直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

SD大模型无法加载

回答

SD 大模型无法加载可能有以下原因及解决方法:

  1. LORA 方面:
    • LORA 可以提炼图片特征,文件通常有几十上百兆,承载信息量远大于 Embedding。下载的 LORA 放在根目录的【……\models\Lora】文件夹下,使用时点击红色小书,找到 LORA 选项卡加载。
    • 使用 LORA 时要注意看作者使用的大模型,一般需配套使用,还可能需要加入特定触发词,如盲盒 LORA 需加入“full body, chibi”等提示词。
  2. Hypernetworks 方面:
    • Hypernetworks 主要针对画风训练,文件下载后放在根目录的【…\models\hypernetworks】,使用时点击红色小书,找到 Hypernetworks 选项卡加载。
  3. 模型下载与安装方面:
    • 常用的模型下载网站有:Civitai | Stable Diffusion models,embeddings,hypernetworks and moreModels - Hugging FaceSD - WebUI 资源站元素法典 AI 模型收集站- AI 绘图指南 wiki(aiguidebook.top)AI 绘画模型博物馆(subrecovery.top)
    • 下载模型后需放置在指定目录,大模型(Ckpt)放入【models\Stable-diffusion】,VAE 模型放入【models\Stable-diffusion】或【models\VAE】目录(有的大模型自带 VAE 则无需再加),Lora/LoHA/LoCon 模型放入【extensions\sd-webui-additional-networks\models\lora】或【models/Lora】目录,Embedding 模型放入【embeddings】目录。模型类型可通过Stable Diffusion 法术解析检测。
    • 不会科学上网时,可在启动器界面直接下载模型,将下载的大模型放在根目录的【……\models\Stable-diffusion】,在左上角模型列表中选择(看不到就点旁边蓝色按钮刷新)。
    • 旁边的 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,可在启动器里下载,放在根目录的【……\models\VAE】。
    • Embedding 功能相当于提示词打包,下载 Embedding 可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的【embeddings】文件夹里。

由于无法确定您大模型无法加载的具体原因,您可以根据上述内容逐一排查。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【SD】软件原理傻瓜级理解

总结一下,LORA的强大,无论是画风,还是人物、物品,或者是动作姿态,都是可以固定下来,它所做的就是提炼图片特征。LORA和Embedding的区别一是在于体量上,Embedding的文件只有几十kb,而LORA的文件通常有几十上百兆,所以LORA的文件所承载的信息量是要远大于Embedding,尤其是在还原真人物品时,LORA的细节精度是Embedding无法比拟的。下载的LORA放在根目录的这个文件夹下【……\models\Lora】,使用的时候点击这个红色的小书,找到LORA的选项卡,任意点击一个想要的LORA就可以加载进去了。使用LORA的时候要注意看作者使用的大模型,一般情况下只有配套使用才能达到LORA最好的效果,当然也不排除有一些LORA和其他的大模型会产生一些奇妙的碰撞。除了加载lora以外,还需要加入一些特定的触发词,才能保证lora的正常使用。比如这个盲盒的lora,作者提示需要加入full body,chibi这些提示词才行。Hypernetworks主要是针对画风训练的一种模型,可以像lora一样加载进来。比如这种卡通Q版头像蒸汽波风格油画风格下载的文件放在根目录的这个文件夹下【…\models\hypernetworks】,使用的时候点击这个红色的小书,找到Hypernetworks的选项卡,任意点击一个想要的Hypernetworks就可以加载进去了。当我们下载了很多的模型、Embedding、Hypernetworks和LORA之后,我们会发现这些文件的后缀名几乎是一样,包括.pt/.safetensors/.ckpt等等,所以这些文件是无法通过后缀名进行区分的,那我们怎么判断这个文件到底是什么?该放到什么文件夹里呢?这里我们可以去到秋叶大佬整理的这个网站里面https://spell.novelai.dev/,把文件拖进去就可以看到是什么类型的文件。

SD新手:入门图文教程

模型能够有效地控制生成的画风和内容。常用的模型网站有:[Civitai | Stable Diffusion models,embeddings,hypernetworks and more](https://link.zhihu.com/?target=https%3A//civitai.com/)>[Models - Hugging Face](https://link.zhihu.com/?target=https%3A//huggingface.co/models)>[SD - WebUI资源站](https://link.zhihu.com/?target=https%3A//www.123114514.xyz/models/ckpt)>[元素法典AI模型收集站- AI绘图指南wiki(aiguidebook.top)](https://link.zhihu.com/?target=https%3A//aiguidebook.top/index.php/model/)>[AI绘画模型博物馆(subrecovery.top)](https://link.zhihu.com/?target=https%3A//aimodel.subrecovery.top/)[heading3]模型安装[content]下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。模型的类型可以通过[Stable Diffusion法术解析](https://link.zhihu.com/?target=https%3A//spell.novelai.dev/)检测。大模型(Ckpt):放入models\Stable-diffusionVAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\Stable-diffusion或models\VAE目录,然后在webui的设置栏目选择。Lora/LoHA/LoCon模型:放入extensions\sd-webui-additional-networks\models\lora,也可以在models/Lora目录Embedding模型:放入embeddings目录

【SD】软件原理傻瓜级理解

如果不会科学上网,也可以去启动器的界面直接下载模型,当然这里是看不见预览图的,但从名字你可能看不出这个模型是什么风格。将下载的大模型放在根目录的这个文件夹下【……\models\Stable-diffusion】,我们就可以在左上角的模型列表中进行选择了。(看不到就点旁边的蓝色按钮刷新一下)。旁边这个VAE,相当于是给模型增加一个提高饱和度的滤镜和一些局部上的细节微调。当然有的大模型本身就自带VAE,所以就不用再加了。VAE可以直接在启动器里面下载,下载的VAE放在根目录的这个文件夹下【……\models\VAE】。接下来要理解的一个概念是Embedding,这个功能相当于是一个提示词打包的功能。比如你想画一个娜美的人物形象,但是想要固定一个人物形象往往要几十条什么上百条提示词,比如性别、头发、脸型、眼睛、身材等等一大堆精确指向的词汇。那这个时候,就有人将这些提示词整合到一起做成了一个Embedding文件,你只需要使用一个提示词,就可以直接引入这个人物形象进行创作了。下载Embedding的地方同样是在C站,通过右上角的筛选Textual Inversion就可以找到,放在根目录下的embeddings文件夹里即可。接下来,讲一讲最重要的这个LORA,有了LORA就可以将人物或者物品接近完美地复刻进图像中,这就有了极大的商用价值。比如这个“墨心”的LORA,就可以把你的图片变成水墨风格。这个盲盒LORA可以生成这种2.5D的卡通小人角色。或者是一些明星角色的LORA,直接生成真人形象。还有知名的动漫角色,由于LORA其极其强大的功能,所以在使用上,大家需要有很强的版权和法律意识,所谓能力越大、责任越大,玩得太花,小心律师函到你家。

其他人在问
SD 在线上哪里可以使用?
以下是一些可以在线使用 SD 的地方: 1. 哩布哩布 AI:其在线 SD 界面与本地部署的界面区别不大,每天有一百次的生成次数,且已集成最新的 SDXL 模型。 2. stability AI 公司推出的 Clipdrop(https://clipdrop.co/stablediffusion):和 midjourney 的使用方法相似,输入提示词即可直接生成,每天免费 400 张图片,但需要排队,出四张图大概需要二三十秒的时间。
2024-11-22
SD 安装包
以下是关于 SD 安装包的相关内容: 一、Roop 插件安装 1. 安装时间较长,需耐心等待。安装好后,打开 SD 文件目录下的特定文件夹,在地址栏输入“cmd”并回车。 2. 在打开的 dos 界面中,粘贴“python m pip install insightface==0.7.3 user”代码,自动安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】可在云盘下载。 3. 安装完成后,重新打开启动器,后台会继续下载模型,全程需科学上网。 4. 选用真实系模型“realisticVisionV20”,启用 ROOP 插件,选择要替换的人物照片,面部修复选择“GFPGAN”,根据需求设置右边参数和放大算法,点击生成。若人脸像素偏低,可发送到“图生图”并使用 controlnet 中的 tile 模型重绘。 5. 想要插件可添加公众号【白马与少年】回复【SD】。 二、SD 云端部署 1. 部署流程 浏览器上按照腾讯云>控制台>云服务器的路径找到购买的实例,点击启动,输入购买时设置的密码进入远程的 Windows 系统环境,安装显卡驱动、配置环境变量。 2. 安装显卡驱动 用内置的 IE 或下载 Chrome,打开英伟达网站,根据购买机器时选定的显卡型号、Windows 版本号下载对应的驱动并安装。 3. 配置环境变量 驱动安装完成后,复制驱动所在目录(一般是在「C:\\Program Files\\NCIDIA Corporation」),找到环境变量配置入口(控制面板>系统和安全>系统),选择「高级系统设置」,在「系统变量」里的 Path 环境变量中新建并粘贴驱动安装地址保存。 4. 下载安装 SD 整合包 以秋叶的 SD 整合包为例,下载地址为:https://pan.baidu.com/s/1uavAJJdYYWhpnfjwQQDviQ?pwd=a123 ,提取码:a123。建议在服务器上安装提高下载速度的工具或有百度会员。安装后打开安装包一级目录,双击启动器运行依赖,安装完成后即可启动 SD。 三、Roop 换脸插件安装的其他步骤 1. 将 inswapper_128.onnx 文件移动到“sdwebuiakiv4\\models\\roop ”目录下(若没有该目录则创建)。 2. 将.ifnude 和.insightface 目录移动到 C:\\Users\\您的用户名目录下(用户名因人而异)。 3. 启动 webui,它会同步内部组件,可能需 5 30 分钟,耐心等待。加载完成后在浏览器打开,可在图生图、文生图中下面列表标签看到 roop V0.0.2。 特别提醒:此插件谨慎使用,切勿触犯法律。
2024-11-22
sd 人物的模样及服装等统一
以下是关于人物模样及服装的 SD 关键词描述: 人物类型:肌肉公主、舞者、啦啦队等。 性别:单人,包括女人和男人。 身体特征:有光泽的皮肤、苍白皮肤、白皙皮肤等。 头发样式:直发、卷发、波浪卷等。 头发颜色:挑染、内层挑染、头发内变色等。 头发长度:长发、很短的头发、短发等。 具体人物:初音未来、绫波(碧蓝航线)、比那名居天子、蛮啾(碧蓝航线)、爱宕、时崎狂三、洛琪希、西住美穗、星街彗星、时雨、蒂法·洛克哈特、中野一花、南达科他州(碧蓝航线)、白上吹雪、白井黑子、岛风等。 发型特点:身前,单侧编发,人妻发型;挑染,条纹发色;短碎发等。 面部特征:死鱼眼、晒痕、眼睛发光、垂耳(狗)等。
2024-11-20
SD 下载
以下是关于 SD 下载的相关内容: 1. 模型下载与安装: 二维码做好后,进入 SD 版块,需下载两个 SD 的 ControlNET 模型和一个预处理器。您可以添加公众号【白马与少年】,回复【SD】获取。 在【QR ControlNET】的文件夹中,后缀为【.yaml】的放在“……\\sdwebuiakiv4.2\\extensions\\sdwebuicontrolnet\\models”路径下,后缀为【.safetensors】的放在“……\\sdwebuiakiv4.2\\models\\ControlNet”路径下。 系统要求为 Win10 或 Win11。Win 系统查看配置:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格;查看电脑配置时,需满足 3 个要求(推荐):电脑运行内存 8GB 以上,是英伟达的显卡,显卡内存 4GB 以上。 配置达标可跳转至对应安装教程页。 如果不会科学上网,也可去启动器的界面直接下载模型。将下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下,在左上角的模型列表中选择(看不到就点旁边的蓝色按钮刷新)。 2. 其他相关文件下载与放置: VAE 可直接在启动器里面下载,下载的 VAE 放在根目录的【……\\models\\VAE】文件夹。 Embedding 可在 C 站通过右上角的筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。
2024-11-18
sd 下载
以下是关于 SD 下载的相关内容: 1. 模型安装设置: 二维码做好后,进入 SD 版块,需下载两个 SD 的 ControlNET 模型和一个预处理器。可添加公众号【白马与少年】,回复【SD】获取。 在【QR ControlNET】的文件夹中,后缀为【.yaml】的放在“……\\sdwebuiakiv4.2\\extensions\\sdwebuicontrolnet\\models”路径下,后缀为【.safetensors】的放在“……\\sdwebuiakiv4.2\\models\\ControlNet”路径下。 选择模型,填入关键词,设置迭代步数为 15,采样选择 DPM++ 2M Karras,图像大小设置为 768768。 2. SD 的安装: 系统需为 Win10 或 Win11。 Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:检查电脑能否带动 SD,需满足 3 个要求(推荐):电脑运行内存 8GB 以上,是英伟达的显卡,显卡内存 4GB 以上。打开任务管理器(同时按下 ctrl+shift+esc),查看电脑运行内存和显卡内存(显存)。8GB 运行内存可勉强运行 SD,推荐 16GB 以上运行内存;4GB 显存可运行 SD,推荐 8GB 以上显存。 配置达标可跳转至对应安装教程页: 。 配置不够可选择云端部署(Mac 也推荐云端部署): 。 备选:SD 难的话,可先试试简单的无界 AI: 。 3. 软件原理傻瓜级理解: 不会科学上网,可在启动器界面直接下载模型,下载的大模型放在根目录的【……\\models\\Stablediffusion】文件夹下,在左上角模型列表中选择,看不到就点旁边蓝色按钮刷新。 VAE 相当于给模型增加提高饱和度的滤镜和局部细节微调,有的大模型自带 VAE,可不用再加。VAE 可在启动器里下载,放在根目录的【……\\models\\VAE】文件夹下。 Embedding 是提示词打包功能,可在 C 站通过右上角筛选 Textual Inversion 找到,放在根目录下的 embeddings 文件夹里。 LORA 功能强大,可将人物或物品接近完美复刻进图像中,使用时需注意版权和法律问题。
2024-11-18
SD好的模型分享
以下是为您分享的关于 SD 模型的相关内容: 对于 SDXL 的 ControlNet 模型中的 Canny 硬边缘模型,有不同型号,如 4080ti 笔记本测试中,12G 显存下,sdxl base+refiner 模型,使用 diffusers 的 2.5Gfull 模型绘制 10241024 尺寸图片需 2 分 57 秒,320Mb 的 small 模型用时 34s,质量差距不大但时间优势明显。其他作者如 kohya 的用时 33 秒,更接近真实质感。sai 的 128lora 和 256lora 分别用时 39 秒和 1 分 08 秒,偏绘画感觉。t2i 的用时 34s,偏插画。关闭 refiner 能节省一半左右时间,平均 17 秒左右。 在 Depth 深度模型测试中,图形尺寸 6641024,diffusers 的 full 模型用时 2 分 48 秒,small 模型用时 23s,kohya 模型用时 42 秒,sai 模型用时 1 分 12 秒,sargezt 模型用时 1 分 52 秒。 用 Stable Diffusion 时,要先确定照片风格,如生成真人 AI 小姐姐可选用 chilloutmix 的大模型。部分常用大模型可在分享的链接中根据文件夹名称找到。文章第三部分会详细介绍模型下载位置和存放位置。 对于 ControlNet 中线条约束类的预处理器和模型,作者已整理好,如需获取可添加公众号【白马与少年】回复【SD】。同时作者还附上一张图帮助理解 ControlNet 模型的命名规则。
2024-11-17
知道源代码就可以加载AI吗?
一般来说,仅仅知道源代码并不一定能够直接加载 AI 。以 GPT4 的代码解释器为例,它是一种特定的模式,允许用户将文件上传到 AI,让 AI 编写和运行代码,并下载 AI 提供的结果。它可以用于执行程序、运行数据分析、创建各种文件、网页甚至游戏。但使用代码解释器进行分析存在未经培训的人使用的风险,许多测试专家对此印象深刻,甚至有论文表明它可能需要改变培训数据科学家的方式。如果您想了解更多关于如何使用它的详细信息,可以访问相关帖子。
2024-10-01
什么是加载别人训练的qwen模型?
加载别人训练的 qwen 模型通常涉及以下步骤: 1. 对于直接调用千问的某一个大模型,如“qwenmax”模型,在 COW 中需要更改 key 和 model。在 /root/chatgptonwechat/文件夹下,打开 config.json 文件进行更改,并添加"dashscope_api_key"。获取 key 可参考视频教程或图文教程。同时,需要“实名认证”后,这些 key 才可以正常使用,若对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,可能是未实名认证,可点击去,或查看自己是否已认证。 2. 部署大语言模型时,如下载 qwen2:0.5b 模型,对于不同的电脑系统操作有所不同。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。之后复制相关命令行并粘贴回车,等待自动下载完成。 3. 对于 Ollama 大模型部分,为避免没下载大模型带来的报错,需要先下载 ollama,网站:网站中复制代码,然后像特定操作一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到下方的命令行,右键粘贴刚才的代码,等待下载即可。
2024-10-01
怎么加载开源模型?
加载开源模型的步骤如下: 1. 下载相关模型节省时间: Base Model DreamShaper XL Turbo: https://civitai.com/models/112902/dreamshaperxl LoRA:Envy Anime Watercolor XL 03:https://civitai.com/models/382684/envyanimewatercolorxl03 Alphonse Mucha Style:https://civitai.com/models/63072/alphonsemuchastyle 2. 打开以下链接放在后台: Ollama: https://ollama.com/ https://github.com/stavsap/comfyuiollama IPAdapter:https://github.com/cubiq/ComfyUI_IPAdapter_plus InstantID: https://github.com/cubiq/ComfyUI_InstantID PuLID:https://github.com/cubiq/PuLID_ComfyUI 3. 安装缺失节点: 下载过程中若发现 layer style 下不了,可重启重新下载,尝试修复。若仍不行,从官网重新下载到./custom_nodes 的文件夹下。 4. 从官网下载两个文件,点击左上角部分将加载器展开并选择官网下载好的两个模型。 5. 对于 GDino 加载器部分,在链接:处下载相关文件,然后检查文件是否齐全。对于 groundingdino 和 sams 配置是否齐全可以使用“抠头发.json”来检验。 6. Ollama 大模型部分: 首先,下载 ollama,网站: 其次,在网站中,复制代码。然后,打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd,进入到命令行,右键粘贴刚才的代码,等待下载。
2024-10-01
controlnet一直加载怎么办
ControlNet 一直加载可能由以下原因导致及对应的解决方法: 1. 模型版本问题:确保 checkpoint、ContalNet 等所有需要加载模型的版本均基于 SD1.5,否则可能会报“超出索引”的错误。 2. 节点未安装完全:载入工作流后若出现爆红部分,可能是节点没下好、没下全。此时可以先全部更新,让所缺节点“显露出来”,然后安装好缺失的节点。 3. 参数设置问题:假如右下角的区域报红,那么就得根据报错信息相应调整一下左上角蓝色区域的 h、w 参数。 此外,ControlNet 还有一些新的功能和应用,例如: 1. 1.1 版本新出的 lineart 线稿提取功能,可先通过 invert 预处理将白底黑线处理成黑底白线,然后切换到 lineart 预处理器和模型进行生成。 2. mlsd 直线线条检测功能,一般用在建筑或者室内设计上,预处理器可提炼出室内的结构线。 ComfyUI 中的 ControlNet 高级控件: 在时间步和批处理潜变量之间调度 ControlNet 强度的节点,以及应用自定义权重和注意力掩码。这里的 ControlNet 节点完全支持滑动上下文采样。输入包括 positive(提示词(正面))、negative(提示词(负面))、control_net(加载了控制网络)、image(用于指导控制网络的图像)、mask_optional(应用于控制网络的注意力掩码)、timestep_kf(时间步关键帧)、latent_kf_override(潜在关键帧的覆盖)。
2024-08-29
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
国内无法访问 OpenAI 网站
以下是关于您所提到的问题的相关信息: OpenAI 将于 7 月 9 日开始阻止中国用户访问其 API。微软发言人表示,Azure OpenAI API 服务在中国的提供方式没有变化。作为一家独立公司,OpenAI 自行做出其决策,微软不受影响。相关链接:https://pymnts.com/artificialintelligence2/2024/reportmicrosoftwontfollowopenaiinblockingchinasaccesstoaimodels/ 、https://x.com/imxiaohu/status/1810526011173556481 微软确认 Azure OpenAI 服务将停止对中国大陆的非企业用户开放,企业用户不受影响。这是大陆唯一合法使用 OpenAI 的渠道,开发者社区受到了广泛关注。相关链接:https://x.com/imxiaohu/status/1847140960368841034
2024-11-01
oppo手机无法安装chatgpt,搜了一圈也找不到解决方案
以下是关于安卓和苹果系统安装 ChatGPT 的方法: 安卓系统: 1. 到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI,别下错了。 2. 这步骤可能遇到“google play 未在您所在的地区提供此应用”的问题。经过各种方法测试,找到路径如下: 在 google play 点按右上角的个人资料图标。 依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。 在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美,最后的结果参考相关红款标识信息。 如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 苹果系统: 中国区正常下载不了,需要切换到美区才可以下载。美区 AppleID 注册教程参考如下知乎链接: 。最终在 AppleStore 搜到 chatgpt 结果如下,下载安装即可,注意别下错啦。
2024-09-25
为什么无法访问waytoAGI知识库内容?
WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库。其内容覆盖 AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践,访问量超千万,展示了大家对 AI 的热情。 在这个知识库中,还有由其孵化的离谱村,这是一个千人共创项目,让大家学习和接触 AI 更容易、更感兴趣,参与者不分年龄层,都能通过 AI 工具创作作品。 此外,由于整个知识库内容庞大,新用户难以快速找到所需内容,传统搜索方式存在局限,所以需要采用更先进的 RAG 技术,并搭建问答机器人,在群中提供更便捷的信息检索方式。 如果您无法访问其内容,可能是网络问题、权限问题或其他技术故障,建议您检查网络连接,确认是否有相应的访问权限,或者稍后再试。
2024-09-10
Topaz Video无法下载模型怎么办
Topaz Video 无法下载模型,您可以参考以下步骤: 1. 解压对应的文件,推荐使用绿色版。(对应的安装包已在网盘里,可直接下载)。 2. 右键,管理员运行 VideoAIportable.exe 文件。 3. 导入处理好的视频。 4. 查看主界面,左边是原视频,右边是待处理视频,下面是对应的视频轨道。 5. 右边部分是主要对视频处理的方式,预设部分主要有放大视频、提升画质、提升帧率等。 6. 稳定 AI 模式分为自动裁切和完整帧,做转绘选择完整帧,强度在 60 为宜,抖动开启,次数一般选择 2 。 7. 帧插值:Apollo 模型处理一般情况,Chronos 模型处理运动幅度较大的情况,其他一般维持默认不变。 8. 增强部分建议直接开启使用默认。 9. 所有参数设计完毕后,点击浏览按钮查看效果。拉动时间轴,选择需要处理的位置,点击左边的 preview 即可执行浏览操作,可选择处理时长,一般在复杂场景如肢体快速运动时进行浏览。 请注意,以上操作依据电脑性能而定。若仍无法下载模型,建议检查网络连接或咨询相关技术支持。
2024-08-21
Cow好像接不上coze 的数据库,在coze 上能正常使用,到cow上就无法获取信息
以下是关于 Cow 接不上 coze 数据库的可能解决方法: 1. 服务器设置方面: 点击“Docker”中的“编排模板”中的“添加”按钮。 备注说明版和无备注干净版的操作有所不同。 将编译好的内容复制进来。 在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”。提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。 2. 直接调用大模型方面: 当在 COW 中直接调用千问的某一个大模型时,只需要更改 key 和 model 即可。以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。获取 key 的方式有视频教程和图文教程。注意需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明没有实名认证,可点击去,或查看自己是否已认证。 3. 安装并接入 cow 方面: 回到宝塔,打开【终端】。 依次粘贴并回车:cd /root ;git clone https://github.com/zhayujie/chatgptonwechat 。出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。 继续依次输入:cd chatgptonwechat/ ;pip install r requirements.txt ;pip install r requirementsoptional.txt 。 到“文件”菜单中执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。 粘贴并回车:cp configtemplate.json config.json ,刷新页面。在当前目录下,找到 config.json 文件。删除文件里的所有代码,复制提供的代码粘贴到文件里。
2024-08-13
Cow好像接不上coze 的数据库,在coze 上能正常使用,到cow上就无法获取信息
以下是关于 Cow 接不上 coze 数据库的可能解决方法: 1. 服务器设置方面: 点击“Docker”中的“编排模板”中的“添加”按钮。 备注说明版和无备注干净版的操作有所不同。 将编译好的内容复制进来。 在“容器编排”中“添加容器编排”,选择在“编排模板”里创建的“coze2openai”。提示运行成功,如果无法正常启动,请看文档后面的“常见问题”。 2. 直接调用大模型方面: 当在 COW 中直接调用千问的某一个大模型时,只需要更改 key 和 model 即可。以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。获取 key 的方式有视频教程和图文教程。注意需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明没有实名认证,可点击去,或查看自己是否已认证。 3. 安装并接入 cow 方面: 回到宝塔,打开【终端】。 依次粘贴并回车:cd /root ;git clone https://github.com/zhayujie/chatgptonwechat 。出现下方的样子,就是成功了。如果失败,或者没反应,刷新一下,重新再试一次。 继续依次输入:cd chatgptonwechat/ ;pip install r requirements.txt ;pip install r requirementsoptional.txt 。 到“文件”菜单中执行,点击文件找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。 点击文件夹上方功能栏中的【终端】(注意,不是左侧一级菜单里的终端,是文件夹上方那一行的终端电脑)。 粘贴并回车:cp configtemplate.json config.json ,刷新页面。在当前目录下,找到 config.json 文件。删除文件里的所有代码,复制提供的代码粘贴到文件里。
2024-08-13