的发展,AI 与人工的关系也在不断变化,AI 可能会在某些方面辅助和改进这些行业,但完全替代仍面临诸多困难和限制。

Content generated by AI large model, please carefully verify (powered by aily)

References

健康:AI x 医疗 | 难解的必答题

“责任界定”不是问题,问题是模型准确性一直以来对于“AI替代人”这个话题,有个很流行的话术是“AI无法替代律师、医生,因为它不能背锅”。但我认为,“AI独立诊疗”的情况下,即使AI没有实体无法承担责任,但AI所属的公司、牌照发放单位甚至是保险公司是完全可以承担责任的。“不能背锅”本质上还是“背不起这个锅”-按照现在的AI模型准确率,公司承担不起赔偿。AI诊疗的另一个重要难题是商业模式:患者付费(2C):中国消费者对于线上服务付费的意愿远低于美国。在准确性不高的条件下,AI问诊直接按次收费还不现实。目前的空间主要在美团买药、阿里健康等平台上作为服务包的一部分。但作为创业公司,除非有能力比大平台AI能力更强,否则机会有限。医院付费(2B):医院只会为能够增加收入和降低成本项目付费,且“增加收入”>>“降低成本”。如果AI诊疗只能降低成本,那么在公立医院预算普遍不足+采购流程复杂的情况下,医院是缺乏动力的(同理也适用于其他医院管理提效类的应用)。只有医院被允许对AI服务进行收费时,AI诊疗才能进得了医院。此外全国知名的头部医院用有极强的品牌优势,未来的商业模式一定是技术公司与头部医院合作推出服务服务全省乃至全国。政府/医保付费(2G):在医疗普惠、医保降本的背景下,政府直接采购的机会比患者和医院采购更大。如前面分析,AI诊疗进医保才是最终解决方案。我认为这一天一定会来,但前提是AI的准确率要能做上去。

智变时代 / 全面理解机器智能与生成式 AI 加速的新工业革命

就像李飞飞在TED演讲中所描述的:“在那片原始海洋中,也就是我们的远古时代,眼睛的出现引发了寒武纪生命的大爆发。今天,这束光正在照进数字的心灵。空间智能使机器不仅能够相互交互,还能与人类以及真实或虚拟的三维世界进行交互。随着这个未来成为现实,它将对许多人的生活产生深远的影响。”回应本章开头的结论,如果我们能够提升全世界的智能供应,那将普惠到所有行业,尤其是通过人工来进行生产与服务的行业。当智能让机器更加灵巧,能源的充沛让智能无限便宜的时候,我们复制原子的成本就会将接近复制比特的成本,在《数字重塑人生》一文中详细讨论了这个话题。在智能时代,将劳动力支出转化为研发支出将改变公司的成本结构,虽然这需要更多的前期投资,但能降低生产和服务的边际成本。软件行业是这里的代表,它应该是法律许可的行业内,利润率最高的行业之一了。软件业的研发投入的平均比例为17.7%,科研服务的投入略高一些,大约为26.3%,这里包括了生物技术、纳米技术、先进材料和可再生能源等;但相比之下,制造业的占比为5%,而金融和保险业仅为为0.6%。如果这些行业的研发投入比能提高,那每个行业都会看起来更像软件行业,更快的增长,更高的利润和更多的研发。然而,这里真正的大机会是:大部分经济可能看起来像SaaS模式,有更深的护城河、更高的转换成本、有意义的经济规模,甚至是网络效应。例如,还在萌芽期的RoboTaxi服务如果能够顺利启动和运行,它将具备上述所有的特点。

新工业革命:生物技术×人工智能

我们今天正站在这个转折点上。直到现在,医疗保健和生物技术仍然大量依赖服务——由受过专业培训的科学家和[医生](https://a16z.com/2019/06/13/ai-doctor-deep-medicine-topol/)提供——这些服务是算法无法替代的,更不用说为公司增加足够的价值来采纳它们了。但现在,我们正处于一个革命的起点,[AI正在](https://a16z.com/2019/11/19/ai-industrializing-discovery-biology-healthcare/)工业化生物制药和医疗保健,它被应用于从[药物设计](https://a16z.com/2020/05/26/investing-insitro/)和[诊断](https://a16z.com/2017/03/01/going-deeper-into-freenome/)到[医疗保健交付](https://a16z.com/2021/07/12/investing-in-bayesian-health/)和[后勤功能](https://a16z.com/2021/02/09/administration-healthcare-back-office-innovation/)的各个方面。(关于在生物学中应用AI的讨论经常出现的问题或挑战,我在[此处](https://a16z.com/2018/02/28/black-box-problem-ai-healthcare/)解决了医疗保健中AI的“黑箱”问题;并在[此处](https://a16z.com/2021/06/15/ai-is-too-dumb-for-now-2/)解决了我们获取智能[与“愚蠢”]AI的需求问题。)[heading4]但现在,我们正处于一个革命的起点,AI正在使生物制药和医疗保健产业化,并且它被应用到从药物设计和诊

Others are asking
我是一个新手,如何搭建AI智能体?
搭建 AI 智能体的步骤如下: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 4. 把配置好的工作流添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可以按照需求和实际效果进行优化调整)。 AI 智能体就像员工或智能助手,能根据设定的工作流自动调用不同的 AI 工具完成全流程任务。例如要写一篇文章,可以设计一个“写作助手”的 AI 智能体,在文本框输入文章的主题、风格和要求,它会自动完成文章大纲处理、初稿撰写、修改润色和排版等工作,无需人类干预,大大提高效率。
2025-01-12
我应该从哪里开始学ai
以下是为您提供的新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解人工智能是什么,其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,这些是 AI 和机器学习的基础。 学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-01-12
怎么让ai成片
要让 AI 成片,可以参考以下步骤: 1. 构思故事: 原创(直接经验):基于您或您周围人的经历、做过的梦、想象的故事等。 改编(间接经验):对经典 IP、名著、新闻、二创等进行改编。 剧本写作:编剧有一定门槛,建议先写再看书,不断实践、完善和总结经验。短片创作可从自身或朋友经历改编入手,或对触动您的短篇故事进行改编,并多与他人讨论。 2. 生成带有文本提示和图像的视频: 在 Advanced 部分,使用 Seed 选项添加种子编号,控制 AI 创作的随机性。相同的种子、提示和控制设置可重新生成类似的视频剪辑。然后选择 Generate 生成。 3. 将小说做成视频的流程: 小说内容分析:使用 AI 工具(如 ChatGPT)提取关键场景、角色和情节。 生成角色与场景描述:用工具(如 Stable Diffusion 或 Midjourney)生成视觉描述。 图像生成:使用 AI 图像生成工具创建角色和场景的图像。 视频脚本制作:将提取的关键点和生成的图像组合成脚本。 音频制作:利用 AI 配音工具(如 Adobe Firefly)转换语音,添加背景音乐和音效。 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)合成视频。 后期处理:剪辑、添加特效和转场,提高视频质量。 审阅与调整:观看视频,根据需要调整。 输出与分享:完成编辑后输出最终视频并分享。 请注意,具体操作步骤和所需工具可能因项目需求和个人偏好不同而有所差异。AI 工具的可用性和功能也可能变化,建议访问相关工具网址获取最新信息和使用指南。同时,内容由 AI 大模型生成,请仔细甄别。
2025-01-12
Ai是什么
AI 是一门令人兴奋的科学,它是某种模仿人类思维可以理解自然语言并输出自然语言的东西,其生态位是一种似人而非人的存在。 对于没有理工科背景的人来说,把 AI 当成一个黑箱即可,只需要知道它能理解自然语言并输出自然语言。 最初,计算机是按照明确定义的程序(即算法)来对数字进行运算。但对于像“根据照片判断一个人的年龄”这类无法明确编程的任务,因为我们不清楚大脑完成此任务的具体步骤,所以无法编写明确程序让计算机完成,而这类任务正是 AI 所感兴趣的。 AI 已经渗透到各行各业,以下是一些主要应用场景: 1. 医疗保健:包括医学影像分析、药物研发、个性化医疗、机器人辅助手术等。 2. 金融服务:涵盖风控和反欺诈、信用评估、投资分析、客户服务等。 3. 零售和电子商务:有产品推荐、搜索和个性化、动态定价、聊天机器人等。 4. 制造业:包含预测性维护、质量控制、供应链管理、机器人自动化等。 5. 交通运输:(此处未具体提及相关应用)
2025-01-12
你是用的什么AI引擎?
以下为为您提供的关于 AI 引擎的相关信息: Inworld AI 角色引擎:这是一家专注于游戏和人工智能的初创公司开发的引擎。它可以将游戏的 NPC 进行 AI 化并集成到游戏中,超越了大语言模型,增加了可配置的安全性、知识、记忆、叙事控制、多模态等功能。能使 NPC 自我学习和适应,具有情绪智能,创建具有独特个性和上下文意识的角色,这些角色可以无缝集成到实时应用中。其功能包括目标和行动、长期记忆、个性、情绪等。例如,目标和行动方面,可使用定义的触发器、意图识别和动机来触发角色对玩家行为的反应,并在游戏中驱动交互;长期记忆方面,角色以类似人类的记忆功能操作,从闪存和长期记忆中检索信息;个性方面,通过使用自然语言创建不同的个性,添加丰富细节使角色生动;情绪方面,角色能够对与用户的互动表达情绪。 NVIDIA ACE:全新 AI 游戏角色引擎,让 NPC 不再机械化,而是拥有感知、思考、决策和行动能力。虚拟角色可与玩家互动、适应环境变化,并根据玩家行为进行调整,成为“活角色”。
2025-01-12
aiagent智能体是从什么时候开始实现的
AI Agent 的概念起源可以追溯到达特茅斯会议开始讨论人工智能(Artificial Intelligence),之后马文·明斯基引入“Agent”概念,至此“AI”和“Agent”彻底聚齐。心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果,这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。明斯基在《心灵社会》中还详细描述了不同类型的 Agent 及其功能,如专家 Agent、管理 Agent、学习 Agent 等。
2025-01-12
2024年人工智能指数报告 下载
以下是为您提供的 2024 年人工智能指数报告的相关下载信息: 1. 《》由微软和领英联合发布,揭示了人工智能(AI)在工作场所的快速增长和深远影响。 2. 可在知识星球下载的报告: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 3. 《》数据处理应从模型为中心转向数据为中心,并强调向量数据库在提升模型服务能力中的核心作用。 4. 斯坦福大学发布的基础模型透明度指数相关报告:在上一届 SOAI 发布后不久,斯坦福大学发布了其首个基础模型透明度指数,模型开发者的平均得分为 37 分。在团队的中期更新中,这一分数攀升至 58 分。2024 年 5 月,该指数的最新一期基于 100 项指标,评估了 14 家领先的基础模型开发者的透明度,这些指标涵盖“上游”因素数据、劳动力、计算、围绕能力和风险的“模型级”因素、围绕分布的“下游”标准以及社会影响。计算和使用政策的评分出现了最强劲的改善,而“上游”评分仍然疲弱。 5. 《2024 年人工智能现状:辉煌、戏谑和“牛市”》报告链接:
2025-01-11
2024年人工智能指数报告
以下是关于 2024 年人工智能指数报告的相关内容: 斯坦福大学发布的基础模型透明度指数显示,模型开发者的平均得分从最初的 37 分攀升至中期更新的 58 分。2024 年 5 月的最新一期基于 100 项指标评估了 14 家领先的基础模型开发者的透明度,其中计算和使用政策的评分改善强劲,“上游”评分仍疲弱。 2024 年 AI 年度报告的十大预测包括:好莱坞级别的制作公司开始使用生成式人工智能制作视觉特效;美国联邦贸易委员会或英国竞争与市场管理局基于竞争理由调查微软/OpenAI 的交易;在全球人工智能治理方面进展有限;一首由人工智能创作的歌曲进入公告牌 Hot 100 前 10 名或 Spotify 2024 年热门榜单;随着推理工作负载和成本的显著增长,一家大型人工智能公司收购或建立专注于推理的人工智能芯片公司。同时也有错误预测,如生成式人工智能媒体公司在 2024 年美国选举期间的滥用行为未受到调查,自我改进的人工智能智能体在复杂环境中未超越现有技术最高水平。 预测还覆盖了人工智能领域的多个方面,如主权国家向美国大型人工智能实验室投资超 100 亿美元引发国家安全审查;完全无编码能力的人创建的应用或网站走红;前沿实验室在案件审判后对数据收集实践方式发生重大转变;早期欧盟人工智能法案实施结果比预期宽松;开源的 OpenAI o1 替代品在推理基准测试中超越;挑战者未能突破英伟达市场地位;对人形机器人投资水平下降;苹果在设备上的研究成果加速个人设备上人工智能的发展;人工智能科学家生成的研究论文被主要机器学习会议或研讨会接受;以“生成式人工智能”为元素互动的视频游戏取得突破性地位。
2025-01-11
人工智能构建第二大脑
以下是关于人工智能构建第二大脑的相关内容: 信息到智慧的进化是一个动态、渐进的过程,不仅需要外部信息输入,还需内部认知加工。随着人工智能技术发展,这一进程极大加速和优化。AI 能帮助更快收集处理信息、构建知识体系,甚至模拟人类决策过程。 信息、知识、智慧是人类认知和决策的三个层次,相互联系作用。在 AI 时代,有更多工具和方法加速从信息到智慧的进化,构建高效知识管理体系。 从信息到知识:Forte 强调“外部大脑”概念,利用数字工具和系统存储思考、想法和信息,释放认知负担,专注创意和高阶思考。可使用数字笔记工具记录,通过分类、标签或链接关联零散信息形成知识网络,对信息深加工提炼知识。 从知识到智慧:智慧形成不仅需知识积累,更要深刻理解和应用。Forte 提倡复盘和整合,复盘指定期回顾笔记和想法加深理解发现新联系,整合指将新理解和旧知识融合形成更全面深入见解。通过不断复盘和整合,将知识内化为理解和智慧,可能涉及跨领域知识融合、问题解决策略创新或对复杂系统深刻洞察。 AI 时代的信息到智慧进化:这一进化过程加速,AI 和机器学习技术可处理分析大量信息,识别模式联系,通过智能推荐等功能提高从信息到知识转化效率,辅助决策分析等应用模拟扩展人类智慧。结合《打造第二大脑》理论和 AI 技术发展,人类知识管理和智慧发展处于全新充满可能的时代,个人和组织通过高效信息管理可提升生产力创造力,形成独到智慧见解。在信息泛滥时代,引入 DIKW 模型和 CODE 信息管理法则可提供更深刻理解和实践指导。 此外,构建外脑的核心是思维方式与执行方法,虽核心不是工具,但好工具能提升效率。在智能时代,处理语言与数据效率指数级提升,影响软件工具使用、设计及对知识管理与传播的认知方式。
2025-01-11
人工智能赋能教学创新工作坊
以下是关于“智慧课程培育建设暨人工智能赋能教学创新工作坊”的相关信息: 举办时间:2024 年 9 月 20 日—9 月 23 日 举办地点:云南·昆明 举办方:知行教师发展平台 参与人员:苏永康(上海交通大学)、张翼然(湖南农业大学) 相关内容: 工具推荐:Bot.360.com 多模型竞技,选取最佳答案;用 heyGen 定制“数字分身”。 智慧课程设计方面:包括 AI 助力教学设计、生成式 AI 对课件制作与微课生成的变革、学情分析与作业测评中 AI 的引领作用、教育数字化转型中的人机协同创新、数据智能化中 AI 对数据收集与可视化的加速,以及案例分析与实践反馈。 学情分析与作业测评方面:主观题 AI 辅助批改的策略与实践,以及 Q&A AI 助力作业测评的未来想象,并分享了相关案例。 人工智能深度融入教学过程:由张翼然(湖南农业大学教育学院教育技术系副教授,拥有国家教学成果奖、国家级和省级精品在线课程、省级教学竞赛一等奖、省级金课,是苹果认证教师、技术派教师)进行讲解。
2025-01-11
六个子主题中:“不伤害”;比例;非歧视;可持续性;人类与人工智能互动中的人类决定;透明度和可解释性。
以下是关于欧洲议会和欧盟理事会对人工智能规定的相关内容: 1. 基于风险的方法是一套成比例和有效的约束性规则的基础,回顾委员会任命的独立人工智能高级别专家组 2019 年制定的《值得信赖的人工智能的伦理准则》很重要。其中包含七项不具约束力的人工智能伦理原则,有助于确保人工智能值得信赖且符合伦理道德。 人类主体和监督:人工智能系统的开发和使用应为人服务,尊重人的尊严和自主权,运行方式可由人类控制和监督。 技术稳健性和安全性:开发和使用方式应在出现问题时保持稳健,抵御试图改变系统使用或性能的行为,减少意外伤害。 隐私和数据治理:符合现有隐私和数据保护规则,处理的数据质量和完整性符合高标准。 透明度:开发和使用方式应允许适当的可追溯性和可解释性,让人类意识到交流或互动,并告知部署者系统的能力和局限性以及受影响者的权利。 多样性、非歧视和公平:开发和使用方式应包括不同参与者,促进平等获取、性别平等和文化多样性,避免歧视性影响和不公平偏见。 社会和环境福祉:未具体阐述。 问责制:未具体阐述。 2. 评估人工智能系统潜在风险时应考虑的因素包括: 人工智能系统的预期目的。 已使用或可能使用人工智能系统的程度。 人工智能系统处理和使用的数据的性质和数量,特别是是否处理特殊类别的个人数据。 人工智能系统自主性的程度,以及人类推翻可能导致潜在伤害的决定或建议的可能性。 人工智能系统的使用在多大程度上已经对健康和安全造成了损害,对基本权利产生了不利的影响,或在多大程度上引起了人们对这种损害或不利影响的可能性的严重关注,例如相关报告或指控所表明的情况。 这种损害或不利影响的潜在程度,特别是其严重程度及其影响多数人或不成比例地影响特定群体的能力。 可能受到伤害或不利影响的人在多大程度上依赖人工智能系统产生的结果,特别是由于实际或法律原因而无法合理地选择不接受该结果。 权力不平衡的程度,或可能受到伤害或不利影响的人相对于人工智能系统部署者而言处于弱势地位的程度,特别是由于地位、权力、知识、经济或社会环境或年龄等原因。 人工智能系统产生的结果在多大程度上易于纠正或逆转,同时考虑到现有的纠正或逆转的技术解决方案,其中对健康、安全、基本权利有不利影响的结果不应被视为易于纠正或逆转。 部署人工智能系统对个人、群体或整个社会的好处的程度和可能性,包括对产品安全的可能改进。 现有欧盟立法在多大程度上规定了相关内容。
2025-01-11
人工智能伦理策略
以下是关于人工智能伦理策略的相关内容: 英国国防部:2022 年 6 月发布了自身的 AI 伦理原则和政策,确定了英国政府在人工智能赋能军事能力方面的方法。将通过特定情境的方法确保该政策应用的适当一致性和协调性,从而促进英国在国防领域使用人工智能方面的领导地位。在引入任何法定责任之前,会考虑是否需要豁免以允许现有监管机构(如在国家安全等领域工作的机构)继续其领域级别的方法。 欧盟:欧洲议会和欧盟理事会规定了人工智能的统一规则,并修正了一系列条例。人工智能是一个快速发展的技术族,能带来广泛的经济、环境和社会效益,如改进预测、优化运营等,但也可能根据具体应用、使用情况和技术发展水平产生风险,对受欧盟法律保护的公共利益和基本权利造成损害。鉴于其可能的重大影响和建立信任的必要性,人工智能及其监管框架的发展必须符合欧盟价值观、基本权利和自由,应以人为本,最终目的是提高人类福祉。为确保在健康、安全和基本权利方面对公众利益提供一致和高水平的保护,应为所有高风险人工智能系统制定统一规则,这些规则应与《宪章》一致,非歧视性,并符合欧盟国际贸易承诺,还应考虑相关宣言、原则和准则。 AI 应用专家的实战经验: 企业管理者:在小规模决策中使用 AI 分析工具作为决策参考,制定 AI 工具使用的培训计划,识别可能受益于 AI 自动化的重复性任务并测试解决方案效果,制定公司的 AI 使用政策确保符合伦理标准和法律要求。 教育工作者:尝试使用 AI 辅助教案设计、为学生制定个性化学习计划、将 AI 工具整合到课堂活动中、开发教导学生了解 AI 的课程模块。 无论属于哪个群体,与 AI 协作是学习过程,应从小处着手,保持好奇心和开放态度,保持批判性思维,将 AI 视为工具而非完全依赖的解决方案。
2025-01-11
如果我现在想用claude但是无法登陆,有哪几种可以体验到claude模型的方式
以下是几种可以体验到 Claude 模型的方式: 1. 通过:这是一个优秀的 AI 助手工具,付费后可使用 Claude 3.5 sonnet、ChatGPT4O 等顶级大模型。 2. 访问:Claude 官方原版,注册后可每日限额免费体验,但存在较高的封号风险。 3. 还可以通过 Cursor、Windsurf 等 AI 编程产品,调用 Claude AI API,但不支持 Artifacts 这种即时预览的使用方式,需要单独保存代码文件后查看。不过好处是,可以用 MD、CSV 等格式的文件,存储提示词、更新记录和 AI 交互数据。 Claude AI 是一款由 Anthropic 公司开发的 AI 助手,是基于自然语言处理技术和人工智能算法的聊天机器人。以开创性计算机科学家克劳德·香农(Claude Shannon)的名字命名,利用先进的机器学习技术、自然语言处理和深度学习算法,为各种应用提供支持。 Anthropic 发布了 Claude 3 模型,该模型更擅长遵循复杂的多步指令,特别擅长遵循品牌语调和响应指南,并开发用户可以信任的客户体验。此外,Claude 3 模型更擅长生成流行的结构化输出,如 JSON 格式。Opus 和 Sonnet 现已可在 API 中使用,该 API 现已普遍可用,使开发人员能够立即注册并开始使用这些模型。Haiku 将很快可用。现在可以在上使用新的 Claude 3 模型。 要注册 Claude.ai,可以按照以下步骤进行: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写邮箱地址并设置密码,然后提交表单。 4. 系统会向邮箱发送一封验证邮件,打开邮件并使用其中的验证码来完成邮箱验证。 如果在注册过程中遇到需要海外手机号接收验证码的问题,可能的解决方案有: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册 Claude 账号。 3. 如果有海外朋友,可以请他们帮忙接收验证码,并将验证码告知。 完成注册后,如果希望升级到 Claude Pro 版本以获取更强大的功能和更高的 API 调用限额,需要填写支付信息并选择一个合适的订阅计划。值得注意的是,订阅 Claude Pro 可能需要使用海外支付方式。请注意,Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。如果在注册过程中遇到任何问题,可以参考其他用户分享的详细注册教程和解决策略。
2024-12-23
已经通过美区AppleID账号下载了ChatGPT,但是登录的时候,无法登录,如何解决?
如果您已通过美区 Apple ID 账号下载了 ChatGPT 但无法登录,可参考以下解决方法: 1. 美区 Apple ID 注册: 电脑上打开 Apple ID 的注册页面:https://appleid.apple.com/ac 。 填写验证码后点继续。 到谷歌邮箱接收邮箱验证码。 接着验证手机号码。 验证完后会出现页面,此时美区 ID 已注册好但未激活,切换到手机操作。 打开 App Store,点击右上角人形头像。 拉到最底下,点击退出登录,先退出国内的 ID。 之后再点击右上角人形头像。 选择否,手动输入美区 ID。 接着会收到短信进行双重验证。 随便找个软件下载,弹出提示,点击“检查”进行激活。 点击同意,进入下一页填写美国地址。 若付款方式中没有“无”或“none”选项,输入街道地址和电话。 至此,通过中国 IP、中国手机号、免信用卡成功注册美区 ID,可用于下载如小火箭、ChatGPT、Discord、X、TikTok 等软件。 2. 下载 ChatGPT:中国区正常下载不了,需切换到美区下载。美区 Apple ID 注册教程参考知乎链接: 。最终在 Apple Store 搜到 ChatGPT 结果,下载安装,注意别下错。 3. 支付宝购买苹果礼品卡充值订阅付费 App: 打开支付,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买,建议先买 20 刀。 支付宝购买礼品卡。 在 apple store 中兑换礼品卡。 在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅。 完成上述步骤后,即可开始使用 ChatGPT 4o: 1. 开启对话:打开 ChatGPT 应用或网页,点击开始对话。会员不管是在苹果还是安卓手机上购买的,电脑上都能登录。 2. 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音,就可以体验流畅的语音对话。
2024-12-12
comfyui无法连接服务器
ComfyUI 无法连接服务器可能有以下原因和解决办法: 1. 网络问题导致无法从 GitHub 下载资源: 可以使用国内镜像,参考文档中的说明。 直接从 GitHub 网页下载资源,然后放到对应的文件路径。 2. 终端连接不上 GitHub 可能是因为网络未做到终端 FanQiang,需要配置好代理。具体端口要根据自己的 FanQiang 服务来看,最好把这个配置到默认的终端启动项里边:export https_proxy=http://127.0.0.1:7890 http_proxy=http://127.0.0.1:7890 all_proxy=socks5://127.0.0.1:7890 。或者考虑使用第三方镜像站下载,如 TUNA()。 此外,安装 ComfyUI 还有以下电脑硬件要求: 1. 系统:Windows7 以上(不建议使用 XP 系统)。 2. 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 3. 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。
2024-11-30
SD大模型无法加载
SD 大模型无法加载可能有以下原因及解决方法: 1. LORA 方面: LORA 可以提炼图片特征,文件通常有几十上百兆,承载信息量远大于 Embedding。下载的 LORA 放在根目录的【……\\models\\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载。 使用 LORA 时要注意看作者使用的大模型,一般需配套使用,还可能需要加入特定触发词,如盲盒 LORA 需加入“full body, chibi”等提示词。 2. Hypernetworks 方面: Hypernetworks 主要针对画风训练,文件下载后放在根目录的【…\\models\\hypernetworks】,使用时点击红色小书,找到 Hypernetworks 选项卡加载。 3. 模型下载与安装方面: 常用的模型下载网站有:。 下载模型后需放置在指定目录,大模型(Ckpt)放入【models\\Stablediffusion】,VAE 模型放入【models\\Stablediffusion】或【models\\VAE】目录(有的大模型自带 VAE 则无需再加),Lora/LoHA/LoCon 模型放入【extensions\\sdwebuiadditionalnetworks\\models\\lora】或【models/Lora】目录,Embedding 模型放入【embeddings】目录。模型类型可通过检测。 不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\\models\\Stablediffusion】,在左上角模型列表中选择(看不到就点旁边蓝色按钮刷新)。 旁边的 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,可在启动器里下载,放在根目录的【……\\models\\VAE】。 Embedding 功能相当于提示词打包,下载 Embedding 可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的【embeddings】文件夹里。 由于无法确定您大模型无法加载的具体原因,您可以根据上述内容逐一排查。
2024-11-12
国内无法访问 OpenAI 网站
以下是关于您所提到的问题的相关信息: OpenAI 将于 7 月 9 日开始阻止中国用户访问其 API。微软发言人表示,Azure OpenAI API 服务在中国的提供方式没有变化。作为一家独立公司,OpenAI 自行做出其决策,微软不受影响。相关链接:https://pymnts.com/artificialintelligence2/2024/reportmicrosoftwontfollowopenaiinblockingchinasaccesstoaimodels/ 、https://x.com/imxiaohu/status/1810526011173556481 微软确认 Azure OpenAI 服务将停止对中国大陆的非企业用户开放,企业用户不受影响。这是大陆唯一合法使用 OpenAI 的渠道,开发者社区受到了广泛关注。相关链接:https://x.com/imxiaohu/status/1847140960368841034
2024-11-01
oppo手机无法安装chatgpt,搜了一圈也找不到解决方案
以下是关于安卓和苹果系统安装 ChatGPT 的方法: 安卓系统: 1. 到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI,别下错了。 2. 这步骤可能遇到“google play 未在您所在的地区提供此应用”的问题。经过各种方法测试,找到路径如下: 在 google play 点按右上角的个人资料图标。 依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。 在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美,最后的结果参考相关红款标识信息。 如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 苹果系统: 中国区正常下载不了,需要切换到美区才可以下载。美区 AppleID 注册教程参考如下知乎链接: 。最终在 AppleStore 搜到 chatgpt 结果如下,下载安装即可,注意别下错啦。
2024-09-25
深度介绍一下机器人行业全球top5的企业
很抱歉,目前知识库中没有关于机器人行业全球 top5 企业的相关内容。但据常见的行业报道和分析,以下是一些在机器人领域具有重要影响力的企业: 1. 发那科(Fanuc):在工业机器人领域拥有广泛的产品线和先进的技术。 2. 安川电机(Yaskawa Electric):以高性能的工业机器人和运动控制系统闻名。 3. 库卡(KUKA):提供多种工业机器人解决方案。 4. ABB:在工业自动化和机器人领域具有深厚的技术积累。 5. 史陶比尔(Stäubli):在工业机器人和纺织机械等领域表现出色。 需要注意的是,机器人行业的排名可能会随着时间和市场变化而有所不同。
2025-01-07
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
美容行业如何学习AI
以下是美容行业学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据美容行业的需求和自己的兴趣选择特定的模块进行深入学习,比如图像识别在美容效果评估方面的应用。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。
2025-01-07
我先系统了解AIGC 行业
以下是关于 AIGC 行业的系统介绍: AIGC(Artificial Intelligence Generated Content,人工智能生成内容)的发展历程可以从内容生产方式的演变来了解。在互联网发展过程中,内容生产方式经历了从 PGC(ProfessionalGenerated Content,专业生成内容)到 UGC(UserGenerated Content,用户生成内容),再到 AIGC 的转变。 在 Web1.0 时代,互联网内容生产以 PGC 为主,由专家和专业机构生产高质量内容,如雅虎、IMDb 等。PGC 的优势在于专业性和易变现,但存在创作门槛高、产量不足等挑战。 随着互联网发展和用户需求多样化,Web 2.0 时代到来,用户参与内容创作,UGC 成为主流。UGC 内容多样、个性化,通过推荐系统满足用户需求,降低了专业门槛,促进了互联网的民主化和个性化内容创作。 在当前,国内 AIGC 行业主要在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管。 此外,还有一些具体的应用案例,如 Collov 是来自美国硅谷的家居垂直行业 AIGC 工具,专注于利用人工智能技术来实现空间设计与家具营销二合一,打通供应链,为企业提高更低成本、更智能高效的空间设计与家具营销解决方案。它能够完成人类设计师以及高美感内容的视觉理解、推理和生成任务,并将生成技术服务于家装、工装、建筑、具身智能机器人、智能驾驶等多领域的商业场景,替代传统人工设计和采集流程。AI 技术的应用显著提高了设计和营销的效率,减少了对传统人工的依赖,增强了客户的交付满意度,提升了企业的市场竞争力。
2025-01-06
我想要做一个ai工具,针对电子元器件行业,我来提供专业术语翻译的知识库和固定描述语句翻译方法,希望上传中文PDF后,可以下载一个翻译好的PDF,0编程基础应该怎么做呢
对于您这种没有编程基础但想要制作针对电子元器件行业的 AI 工具来实现中文 PDF 上传并下载翻译好的 PDF 的需求,以下是一些建议: 首先,您需要学习一些基本的 AI 概念和技术知识,了解自然语言处理(NLP)的基本原理。 其次,可以考虑使用现有的无代码或低代码 AI 开发平台。这些平台通常具有可视化的界面和易于操作的工具,能够帮助您在不编写代码的情况下构建简单的 AI 应用。 然后,针对您的专业术语翻译需求,需要对电子元器件行业的术语进行系统整理和分类,建立一个清晰的术语库。 同时,确定固定描述语句的翻译规则和方法,并将其转化为可在 AI 工具中应用的逻辑。 在实施过程中,要不断测试和优化您的工具,以确保翻译的准确性和质量。 总之,虽然没有编程基础会增加一定的难度,但通过合理利用现有资源和持续学习,您是有可能实现这个目标的。
2025-01-04
我想要做一个ai工具,针对电子元器件行业,我来提供专业术语翻译的知识库和固定描述语句翻译方法,希望上传中文PDF后,可以下载一个翻译好的PDF
目前针对您想要针对电子元器件行业制作一个能上传中文 PDF 并下载翻译好的 PDF 的 AI 工具的需求,暂时没有相关的现成内容和方法。但您可以考虑以下步骤来实现这一目标: 1. 数据准备:收集和整理电子元器件行业的专业术语、固定描述语句以及对应的翻译,构建一个丰富准确的知识库。 2. 选择合适的技术:例如自然语言处理技术和机器翻译算法,以实现对中文 PDF 的翻译。 3. 开发工具界面:设计一个用户友好的界面,方便用户上传中文 PDF 和下载翻译后的 PDF。 4. 测试和优化:对工具进行充分的测试,根据测试结果不断优化翻译的准确性和工具的性能。 这是一个较为复杂的项目,需要一定的技术和资源投入,但如果成功实现,将为电子元器件行业带来很大的便利。
2025-01-04