Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

aiagent智能体是从什么时候开始实现的

Answer

AI Agent 的概念起源可以追溯到达特茅斯会议开始讨论人工智能(Artificial Intelligence),之后马文·明斯基引入“Agent”概念,至此“AI”和“Agent”彻底聚齐。心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果,这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。明斯基在《心灵社会》中还详细描述了不同类型的 Agent 及其功能,如专家 Agent、管理 Agent、学习 Agent 等。

Content generated by AI large model, please carefully verify (powered by aily)

References

AI-Agent系列(一):智能体起源探究

核心思想:心灵社会理论认为,智能是由许多简单的Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些Agent在不同层次上执行不同的功能,通过协作实现复杂的智能行为。多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个Agent负责。功能模块:每个Agent类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的Agent共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,明斯基还详细描述了不同类型的Agent及其功能:专家Agent:拥有特定领域知识和技能的Agent,负责处理复杂的任务和解决特定问题。管理Agent:协调和控制其他Agent的活动,确保整体系统协调一致地运行。学习Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,到这里,“AI”和“Agent”就彻底聚齐了。往后,我们都将其称之为AI Agent。

AI-Agent系列(一):智能体起源探究

核心思想:心灵社会理论认为,智能是由许多简单的Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些Agent在不同层次上执行不同的功能,通过协作实现复杂的智能行为。多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个Agent负责。功能模块:每个Agent类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的Agent共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,明斯基还详细描述了不同类型的Agent及其功能:专家Agent:拥有特定领域知识和技能的Agent,负责处理复杂的任务和解决特定问题。管理Agent:协调和控制其他Agent的活动,确保整体系统协调一致地运行。学习Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,到这里,“AI”和“Agent”就彻底聚齐了。往后,我们都将其称之为AI Agent。

AI-Agent系列(一):智能体起源探究

我们对人工智能的追求,始终围绕着一个宏伟的目标:将AI Agent的概念塑造得更接近于“人”,更确切地说,是接近“智人”的特质。那么,在这个探索的旅程中,我们又该如何定义“智人”呢?或者说,我们从何时开始认为人类具有智慧?从人类学的角度来看,当人类掌握了钻木取火的技术,那一刻,我们才真正迈入了“拥有智慧”的门槛。这一行为不仅标志着人类对自然界的深刻理解和利用,也象征着人类文明的一大飞跃。反观当下的AI Agent,尽管它们已经能够熟练地使用工具,但距离自主制造和创造工具的阶段,仍有一段长路要走。它们在模仿人类行为和决策方面取得了显著进步,但要达到人类在工具创造和文明发展上的成就,仍需不断的探索和突破。然而,正是这种对未来可能性的期待,激励着我们不断前行。我满怀希望地期待着那一天的到来——AI Agent不仅能使用工具,更能创造工具,真正展现出“智人”的光辉。图电影《太空漫游2001》“望月者”获得智慧那一刻

Others are asking
aiagent
AI Agent 是一个热门且复杂的概念,被认为是大模型未来的主要发展方向。 在对其深入探讨前,首先要明确其定义和总结。AI Agent 是融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。因为这些学科多以人为研究对象,致力于探索人类内在本质。 网络上对 AI Agent 的介绍往往晦涩难懂,通过必应和 Kimi 的搜索也难以获得清晰的答案。 从原理上理解,中间的“智能体”通常是 LLM 或大模型,为其增加工具、记忆、行动、规划这四个能力。目前行业里主要用到的是 langchain 框架,它把 LLM 之间以及 LLM 和工具之间通过代码或 prompt 的形式进行串接。比如长期记忆是给大模型一个数据库工具记录重要信息,规划和行动是在大模型的 prompt 层做逻辑,将目标拆解并输出固定格式指令给工具。但 langchain 或 AI Agent 不止这些,还有其他代码逻辑,主要的主干逻辑在 prompt 层和工具层。
2025-01-12
AIagent是什么
AI Agent 是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体,不仅拥有实体形态,还蕴含丰富的概念形态,并具备许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。 同时,AI Agent 也是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。它包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 此外,还需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行期间会分析历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2024-09-26
我能用AIAgent,做什么关于Java程序员可用的工具?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。AI Agent 包括以下几个概念: Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来,有三个 Agent: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),期间会分析历史对话,变更人物关系(亲密度、了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,并且有概率主动聊天(与亲密度正相关,跳过夜间时间)。 对于 Java 程序员来说,可以利用 AI Agent 中的工具调用功能,例如对相关技术文档的搜索和检索,以辅助解决编程中的问题;也可以借助其分析和理解能力,对代码逻辑进行审查和优化建议等。
2024-08-09
我是一个新手,如何搭建AI智能体?
搭建 AI 智能体的步骤如下: 1. 创建 Bot。 2. 填写 Bot 介绍。 3. 切换模型为“通义千问”(测试下来,通义对提示词理解、执行效果最好)。 4. 把配置好的工作流添加到 Bot 中。 5. 新增变量{{app_token}}。 6. 添加外层 bot 提示词(可以按照需求和实际效果进行优化调整)。 AI 智能体就像员工或智能助手,能根据设定的工作流自动调用不同的 AI 工具完成全流程任务。例如要写一篇文章,可以设计一个“写作助手”的 AI 智能体,在文本框输入文章的主题、风格和要求,它会自动完成文章大纲处理、初稿撰写、修改润色和排版等工作,无需人类干预,大大提高效率。
2025-01-12
Coze扣子这个智能体搭建平台是什么?能做什么?作为一个非IT专业的普通人,怎么学习用它来创建智能体?学习的路径和步骤
Coze 扣子是一款基于自然语言处理和人工智能技术的智能助手平台,具有以下特点和功能: 1. 提供丰富的插件生态,能帮助用户快速实现个性化的智能应用,无需编写复杂代码。 2. 经过一年多的用户打磨,插件生态和分发渠道对个人用户够用,上手难度不高,信息获取插件丰富。 3. 推出专业版服务,主要特性包括企业级 SLA 保障、高级特性支持(如批量处理、私有数据等)以及更优惠的计费项。 对于非 IT 专业的普通人,学习用它来创建智能体的路径和步骤如下: 1. 体验和了解 Coze 扣子平台的基本功能和操作,熟悉其界面和常用工具。 2. 学习相关的基础知识,例如自然语言处理的基本概念、智能体的工作原理等。 3. 参考平台提供的教程和示例,逐步尝试创建简单的智能体。 4. 加入相关的学习交流群,与其他用户交流经验,共同学习进步。 需要注意的是,目前提示词攻击在业内是公开的秘密,像扣子这样的智能体编排平台,其热门智能体的核心提示词可能会被轻易获取,存在一定的安全风险。
2025-01-12
我是一个AI新手并且没有编程能力,如果我想要一个属于自己的AI智能体,并解决实际生活中的一些问题,请问有什教程吗?
以下是为您提供的创建属于自己的 AI 智能体的相关教程: 1. 扣子 Coze: 扣子官网: 可以通过简单 3 步创建智能体:首先起一个智能体的名称,然后写一段智能体的简单介绍,最后使用 AI 创建一个头像。开发完成后,还可以将自己构建的 Bot 发布到各种社交平台和通讯软件上。 2. 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等): 点击“浏览 GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话进行具体设置或手工设置。 开始调试您的智能体并发布。 此外,智能体具有以下特点: 1. 强大的学习能力:能够通过大量的数据进行学习,从而获得对语言、图像等多种信息的理解和处理能力。 2. 灵活性:可以适应不同的任务和环境,表现出较高的灵活性和适应性。 3. 泛化能力:能够将学到的知识泛化到新的情境中,解决之前未见过的类似问题。 智能体应用类型包括: 1. 智能体应用(Assistant):基于上下文对话,自主决策并调用工具来完成复杂任务的对话式 AI 应用。示例场景如客户服务、个人助理、技术支持等。 2. 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。 3. 智能体编排应用:支持多智能体协作的流程式 AI 应用,能够编排多个智能体的执行逻辑,也可以使多个智能体自动规划和执行任务。
2025-01-11
2024年人工智能指数报告 下载
以下是为您提供的 2024 年人工智能指数报告的相关下载信息: 1. 《》由微软和领英联合发布,揭示了人工智能(AI)在工作场所的快速增长和深远影响。 2. 可在知识星球下载的报告: 《》深入分析了 AI Agent 的市场定义、发展阶段、核心组件及其在企业用户场景中的应用。 《》企业实施 AI Agent 的主要目标是降低运营成本,尤其是在知识库管理、数据分析、营销与客户服务等领域。 3. 《》数据处理应从模型为中心转向数据为中心,并强调向量数据库在提升模型服务能力中的核心作用。 4. 斯坦福大学发布的基础模型透明度指数相关报告:在上一届 SOAI 发布后不久,斯坦福大学发布了其首个基础模型透明度指数,模型开发者的平均得分为 37 分。在团队的中期更新中,这一分数攀升至 58 分。2024 年 5 月,该指数的最新一期基于 100 项指标,评估了 14 家领先的基础模型开发者的透明度,这些指标涵盖“上游”因素数据、劳动力、计算、围绕能力和风险的“模型级”因素、围绕分布的“下游”标准以及社会影响。计算和使用政策的评分出现了最强劲的改善,而“上游”评分仍然疲弱。 5. 《2024 年人工智能现状:辉煌、戏谑和“牛市”》报告链接:
2025-01-11
2024年人工智能指数报告
以下是关于 2024 年人工智能指数报告的相关内容: 斯坦福大学发布的基础模型透明度指数显示,模型开发者的平均得分从最初的 37 分攀升至中期更新的 58 分。2024 年 5 月的最新一期基于 100 项指标评估了 14 家领先的基础模型开发者的透明度,其中计算和使用政策的评分改善强劲,“上游”评分仍疲弱。 2024 年 AI 年度报告的十大预测包括:好莱坞级别的制作公司开始使用生成式人工智能制作视觉特效;美国联邦贸易委员会或英国竞争与市场管理局基于竞争理由调查微软/OpenAI 的交易;在全球人工智能治理方面进展有限;一首由人工智能创作的歌曲进入公告牌 Hot 100 前 10 名或 Spotify 2024 年热门榜单;随着推理工作负载和成本的显著增长,一家大型人工智能公司收购或建立专注于推理的人工智能芯片公司。同时也有错误预测,如生成式人工智能媒体公司在 2024 年美国选举期间的滥用行为未受到调查,自我改进的人工智能智能体在复杂环境中未超越现有技术最高水平。 预测还覆盖了人工智能领域的多个方面,如主权国家向美国大型人工智能实验室投资超 100 亿美元引发国家安全审查;完全无编码能力的人创建的应用或网站走红;前沿实验室在案件审判后对数据收集实践方式发生重大转变;早期欧盟人工智能法案实施结果比预期宽松;开源的 OpenAI o1 替代品在推理基准测试中超越;挑战者未能突破英伟达市场地位;对人形机器人投资水平下降;苹果在设备上的研究成果加速个人设备上人工智能的发展;人工智能科学家生成的研究论文被主要机器学习会议或研讨会接受;以“生成式人工智能”为元素互动的视频游戏取得突破性地位。
2025-01-11
coze智能体是什么
智能体(Agent)是随着 ChatGPT 与 AI 概念爆火而出现的新名词,简单理解就是 AI 机器人小助手。参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,因此很多公司关注 AI 应用层的产品机会。 在做 Agent 创业的公司有不少,比如 C 端有社交方向,用户注册后先捏一个自己的 Agent,然后让其与他人的 Agent 聊天,两个 Agent 聊到一起后真人再介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。B 端如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,还有机会帮助 B 端商家搭建 Agent,类似 APP 时代专业做 APP 的。 扣子 Coze 是字节推出的 AI 聊天机器人构建平台的国内版,于 2 月 1 日正式上线,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI 等。 以下是一些 Agent 构建平台: 1. Coze:新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,可拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据自身需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-01-11
我想利用国产的语言大模型,根据会议内容生成会议纪要。1-请给我推荐能够实现以上内容的国产大模型;2-我应该提供哪些信息给大模型,才能实现我的想法。
以下是为您推荐的能够根据会议内容生成会议纪要的国产大模型:文心一言、讯飞星火等。 为了实现您的想法,您应该提供给大模型以下信息: 1. 详细的会议内容,包括与会人员的发言、讨论的主题和重点等。 2. 明确您对会议纪要的格式和重点的要求,例如是否需要按照特定的结构进行整理,是否需要突出某些关键信息等。 3. 如有相关的背景资料或补充说明,也应一并提供,以便大模型更全面地理解会议内容。
2025-01-13
我要做一个密室逃脱的智能体,在扣子里怎么实现
要在扣子中实现密室逃脱的智能体,以下是一些相关的信息和思路供您参考: 智能体的实现通常包括工作流和数据库。工作流的设计相对简单,一般是一个输入,对接知识库,搭载模型,最后输出。数据库的收集和整理有一定难度,需要进行资料收集和手动二次校对。 在多智能体模式设置方面,主要包括全局设置和多个代理之间的编排协调。全局设置涉及角色设定与回复逻辑、记忆管理以及对话体验等全局性因素。在全局设置中,人物设定与回复逻辑的填充要侧重于角色塑造。智能体的交互流程应形成完整的互动链条,设计为闭环结构,以确保用户能在不同智能体之间自由切换。 例如在旅游场景中,可设计分别负责景点推荐、路线规划和食宿安排的三个智能体。先写好提示词,做好全局人物设定,然后在扣子上进行编排。 但需要注意的是,目前提供的内容中没有直接针对密室逃脱智能体实现的具体步骤和方法,您可能需要根据密室逃脱的特点和需求,进一步细化和定制相关的设置和流程。
2025-01-09
请问可以用什么方法,让电脑自动完成多线程任务,实现自动化办公。
在实现电脑自动完成多线程任务以达到自动化办公的目标方面,以下是一些常见的方法: 1. 使用编程语言:如 Python、Java 等,通过相关的多线程库和模块来创建和管理多线程任务。 2. 利用自动化工具和框架:例如 AutoIt、Selenium 等,它们提供了一些功能来实现自动化操作和多线程处理。 3. 借助操作系统的任务调度功能:在 Windows 系统中可以使用任务计划程序,在 Linux 系统中可以使用 cron 任务调度器来安排多线程任务的执行。 需要注意的是,在进行多线程任务的设计和实现时,要合理规划资源分配、避免线程竞争和死锁等问题,以确保系统的稳定性和高效性。
2025-01-06
能否实现,通过对话,了解一个人的生平,然后生成一个人的回忆录或者自传
目前通过对话来全面了解一个人的生平并生成其回忆录或自传具有一定的挑战性。虽然自然语言处理和人工智能技术在理解和处理语言方面取得了显著进展,但要准确、完整地捕捉一个人一生的复杂经历、情感和细节仍然存在困难。 然而,利用 AI 技术可以在一定程度上辅助这一过程。例如,可以通过与个人的多次深入交流,提取关键信息和重要事件,并运用语言生成模型来初步构建相关内容。但这需要大量的交互和精细的引导,并且生成的结果可能还需要人工进一步的编辑和完善,以确保其准确性和真实性。 总之,虽然完全依靠对话实现完美的个人回忆录或自传生成尚有难度,但 AI 可以作为一个有潜力的辅助工具来参与这一过程。
2025-01-06
AGI真能实现吗
通用人工智能(AGI)是 AI 领域的终极目标,也是人类发明机器计算后的终极进化方向。实现 AGI 面临诸多挑战,但也有一些积极的因素和迹象表明其有可能实现: 从模仿人类大脑的角度来看,机器学习在完成相关拼图方面,数据是相对容易实现的部分。例如,ImageNet 数据集的大小已接近人从出生到大学毕业视觉信号的数据量,Google 公司创建的新模型数据集大小也可与人一生所获取的数据量媲美。但神经网络需要像人类一样,使用更少的数据和更高的抽象来学习。 算力方面,人工神经网络与人脑的大小仍有数量级的差距,但在某些哺乳动物面前已具备竞争力。而且每花一美元所能得到的计算能力一直在呈指数级增长,大规模基础模型所用到的计算量每 3.5 个月就会翻一番。尽管有人认为计算能力会因物理学限制不能保持上升趋势,但过去的趋势和该领域的资金、资源投入以及人才涌入等因素,使得开发更好的软件和硬件成为可能,且物理学的限制同样约束人脑的能力极限。 关于 OpenAI 通用人工智能(AGI)的计划,有各种报道和推测。例如,有文件揭示 OpenAI 计划在 2027 年前创建人类水平的通用人工智能(AGI),也有相关预测提到图像和音频生成将在 2023 年第三季度进行训练等。同时,OpenAI 总裁曾表示计划在五年内构建一个与人类大脑大小相当的模型来实现 AGI。 综上所述,虽然 AGI 的实现仍存在不确定性,但有多种因素和迹象表明其有可能实现。
2025-01-04
python实现网页爬虫
以下是使用 Python 实现网页爬虫的详细步骤: 首先,在 Colab 中抓取网页的正文内容,需要使用 Python 的 requests 库来获取网页的 HTML 源代码,然后使用 BeautifulSoup 库来解析 HTML 并提取所需的正文部分。 在开始之前,要确保已经在 Colab 环境中安装了 beautifulsoup4 和 requests 库。如果没有安装,可以使用以下命令安装: ``` !pip install beautifulsoup4 requests ``` 然后,使用以下代码抓取并解析指定的网页内容: ```python import requests from bs4 import BeautifulSoup def get_webpage_content: response = requests.get soup = BeautifulSoup 这里根据实际网页结构调整提取正文的部分 例如:content = soup.find return content url = 'https://mp.weixin.qq.com/s/KUnXlDlgRs_6D5RFpQbnQ' print ``` 请注意,由于网页的结构随时可能发生变化,所以提取正文内容的部分(即 soup.find 那一行)可能需要根据实际的 HTML 结构进行调整。如果文章有反爬虫机制,可能还需要进一步的处理,比如设置请求头模拟浏览器访问等。 在和 AI 配合写代码的过程中,如果遇到了 Bug,可以直接将问题报给 ChatGPT,然后再把 ChatGPT 给出的结果粘贴回去(如果还不行,就反复调试)。 另外,Python 在自动化方面应用广泛,例如办公软件自动化(pythondocx 用于 Word 文档、openpyxl 或 xlsxwriter 用于 Excel 文件、pythonpptx 用于 PPT、PyPDF2 用于 PDF)、爬虫(requests 用于发送 HTTP 请求、selenium 用于模拟浏览器交互、BeautifulSoup 和 lxml 用于解析 HTML 和 XML 文档)、测试自动化(unittest 和 pytest)、容器与虚拟化自动化(dockerpy 用于 Docker 容器管理)等。
2025-01-02