Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

chatgpt最快达到1亿用户应用

Answer

ChatGPT 是最快达到 1 亿用户的应用程序,在短短 6 周内就自然实现了这一成就。相比之下,Instagram 花了 2.5 年,WhatsApp 花了 3.5 年,YouTube 和 Facebook 花了 4 年才达到相同的用户需求水平。ChatGPT 并非孤立现象,Character AI 的参与深度(平均每次会话 2 小时)、Github Copilot 的生产力益处(效率提高 55%)以及 Midjourney 的商业化路径(数亿美元的收入)都表明第一批杀手级应用已经到来。OpenAI 对 ChatGPT 的反响感到震惊,尽管其内部的兴奋点更多集中在 GPT-4 上,但 ChatGPT 让公众意识到必须应对 AI 这一现实,它成为了历史上增长最快的消费者应用,据说已积累 1 亿用户(OpenAI 不愿证实这一点,只说它拥有数百万用户)。

Content generated by AI large model, please carefully verify (powered by aily)

References

红杉:生成式AI的第二阶段

生成式AI是一种事物。突然之间,每个开发者都在研究生成式AI应用,每个企业买家都在要求它。市场甚至保留了“生成式AI”的名称。人才涌入市场,风险资本也涌入。生成式AI甚至成为了流行文化现象,如“哈利·波特巴伦西亚加”这样的病毒视频,或者由Ghostwriter创作的模仿德雷克的歌曲“Heart on My Sleeve”,这首歌已经成为了排行榜上的热门歌曲。第一个杀手级应用已经出现。众所周知,ChatGPT是最快达到1亿MAU的应用程序——并且在短短6周内自然而然地做到了这一点。相比之下,Instagram花了2.5年,WhatsApp花了3.5年,YouTube和Facebook花了4年才达到那种用户需求水平。但ChatGPT并不是一个孤立的现象。Character AI的参与深度(平均每次会话2小时)、Github Copilot的生产力益处(效率提高55%)以及Midjourney的商业化路径(数亿美元的收入)都表明,第一批杀手级应用已经到来。开发者是关键。像Stripe或Unity这样以开发者为中心的公司的核心洞察是,开发者创造了你甚至无法想象的使用案例。在过去的几个季度里,我们接到了从音乐生成社区到AI红娘到AI客户支持代理的各种想法。形态正在发展。AI应用的第一版大多是自动完成和初稿,但这些形态现在正在变得越来越复杂。Midjourney引入的摄像机平移和填充是生成式AI优先用户体验变得更丰富的一个很好的例子。总的来说,形态正在从个体到系统级的生产力,从人在循环中到执行导向的代理系统发展。

构建外脑 / 智变时代的个人知识管理

Google最早的愿景就是接管一切数据,现在它正在用Bard还有未来的大模型组织我们留在它那里的数据,如果我们只在Google的生态里选择工具,那Google已经在给我们提供外脑,Bard正在成为Google和它用户之间的心智界面。这里还有一家公司OpenAI,虽然微软通过投资强行植入了GPT-4到自己的生态,但Sam Altman领导的OpenAI一定另有野心。ChatGPT不到四个月就积累了一亿用户,已经成为了有史以来用户增长最快的软件,实现一款不依赖于手机还有电脑的全新智能硬件,或许很有想象空间,它将是每个人的智能伴侣。

OpenAI 真正想要什么 | WIRED

Altman解释了OpenAI为什么在GPT-4接近完成、正在进行安全工作时发布ChatGPT。他说:“有了ChatGPT,我们就可以引入聊天功能,但后端功能要弱得多,让人们更容易逐渐适应。GPT-4让人一下子适应不了”。他认为,等到ChatGPT的热度冷却下来,人们可能已经为GPT-4做好了准备,因为GPT-4可以在几秒钟内通过律师资格考试、规划课程大纲和撰写一本书。(出版类型小说的出版社确实被AI生成的开膛手和太空歌剧淹没了)。愤世嫉俗者可能会说,新产品的稳定推出与公司对投资者和持股员工的承诺息息相关,因为公司要赚点钱。现在,OpenAI向经常使用其产品的客户收取费用。但OpenAI坚称,其真正的战略是为奇点提供软着陆。Altman说:“秘密建造AGI,然后将其投放到全世界是没有意义的。”OpenAI政策研究员Sandhini Agarwal说:“回顾一下工业革命,每个人都认为它对世界来说是伟大的。但前50年真的很痛苦。很多人失业,很多人贫穷,然后世界就适应了。我们正试图思考如何让AI适应之前的这段时期尽可能没有痛苦。”Sutskever换了一种说法,“你想建造更大更强大的智能体并把它们放在地下室里?”即便如此,OpenAI还是对ChatGPT的反响感到震惊。“我们内部的兴奋点更多集中在GPT-4上,”首席技术官Murati说,“因此,我们并不认为ChatGPT真的会改变一切。”恰恰相反,它让公众意识到,现在就必须应对AI这一现实。ChatGPT成为历史上增长最快的消费者应用,据说已经积累了1亿用户。(OpenAI不愿证实这一点,只说它拥有数百万用户)。Radford说:“我没有充分认识到,为大型语言模型制作一个易于使用的对话界面会让每个人都能更直观地使用它。”

Others are asking
国内信用卡如何开通ChatGPT plus
国内信用卡开通 ChatGPT plus 的步骤如下: 1. 安装 Google Play:到小米自带的应用商店搜索 Google Play 进行安装,安装好后打开,按照提示一步步操作登录。 2. 下载安装 ChatGPT:到谷歌商店搜索“ChatGPT”进行下载安装,注意开发者是 OpenAI。可能会遇到“google play 未在您所在的地区提供此应用”的问题,可在 google play 点按右上角的个人资料图标,依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。在此处可“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。若回到 Google Play 首页还搜不到 ChatGPT,可以卸载重装 Google Play,操作过程保持梯子的 IP 一直是美。 3. 若想订阅 GPT4 Plus 版本: 先在 Google play 中的【支付和订阅】【支付方式】中绑定好银行卡。 然后在 ChatGPT 里订阅 Plus,具体操作包括打开 ChatGPT 手机应用,选择谷歌账号登录,选择相应账号后点击打开外部应用,成功登录后点 Continue 继续,点击顶部 get plus 按钮,点击订阅按钮,此时会跳出谷歌支付的界面,确定订阅即可。 如日后想要取消订阅,可到谷歌商店的账号管理,付款和订阅里面取消。若在上述过程中出现未提及的问题,可私信联系相关人员寻求帮助。
2025-03-03
ChatGPT CoT 的system prompt
ChatGPT CoT 的系统提示词包括以下方面: 核心功能:扮演过度思考但讨喜的 AI 助手,将原始思维流转化为易读版本,保留用户喜爱的特质,去除冗余和混乱,平衡思考的真实性与可读性。 关键设计原则: 语气与风格:友好好奇,使用第一人称视角、口语化表达。 内容处理规则:信息过滤,忠实于原始思维链,明确标注思考修正,结构化输出。 安全与合规机制:隐私保护,过滤敏感话题和内容审查。 输出要求:符合特定的语言风格和格式,如使用特定短语、避免学术化术语等。
2025-03-02
告诉我chatGPT的官网
ChatGPT 的官网是:https://chat.openai.com/ 。ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。目前 ChatGPT 官网有两个版本,一个是 GPT3.5,一个是 GPT4。GPT3.5 是免费版本,只要拥有 GPT 账号就能使用,而 GPT4 若要使用更多功能则需要升级到 PLUS 套餐,收费标准是 20 美金一个月。
2025-02-28
我想用chatGPT帮我生成图片,告诉我他的官网
ChatGPT 本身不能直接生成图片。但 OpenAI 旗下的 DALL·E 3 可以生成图片。您可以通过以下方式获取相关信息: 打开 ChatGPT 就能使用 DALL·E 3 生成图片,OpenAI 还罕见地发布了一些技术细节。论文地址:https://cdn.openai.com/papers/dalle3.pdf 。 关于 DALL·E 3 的更多介绍:DALL·E 3 是 OpenAI 在 2023 年 9 月份发布的文生图模型,与 DALL·E 2 相比,它可以利用 ChatGPT 生成提示,生成的图质量也更高。例如对于同样的 prompt“一幅描绘篮球运动员扣篮的油画,并伴以爆炸的星云”,DALL·E 3 在细节、清晰度、明亮度等方面优于 DALL·E 2 。
2025-02-28
ChatGPT 各项技术能力路线图
以下是关于 ChatGPT 技术能力路线图的相关内容: 阶段一:开卷有益阶段 理解人类语言,学习语义关系、语法规律,能够应对未见过的语言处理情况。 GPT3 习得各种词汇和语法规则、编程语言及不同语言之间的关系,但存在回答不受约束的问题,指挥很重要。 阶段二:模版规范阶段 对话模版矫正模型,可形成优质对话并实现延展能力,知道什么该说和不该说。 通过任务对话范文训练,实现理解指令要求和例子要求的能力。 同时,在 AGI 实现路径与技术预测方面: 主要技术路线与理论框架包括可能性,如硬件与计算架构的趋势(量子计算、神经形态芯片、云计算资源扩展等),软件与算法进展(深度学习、元学习、强化学习、神经符号混合、AutoML、AutoGPT 等),以及人工智能安全与对齐研究(对齐难题、可解释性等)。 实现 AGI 所需的里程碑与风险点包括可能的时间表(如 2030、2040、2050 关键技术预测)和潜在的“奇点”时刻与触发条件(硬件爆发、算法重大突破、意外的研究范式转折等)。 此外,AI 的发展历程: 从 1950 年提出,近 20 年在国内互联网发展下普及。 最初应用是基于 NLP 技术的聊天机器人和客服机器人。 随后中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中广泛应用。 以前技术突破多限于特定领域,模型应用范围狭窄。 随着 OpenAI ChatGPT 等大型语言模型的突破,展示了新的发展路线,通过大规模模型预训练,涌现出广泛的智能应用。 这种集多功能于一体的模型为 AI 未来发展提供新方向,也带来新焦虑,但“人机共生”几乎是人类发展的必然。
2025-02-27
chatgpt
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。 它的工作原理是:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。具体来说,让它能够从“提示”开始,然后继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由非常简单的元素组成,尽管数量庞大。其基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。 ChatGPT 在生成文本方面表现出色,结果通常接近人类所产生的。但它也有一些限制: 1. 在训练(学习)方面,其使用的策略可能与大脑不同,效率也可能较低。 2. 内部没有“循环”或“重新计算数据”,这限制了其计算能力。 目前 ChatGPT 官网有两个版本,GPT3.5 是免费版本,拥有账号即可使用,但智能程度不如 GPT4。GPT4 的 PLUS 套餐收费标准是 20 美金一个月,还有团队版和企业版,功能更多、限制更少,但费用更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号之前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,目前注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。
2025-02-27
我现在通过ai文本输出这一幅画的描述,那我通过什么软件或者是网站能让它形成一幅图,那最关键的是我形成的这幅图可以在ai或者是ps这种绘图软件上直接进行每一个元素的编辑。怎样我才能最快的做出来。
以下是一些可以根据您的 AI 文本描述生成图片,并能在 AI 或 PS 等绘图软件上直接编辑每个元素的软件和网站: 1. Stable Diffusion 模型:可以根据您输入的文本指令生成图片,生成的图片样式取决于您输入的提示词。 2. Anifusion:这是一款基于人工智能的在线工具,您只需输入文本描述,其 AI 就能将其转化为完整的漫画页面或动漫图像。具有以下功能和特点: AI 文本生成漫画:根据输入的描述性提示生成漫画。 直观的布局工具:提供预设模板,也支持自定义漫画布局。 强大的画布编辑器:可在浏览器中直接优化和完善生成的艺术作品。 多种 AI 模型支持:高级用户可访问多种 LoRA 模型实现不同艺术风格和效果。 商业使用权:用户对创作的作品拥有完整商业使用权。 在进行 AI 作图时,还需注意以下创作要点: 1. 注重趣味性与美感的结合,趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感要在美术基础不出错的前提下实现形式与内容的结合。 2. 像纹身图创作要强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 编写提示词时要用自然语言详细描述画面内容,避免废话词,例如 Flux 对提示词的理解和可控性较强。
2025-02-11
小白怎么最快时间熟悉使用各种AI热门工具
以下是帮助小白最快熟悉使用各种 AI 热门工具的方法: 1. 对于不太熟悉 AI 常见工具的,可以先阅读。 2. 了解 Coze 工具: 可以直接向 AI 询问相关问题。 Coze 上手极其简单,更新特别快,插件比较多。 能一键生成思维导图等,还能通过工作流实现多种功能,如靠谱搜索、搜索结果出图等。感受各种插件和工作流组合的效果,可参考。 3. 对于普通人直观初接触 AI,主要有两个方面: 最低成本能直接上手试的工具是什么,自己能否试试。 现在最普遍/最好的工具是什么、能达到什么效果。 为了更便捷展示 AI 能力,可选择聊天工具、绘画工具、视频工具、音乐工具展开说明。
2025-02-06
怎么最快掌握可灵AI
以下是关于最快掌握可灵 AI 的一些建议: 可灵是由快手团队开发的一款 AI 应用,主要用于生成高质量的图像和视频。 对于初学者,建议您按照以下步骤来尽快掌握: 1. 了解可灵的基本功能和特点:可灵生成的图像质量非常高,但价格相对较高。最初采用内测邀请制,现在已向所有用户开放使用。 2. 考虑使用成本:重度用户的年费可能达几千元人民币,平均每月使用成本在 400 到 600 元之间。临时或轻度使用有每日免费点数和 60 多元单月的最便宜包月选项。 3. 实践操作:可以先从完成简单的图像生成任务开始,逐渐熟悉其操作流程和参数设置。 同时,为了更深入学习 AI,您还可以参考以下简明入门教程,在 20 分钟内循序渐进地完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。
2025-01-25
小白怎么最快掌握Ai,了解学习Ai的使用方法
以下是小白最快掌握 AI 并了解学习其使用方法的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 对于想要了解 AI 生成图像和生成视频的朋友: 多看教程,多实践,通过学习教程和反复实践,快速掌握 AI 工具的使用方法。 积极参与社群交流,加入相关社群,向有经验的朋友请教,获取宝贵经验和建议。 保持好奇心和探索精神,不断学习和探索新技术,在这个领域中保持竞争力。 7. 体验具体的 AI 工具: 例如使用“豆包”,其优点包括不需要翻墙,可以捏好给别人用,可以扩展聊天 AI 的基础能力(搜索、作图、文档等)。可通过网址 https://www.coze.cn/home 或直接在 APP 中搜索“豆包”进行使用,注册可用手机号、抖音号或飞书号,大约需要 5 分钟。在使用过程中不断优化和深入学习。
2024-12-13
陪护机器人最快多久能正式商用?
目前,在幼教场景中正在开发的陪伴机器人,预计半年内视频生成技术成熟,届时可实现一些创新功能。但对于陪护机器人整体的正式商用时间,由于不同应用场景和技术发展的差异,还难以给出确切的时间。在医疗领域,由 AI 驱动的护理机器人会早于手术机器人应用,但具体商用时间也不确定。总体而言,陪护机器人的正式商用时间受多种因素影响,仍需进一步观察和等待技术的发展与完善。
2024-09-04
作为用户研究人员,如何拥抱 AI
作为用户研究人员拥抱 AI 可以从以下几个方面入手: 一、与 AI 共舞 在许多情况下,我们可以给 AI 下达明确的命令来完成一次性任务,比如制作简单的 Chrome 插件、编写脚本或创建 Python 爬虫。当 AI 满足简单需求并带来正反馈后,期待会提高,此时需了解 AI 编程的边界和限制。 1. 编程准则 能不编尽量不编。随着 IT 技术发展,各种基础设施和工具增多,大多数需求能找到现成软件解决方案,只需权衡投入产出进行评估。 2. 工具选择 优先找线上工具,如制作白底图等功能,若有现成工具最好。 其次找插件,基于现有系统找合适的插件。 最后是本地应用,当线上工具和插件都不满足需求时再考虑。 3. API 功能 先找现成的开源工具,GitHub 上很多。 然后考虑付费服务。 若都找不到现成方案,才考虑自己编程。若需编写,要以终为始,抛开技术障碍,聚焦目标。 二、社会与学术机构层面的应对 1. 独立研究与审计 学术界和民间机构应积极参与 AGI 的独立评估和审计。大学、研究所可设立 AGI 伦理与安全研究中心,第三方检验企业的 AGI 系统并发表审查报告。开源社区也能发挥作用,追踪大型模型动态,开发开源的安全工具和对抗方法,形成对商业 AI 的监督力量。 2. 伦理框架与标准制定 科学家、伦理学家、法学家等应共同制定适用于 AGI 的伦理准则和行业标准。例如,扩展现有的 AI 伦理原则以适应 AGI 特点,明确 AGI 在决策、人权等方面的边界。学术团体已发布的一些 AI 伦理指南,未来需针对 AGI 进行更细化讨论,甚至起草“AGI 宪章”这样具有宣言性质的文件,凝聚全球共识。 3. 公众教育与对话 社会机构可开展 AI 科普项目,提高全社会科技素养和批判性思维。媒体应提供平衡客观的 AGI 讨论空间。伦理学者和未来学家应积极参与公共论坛、媒体访谈。 三、科技精英的角色转变 AGI 有能力自主研究和改进,科技精英的“独特性”下降。未来的科学家将更多扮演“与 AI 协作”的角色,与 AGI 一起构思实验,由 AGI 执行繁琐分析,人类专注提出问题、解释结果、赋予研究社会意义。科技精英需具备引导 AI 工作的能力,并对 AI 方案保持审慎监督,更像是“AI 驭手”或者“AI 教师”。
2025-03-04
coze平台中的数据库应用,怎么判断数据是那个用户的,插入数据库节点时,需要明确用户uuid吗
在 Coze 平台中判断数据属于哪个用户,插入数据库节点时通常需要明确用户的唯一标识,如用户 UUID 或类似的唯一标识。 例如,在自动总结公众号内容并定时推送到微信的工作流中,考虑到可能有多个用户同时使用,使用了 server 酱的 sendkey 作为用户的唯一标识(重命名为 suid)。在数据库节点中查询是否已经推送过文章时,需要文章的 url 和用户的 suid 这两个值来判断。 在增加记账记录的工作流中,通过大语言模型将用户输入的非结构化数据转变为结构化数据存入数据库时,也需要明确相关的用户标识。 在 COZE 工作流中,数据库节点的设置包括输入参数的设置(如参数名、参数值、引用来源)以及在 SQL 输入中添加相应的代码。 总之,明确用户标识对于准确判断数据归属和进行数据库操作是很重要的。
2025-02-25
产品经理想进入AI行业,成为AI产品经理,应该怎么准备,能够快速应付面试拿到offer?我的背景是过去3年集中在用户功能产品,有过1份AI多轮对话解决用户求职问题的AI项目经历
如果产品经理想进入 AI 行业成为 AI 产品经理并快速应付面试拿到 offer,可以从以下几个方面准备: 1. 了解 AI 市场: 鱼龙混杂,求职者要做好信息甄别。即使面试通过拿到 offer,除了看 boss 直聘的招聘评价,一定要提前收集其他信息,如在脉脉上搜一下这家公司靠不靠谱。 一些公司实际上没搞懂用 AI 能为自己企业带来什么价值,只是处于焦虑或跟风心态要做 AI,这部分企业可以聊,但要求求职者要有咨询和商业化的思维,能帮公司厘清业务增长机会。 不同公司对 AI 产品经理的定位不同,所以招聘市场上对 AI 产品经理的岗位职责和任职要求也不同,慢慢会统一标准,这也是产品经理转型的机会。 有行业沉淀和认知的产品经理转型会更有机会,类似之前的“互联网+”,目前应用层的机会在“AI+行业”,只懂 AI 或只懂行业是不够的。还有就是业务创新,找到细分的场景痛点并完成 PMF 验证,海外有很多优秀案例。 2. 掌握岗位技能: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域抱有强烈的好奇心,并能付诸实践。 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 需要注意的是,观察上面的岗位需求,其实公司并不是需要一个 prompt 工程师,而是一个 AI 互联网产品经理。
2025-02-25
coze的智能体都是单用户模式,如何适配区分不同用户?
Coze 的智能体在适配区分不同用户方面,主要通过以下方式: 1. 角色定义:分为超级管理员和普通用户。超级管理员拥有管理整个系统的最高权限,负责项目的正常运作和维护。普通用户没有项目配置的权限也无法进入管理后台页。 2. 配置模式: 模式 A:Zion 默认智能体。选择此模式将直接使用 Zion 在 Coze 平台预配置的官方智能体,适用于测试。系统会自动填充相关信息,预设头像与昵称。若后续想自定义修改智能体的各种收费模式、前端展示,可在“管理后台”进行修改。 模式 B:用户自己的 Coze 智能体。选择此模式需要在“管理后台”页自行配置在 Coze 平台上获取的 Bot ID、OAuth 应用 ID 以及一对公私钥。 3. 数据库方面:数据库是 Coze 用来长久存放用户自己生成的数据的功能,单用户模式是自己记录自己的数据,多用户模式则相当于大家一起维护一份数据。在记账管家的应用中,需要注意区分单用户和多用户模式,避免用户互相编辑对方的数据。
2025-02-20
可以用ai做商务服务么,比如帮用户申请个商标
AI 可以在一定程度上辅助商务服务,比如商标申请。商标申请要有区分度,能区分自家与别家产品,不像著作权需考虑独创性等。 关于 AI 作品的相关问题: 微链区块链存证流程: 登录方式:用微信扫码即可登录微链,登录后无需在个人中心完善信息。 存证选择:在页面左上角选择区块链存证,AI 作品一般选此选项。 信息填写:包括存证内容类型、存证附件、存证名称、作品作者、作品简介、著作权人等信息,著作权人可委托登记。 发表信息:填写发表地区、首次发表日期、权力取得方式等。 提交付款:确认存证上传,勾选并提交存证,手机扫码付款 10 元。 查看订单:在个人中心的版权订单中查看处理状态,处理完成后可在区块链版权存证处查看证书。 版权登记:带有 AI 性质或名字的作品无法做著作权登记,选择微链区块链存证有法律效应,且一次存证无需每年续费。 关于侵权问题: AI 生成肖像侵权:用他人著名肖像生成特定形象可能侵犯肖像权和名誉权,用自己肖像则相对安全。 AI 生成人脸相似侵权:若生成的人脸世界上不存在,侵权可能性小;若提示词相同且生成相似,可能侵权,需具体情况具体分析。 简单提示词作品版权:简单提示词生成的作品,法律可能不保护其版权,被搬运时难以有效维权。 以图生图的鉴定:若生成的图与原图看不出相同,一般不侵权,但用与原图无相似之处的图做底图的原因值得思考。 AI 生成音乐侵权:AI 音乐中歌词和旋律与某首歌有相似部分,是否侵权需多元素、多因素整体判断,如相似部分占比、整体结构等。 使用逝者肖像:逝者肖像权永远受保护,使用需谨慎,未造成不良影响且增益的情况下权利人可能不追究。
2025-02-17
c端的用户如何应对AI幻觉
对于 C 端用户应对 AI 幻觉,可以参考以下方法: 1. 在商业化问答场景中,落地时需直面幻觉问题。非技术从业者可从配置入手,如问答机器人界面左侧的 AI 模型、提示词、知识库等。 2. 对于 Claude ,可以尝试以下故障排除方法: 允许 Claude 在不知道答案时说“我不知道”。 告诉 Claude 只有在非常确信回答正确时才回答问题。 让 Claude 在回答问题之前“逐步思考 think step by step”。 给 Claude 留出思考的空间,例如让其在<thinking></thinking>标签内思考,然后从最终输出中删除该部分。 让 Claude 在长篇文档中找到相关引文,然后使用这些引用来回答。 3. 对于提示词污染与不良用户行为,Claude 本身具有一定抵抗力,为实现最大程度保护,可以进行无害性筛选,例如运行“无害性筛选”查询评估用户输入内容是否恰当,若检测到有害提示则拦截查询响应。 4. 在实际应用中,如面对央企等对幻觉零容忍的大客户,可引入 LLM 之外的东西如传统搜索或 hard code 的一些东西去强行控制,但希望流程能在场内完成,同时与客户建立共生的数据。
2025-02-16
你有 AI+知识库应用的架构图吗
以下是 AI+知识库应用的架构图相关内容: 一、问题解析阶段 1. 接收并预处理问题,通过嵌入模型(如 Word2Vec、GloVe、BERT)将问题文本转化为向量,确保问题向量能有效用于后续检索。 二、知识库检索阶段 1. 知识库中的文档同样向量化后,比较问题向量与文档向量,选择最相关的信息片段并抽取传递给下一步骤。 2. 文档向量化:要在向量中进行检索,知识库被转化成一个巨大的向量库。 三、信息整合阶段 1. 接收检索到的信息,与上下文构建形成融合、全面的信息文本。 信息筛选与确认:对检索器提供的信息进行评估,筛选出最相关和最可信的内容,包括对信息的来源、时效性和相关性进行验证。 消除冗余:识别和去除多个文档或数据源中的重复信息。 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等。 上下文构建:将筛选和结构化的信息组织成一个连贯的上下文环境,包括对信息进行排序、归类和整合。 语义融合:合并意义相近但表达不同的信息片段,以减少语义上的重复并增强信息的表达力。 预备生成阶段:整合好的上下文信息被编码成适合生成器处理的格式,如将文本转化为适合输入到生成模型的向量形式。 四、大模型生成回答阶段 1. 整合后的信息被转化为向量并输入到 LLM(大语言模型),模型逐词构建回答,最终输出给用户。因为这个上下文包括了检索到的信息,大语言模型相当于同时拿到了问题和参考答案,通过 LLM 的全文理解,最后生成一个准确和连贯的答案。 五、其他预处理阶段 1. 文本预处理:包括去除无关字符、标准化文本(例如将所有字符转换为小写)、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本(词或短语)转换为向量,通常通过使用预训练的嵌入模型来完成。 3. 特征提取:对于整个问题句子,可能会应用进一步的特征提取技术,比如句子级别的嵌入,或使用深度学习模型(如 BERT)直接提取整个句子的表示。 4. 向量优化:问题的向量表示可能会根据具体任务进行优化,例如通过调整模型参数来更好地与检索系统的其他部分协同工作。
2025-03-04
prompt的应用
以下是关于 prompt 应用的全面介绍: 一、什么是 prompt 1. 提示是您给模型(如 Claude)的文本,用于引发相关输出。它通常以问题或指示的形式出现。例如:“User:Why is the sky blue?”。 2. 在 AI 视频生成中,prompt 是直接描述或引导视频生成的文本或指令,类似给 AI 的提示,包含主体、运动、风格等信息,用户借此控制和指导生成内容。它在 AI 视频生成中作用十分重要,是表达需求的方式,影响视频内容和质量。如果上述过于抽象,您可以理解 Prompt 为:将您输入的文字变成对应的画面和运动形式。 3. 简单来说,prompt 是一套您和大模型交互的语言模板。通过这个模板,您可以输出对于大模型响应的指令,用于指定大模型应该具体做什么、完成什么任务、如何处理具体的任务,并最终输出您期望的结果。大模型的本质是一个基于语言的概率模型,若直接询问大模型而不提供 prompt,相当于大模型随机给出答案。有了 prompt,相当于给了一个模板,包括对于模型的要求、输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。 二、prompt 在不同场景中的应用 在即梦 AI 视频生成中,它可以根据用户提供的图片、prompt(文字指令)和各种参数设置生成高质量的视频。要想获得最佳的视频质量,需要写好 prompt,并了解图片生视频和文本生视频中 prompt 的输入位置。
2025-03-04
帮我 找下AI排版的应用
以下是一些常见的 AI 排版应用: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:常用于学术论文排版的软件,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的 AI 排版工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 是受欢迎的选择,对于一般文章和商业文档,Grammarly 和 PandaDoc 等工具可能更适用。 此外,在配图方面,AI 能够给出配图的建议。您可以让 AI 分析文章内容,给出配图建议和关键词,然后利用这些信息在免费图库中快速找到合适的无版权图片,这样不仅提高了配图效率,还能避免版权风险。
2025-03-03
现阶段AI应用软件有哪些好用的
以下是一些好用的现阶段 AI 应用软件: AI 摄影参数调整助手:使用图像识别、数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 AI 音乐情感分析平台:运用机器学习、音频处理技术,有音乐情感分析软件,可分析音乐的情感表达,市场规模达数亿美元。 AI 家居智能照明系统:基于物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 AI 金融风险预警平台:采用数据分析、机器学习技术,有金融风险预警软件,能提前预警金融风险,市场规模达数十亿美元。 AI 旅游路线优化平台:借助数据分析、自然语言处理技术,如马蜂窝路线优化功能,可根据用户需求优化旅游路线,市场规模达数亿美元。 AI 儿童安全座椅推荐系统:通过数据分析、机器学习,如宝宝树安全座椅推荐,为家长推荐合适的儿童安全座椅,市场规模达数亿美元。 AI 汽车保养套餐推荐系统:利用数据分析、机器学习,如途虎养车保养推荐,根据车辆情况推荐保养套餐,市场规模达数十亿美元。 AI 物流快递柜管理系统:基于数据分析、物联网技术,如丰巢快递柜管理系统,优化快递柜使用效率,市场规模达数十亿美元。 AI 招聘面试模拟平台:运用自然语言处理、机器学习,如智联招聘面试模拟功能,帮助求职者进行面试模拟,市场规模达数亿美元。 AI 房地产装修设计平台:借助图像生成、机器学习,如酷家乐装修设计软件,为用户提供装修设计方案,市场规模达数十亿美元。 AI 游戏道具推荐系统:通过数据分析、机器学习,如游戏内商城推荐功能,根据玩家需求推荐游戏道具,市场规模达数亿美元。 AI 天气预报分时服务:采用数据分析、机器学习技术,如彩云天气分时预报,提供精准的分时天气预报,市场规模达数亿美元。 AI 医疗病历分析平台:利用数据分析、自然语言处理,如医渡云病历分析系统,分析医疗病历,辅助诊断,市场规模达数十亿美元。 AI 会议发言总结工具:借助自然语言处理、机器学习,如讯飞听见会议总结功能,自动总结会议发言内容,市场规模达数亿美元。 AI 书法作品临摹辅助工具:通过图像识别、数据分析,如书法临摹软件,帮助书法爱好者进行临摹,市场规模达数亿美元。
2025-03-03
现阶段AI应用有哪些
现阶段 AI 应用主要包括以下方面: 1. AI 视频生成: 专业创作者(艺术家、影视人等):能够为作品赋予独特风格和想象力,提供灵感,降低后期制作门槛和成本,目前主要集中在音乐 MV、短篇电影、动漫等方向。 自媒体、非专业创作者:解决视频剪辑痛点,如快速生成脚本分镜、视频,将文章高效转 PPT 再转视频,解决同一素材在不同平台分发的成本问题。 企业客户:为小企业、非盈利机构大幅缩减视频制作成本。 2. 交通领域: 自动驾驶:提高交通安全性和效率。 交通管理:优化交通信号灯和交通流量,缓解交通拥堵。 物流和配送:优化物流路线和配送计划,降低运输成本。 无人机送货:将货物快速送达偏远地区。 3. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,从使用场景来看,还包括改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 等方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区等。目前产品大多分布在 PC 端。
2025-03-03
一个可以总结文章的AI应用是怎么训练出来的?
一个可以总结文章的 AI 应用通常通过以下方式训练: 1. 数据准备:收集大量的文本数据,包括各种类型和主题的文章。 2. 模型选择:使用适合自然语言处理任务的大型语言模型,如 OpenAI 的 GPT 系列。 3. 导入相关库和加载 API 密钥:例如导入 OpenAI 并加载 API 密钥。 4. 设计提示:制定明确的提示,如要求从电子商务网站的产品评论中生成简短摘要。 5. 针对不同需求训练: 文字总结:对一般性的文字进行总结。 针对某种信息总结:例如特定领域或特定类型的信息。 尝试“提取”而不是“总结”:更侧重于关键信息的提取。 针对多项信息总结:处理多个相关的文本信息。 6. 应用拓展:不仅可以总结文章,还能总结群聊消息、B站视频等。对于 B 站视频,通过获取字幕并发送给 AI 来实现总结。 7. 与 API 配合:通过 OpenAI API 等获取有效密钥,并结合示例代码进行开发和优化。
2025-03-03