直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

提示词测试有哪些插件

回答

以下是一些与提示词测试相关的插件:

  • 景淮在制作成语小游戏时,使用了成语搜索的 Web 插件,但有时会出现不触发或内容不够准确的情况。
  • 小七姐在实验中,利用了强大的 ChatGPT 插件和 GPT-4、AI Agents³进行提示词优化。
  • 【SD】中的 One Button Prompt 插件,可帮助自动写提示词。安装方式可在扩展面板中搜索直接安装,或放在指定路径文件夹下,安装完成后重启 webUI 即可在脚本下拉菜单中找到。使用时可设置大模型、采样方法、采样步骤、CFG 比例等参数,还能选择主题、艺术和图像类型,也可添加提示词增加控制。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

景淮:制作成语小游戏-GPTs Action 实战

https://chat.openai.com/g/g-FmXhWqboi-cheng-yu-xiao-you-xi[heading2]五、总结[content]这篇文章整体不太敢单纯的依靠GPT的知识库,首先太容易出现幻觉,所以加入了一个成语搜索的API,在回复时,先确定使用的成语是否正确,然后还有另外一个是给孩子的成语解释,希望在解释的时候给出的是正确的解析和出处,所以调用了Web插件。目前整体玩起来还是比较流畅,但是Web插件有时候会不触发,给出的内容有点不够准确。所以使用的时候还需要注意一下。好啦,写到这里我们今天的内容也结束啦,感谢大家的观看,也希望我的内容能够让大家喜欢,有所收获。感兴趣的小伙伴可以点个关注跟随我一起学习,观看更多往期文章。嘿,下次见,我是景淮,一个加拿大的程序员,沉迷AI不能自拔~

小七姐:PromptAgent 论文精读翻译

我们将我们的方法与三种类型的基线进行比较:普通的人类提示词、Chain-of-Thought(CoT)提示词和最近的提示词优化方法。(1)人类提示词是代表提示词工程普通水平的人类设计的指令,通常来自原始数据集。我们还有一个少示例版本的人类提示词,使用Suzgun等。(2022)为BBH任务和从训练集随机抽样的其他任务提供的教学示例。(2)CoT提示词被认为是非常有效的技巧,通过引入中间推理步骤来提高LLM的性能,特别是对于BBH任务(Suzgun等,2022)。我们直接使用Suzgun等。(2022)为BBH任务提供的CoT提示词,并为其他任务构造CoT提示词。我们还有一个零示例版本的CoT,使用“让我们一步一步地思考”作为提示词来触发CoT行为,而不使用少示例(Kojima等,2022)。(3)提示词优化方法包括GPT Agent和Automatic Prompt Engineer(APE)(Zhou等,2022)。GPT Agent代表了对LLM驱动的自主代理的最近的浓厚兴趣(Weng,2023),例如Auto-GPT²。这样的代理预计会自主地进行规划和自我反思,以解决人类的请求,包括优化任务提示词。我们利用一个强大的ChatGPT插件(OpenAI,2023a)和GPT-4,AI Agents³进行提示词优化。具体地说,类似于PromptAgent,我们采样类似的模型错误,并要求AI Agents插件根据错误重写提示词,迭代次数与PromptAgent相似。最后,APE是最近的提示词优化方法之一,提出了一种基于蒙特卡罗搜索的方法,迭代地提出和选择提示词。²https://github.com/Significant-Gravitas/AutoGPT³https://aiagentslab.com/实施细节。

【SD】自动写提示词脚本One Button Prompt

作者:白马少年介绍:SD实践派,出品精细教程发布时间:2023-06-12 20:00原文网址:https://mp.weixin.qq.com/s/Vx2_T3LLVGXs7TA-5RksmQ曾几何时,我们做设计的时候就幻想着能用嘴做设计,随便说几句话电脑就能帮我们画出来;后来,出现了AI,我们就想着怎么样能帮助我们快速编写提示词,就有了各种提示词插件;好嘛,到现在开发者告诉我们,提示词你也不用想了,AI已经帮你写好了。我:……来看看,我们今天要玩的这款脚本——One Button Prompt。安装方式就是在扩展面板中搜索One Button Prompt,可以直接安装。或者是将下载好的插件,放在这个路径文件夹下“……\sd-webui-aki-v4\extensions”。安装完成后,重启webUI,在脚本下拉菜单中可以找到这个插件。我们先体验一下这个插件,根据官方建议,大模型选择了“deliberate”,采样方法设置为“DPM++SDE Karras”,采样步骤设置为“25”,并将CFG比例降低到“6”。随机等级设置为5,可以看到下面还有三个下拉选项。分别定义主题的类型,艺术的类型,和图像类型。当然,你可以选择全随机来试试手气(什么开盲盒?)。也可以稍微加一点自定义条件,比如我让它画一幅动物主题的摄影作品。点击生成。将模型换成“realisticVisionV20”,主题换成人物,再生成一次。在插件的下方,还可以添加一些提示词来增加更多的控制,比如规定所画的必须是猫,或者是一些标准化的质量提示词,这样能帮助你获得更符合你期望的图片。

其他人在问
如何确保agent按要求调用插件
要确保 Agent 按要求调用插件,可以参考以下方法: 1. 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。 2. 一般而言,对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,鉴于 LLM 只能处理文本输入输出的特性,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 3. 在插件中心确定需要的插件时,先用关键词进行尝试性搜索,根据插件名称、插件介绍页、描述、参数、示例,判断是否可能满足需求。有多个插件同时可选时,一般优选官方/高收藏/高成功率的插件,提升使用效果。如果实际试用效果不行,则换用其他插件,或自己编写上架插件。 例如,在搜索 TTS 文字转语音插件时,可以使用“语音”“文字转语音”“TTS”等相关关键词;在搜索思维导图插件时,可以使用“脑图”“树图”“导图”“mindmap”等关键词。
2024-12-17
如何制作小插件图表工具
以下是制作小插件图表工具的详细步骤: 1. 点击个人空间,选择插件,然后点击创建插件。 插件名称:使用中文,根据插件需求起名。 插件描述:向观众说明插件的用途和使用方法等。 插件工具创建方式: 云侧插件基于已有服务创建:使用现成的 API 来创建插件,选择后需填入所使用 API 的 URL。 云侧插件在 Coze IDE 中创建:使用 Coze 的服务器写代码来直接搭建 API(支持 Python 和 Node.JS)。 2. 基于已有服务创建插件的配置项: 插件图标:单击默认图标后,可上传本地图片文件作为新的图标。 插件名称:自定义清晰易理解的名称,便于大语言模型搜索与使用插件。 插件描述:记录当前插件的用途。 插件工具创建方式:选择基于已有服务创建。 插件 URL:填写插件的访问地址或相关资源的链接,例如:https://www.example.com/api 。 Header 列表:根据 API 自身的参数配置要求填写 HTTP 请求头参数列表。 3. 创建工具: 填入第一个插件工具的基本信息,工具名称只能使用字母、数字和下划线来命名。 工具描述:根据工具的使用方法、功能填写,提醒用户如何使用。 工具路径:填写对应完整的 API 以“/”开始,如果后面使用 path 的方式传参,则可以使用“{}”包裹的方式把变量包含在其中。 请求方法:根据 API 的调用方式选择对应的请求方法。结束后点击保存并继续。 4. 配置输入参数:点击新增参数,把所有需要使用的参数填写进工具,填写后选择保存并继续。 以画小二通过 Coze 定制开发插件案例(根据食物识别营养热量)为例: 1. 打开扣子官网:https://www.coze.cn/home ,在个人空间的插件中点击创建插件。 2. 插件基本配置: 选择基于已有的服务创建,起好名字。 插件 URL:https://apis.tianapi.com 。 授权方式选择 Service 。 位置选择:Query 。 Parameter name 参数名字填写 key 。 Service token/API key 填写自己的。 3. 获取 API key:在天聚数行的 API 市场,在数据智能分类中找到实物营养识别,免费白嫖 20 条。登录注册之后按相关提示操作。 4. 插件详细参数配置:参考画小二课程详细解释这里的原理。 5. 插件发布:选择一项,不用收集客户敏感信息。
2024-12-12
写专业论文的插件或者工作流推荐
以下是为您推荐的写专业论文的插件和工作流: 插件方面: 1. 扣子平台上有丰富的插件,可拓展 Bot 能力边界。若不满足需求,还能创建自定义插件集成所需 API。例如,搜索插件可满足最新数据的搜索。 2. 扣子平台上还有如看新闻、规划旅行、提高办公效率、理解图片内容等不同类型的插件,以及能处理多种任务的模型。 工作流方面: 1. 可以根据用户描述生成歌曲后播放的工作流,能试听自己写的歌。 2. 工作流就像可视化的拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个小块块(节点)组成,开始和结束都有特定小块块,不同小块块可能需要不同信息才能工作。 3. 例如在“竖起耳朵听”的智能体里,用到了 5 个小块块,可回答带有图片口语的结果。 此外,在论文阅读方面,有“大学教授&学术阅读(读论文)大学教授版本”的 Prompts 分类,遵循「三轮吃透法」进行论文阅读,输出每轮阅读的总结文字。使用方法上,Claude 更好用,可直接上传附件;若用 GPT 则需配合插件,如 PaperChat、ML Paper Reader,直接输入论文地址。
2024-12-09
翻译插件
以下是关于翻译插件的相关信息: 提示词翻译(百度 API): 方法:下载节点压缩包并放在 custom_nodes 文件夹;在百度翻译 Api 登记册开发人员的帐户获取 appid 和 secretKey,百度翻译平台地址:https://fanyiapi.baidu.com/manage/developer ;打开文件 config.py 在记事本或其他编辑工具中,填写 secretKey 并保存文件,重启 Comfy 即可。 提示词翻译(谷歌翻译): 插件地址:https://github.com/kingzcheung/ComfyUI_kkTranslator_nodes ,安装后重启 ComfyUI 即可。将 CLIP 文本编码器转换为输入,连接翻译文本节点即可使用。 如何将一份英文 PDF 完整地翻译成中文: 推荐以下 8 种翻译方法: DeepL(网站): ,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 沉浸式翻译(浏览器插件): ,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」 。 calibre(电子书管理应用): ,下载并安装 calibre,并安装翻译插件「Ebook Translator」 。 谷歌翻译(网页): ,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 百度翻译(网页): ,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、PDF、Word、Excel、PPT、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 浏览器自带的翻译功能:如果一些 PDF 太大,翻译工具不支持,除了将 PDF 压缩或者切分外,还可以转成 HTML 格式,然后使用浏览器自带的网页翻译功能。
2024-12-08
coze如何写插件
以下是在 coze 中写插件的步骤: 1. 进入 coze 个人空间,选择插件,新建一个插件并起个名字(如 api_1),随意或根据需求命名,同时填写描述(如 test)。 2. 在插件的 URL 部分,填入 ngrok 随机生成的 https 的链接地址。如果服务还开着则继续,否则需重新开始。 3. 按照 coze 的指引配置输出参数,完成后进行测试并发布插件。 4. 手捏插件搞定之后,就可以开始创建 bot。创建一个测试 api 的 bot,并将自己创建的插件接进来,在 prompt 里面让其调用插件。 另外,具体的创建插件步骤还包括: 点击个人空间,选择插件,点击创建插件。 插件名称使用中文,根据需求起名。 填写插件描述,告知其用途和使用方法。 选择云侧插件基于已有服务创建,填入所使用 API 的 URL。 在新的界面点击创建工具。 填入工具的基本信息,如工具名称(只能使用字母、数字和下划线)、工具描述、工具路径(以/开始,若使用 path 方式传参,可用“{}”包裹变量)、请求方法(根据 API 调用方式选择)。 配置输入参数,点击新增参数,填写所有需要使用的参数,填写完成后选择保存并继续。 需要注意的是: 本案例中使用的是 coze 国内版,反正是玩插件,对模型没啥要求。 如果在生产环境中已有准备好的 https 的 api,可直接接上来。 本案例中 ngrok 仅供娱乐,生产环境中勿用。
2024-12-08
怎么将claude做成扣子插件
以下是将 Claude 做成扣子插件的步骤: 1. 公众号私信“TC”获取插件,下载完成后解压。 2. 进入 Chrome 浏览器的扩展程序管理界面,打开右上角的开发者模式。 3. 左上角加载解压完的文件夹。 另外,关于在扣子中手搓插件: 1. 点击个人空间,选择插件,点击创建插件。 插件名称:中文,根据插件需求起名。 插件描述:告诉观众插件的用途和使用方法等。 插件工具创建方式: 云侧插件基于已有服务创建:使用现成的 API 来创建插件,需填入所使用 API 的 URL。 云侧插件在 Coze IDE 中创建:使用 Coze 的服务器写代码来直接搭建 API(支持 Python 和 Node.JS)。 2. 在新的界面点击创建工具。 填入第一个插件工具的基本信息: 工具名称:只能使用字母、数字和下划线来命名。 工具描述:根据工具的使用方法、功能填写,提醒用户如何使用。 工具路径:填写对应完整的 API 以“/”开始,如果后面使用 path 的方式传参,则可以使用“{}”包裹的方式把变量包含在其中。 请求方法:根据 API 的调用方式选择对应的请求方法。 3. 配置输入参数:点击新增参数,把所有需要使用的参数填写进工具。 4. 配置输出参数:如果一切都填对了没有问题,可以直接点击自动解析,会自动调用一次 API 给出对应的输出参数。 5. 调试与校验:测试工具是否能正常运行,运行后查看输出结果,“Request”为输入的传参,“Response”为返回值,点击“Response”就可以看到解析后的参数。
2024-12-05
AI应用于测试领域 哪些有比较成熟的、稳定的应用
目前在测试领域,AI 有一些较为成熟和稳定的应用。例如,利用机器学习算法进行自动化测试用例生成,能够提高测试效率和覆盖度;基于深度学习的图像识别技术可用于界面测试,检测界面元素的准确性和一致性;还有自然语言处理技术在测试文档的自动分析和理解方面发挥作用,帮助快速提取关键信息。但整体而言,AI 在测试领域的应用仍在不断发展和完善中。
2024-12-13
AI应用在测试领域的案例
以下是 AI 应用在测试领域的一些案例: 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-13
那么有什么工具吗可以生成测试用例吗
以下是一些可以生成测试用例的工具: 1. 基于规则的测试生成: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 在实践中的应用示例包括: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-09
有没有关于软件测试的ai工具,可以辅助我测试web网页
目前在 AI 领域中,专门用于辅助测试 Web 网页的工具相对较少。但一些通用的 AI 工具和技术可能会对软件测试有所帮助,例如利用自然语言处理技术来分析测试需求和报告,或者使用机器学习算法来预测可能出现的错误类型。不过,这些应用可能需要一定的定制和整合才能更好地适应 Web 网页测试的特定需求。
2024-12-09
ai 自动化测试
以下是关于 AI 自动化测试的相关内容: AI 生成测试用例的方法和工具: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 AI Prompts 测试框架: 1. Langfuse:网站为,是一个提供全面 AI Prompts 测试解决方案的平台,允许用户设计和测试 Prompts,比较不同 Prompts 的效果,并评估 AI 模型的性能。 2. Langsmith:网站为,是一个提供全面 AI Prompts 测试解决方案的平台。允许用户设计和测试 Prompts、比较和评估不同 Prompts 的效果、集成和自动化 Prompts 测试到开发流程中。 AI 大模型在游戏中的应用: 1. 游戏的 Agent 和智能体可以对数值平衡、玩法平衡、对战机器人以及玩家模拟做很多事情。 2. 数值策划方面,通过强化学习可以进行自动化的数值和玩法平衡,用 AI 测试替代人工测试,例如卡牌游戏中,AI 测试 1000 局仅需 17 分钟,而人工需要 50 个小时,且可在测试过程中调整战斗值、防御值。 3. 玩家行为模拟方面,在自博弈的训练中让机器代表攻击方和防守方,模拟玩家的行为,最终提升玩家的留存率、在线时长、活跃度和付费率,可使用深度强化学习 DRL 训练不同等级的 AI bot 模拟玩家。
2024-12-03
Coze代码测试成功,运行示例时报错
关于您提到的 Coze 代码测试成功但运行示例时报错的问题,以下是相关的信息和可能的解决办法: 图片生成方面:理想生成图片只实现了一次,其他几次生成文字加链接,链接需点进去查看且图片需渲染或加载,无互动趣味性,增加等待时间。因为默认返回的是 markdown 格式,微信不支持 markdown 格式,可在 github 上搜索 nicecoze 插件,基于 cow,把 markdown 转换为图片消息。 模型配置方面:Coze 里面模型配置用的 GPT4o,程序运行调用的是 GPT3.5 Turno。这是因为没有查询到 4o 的 token 计算方式,所以采用 3.5 的,但依然使用的是 GPT4o,只是 token 计算方式用的 3.5。 插件功能方面:Coze 加入了插件 Data Analysia(数据分析)、Browser 和 GPT4v 互动过程无法实现功能。这需要在 coze 里进行鼓捣,和 cow 的 config 无关。 外层 bot 方面:在外层 bot 进行运行时容易出现报错,暂时无法确定原因,猜测可能是外层 bot 的并发不够稳定,不如直接在工作流编辑面板中获取精度结果。如果自行实验时多次报错且无法定位问题原因,不要急着怪自己,相关 bug 已提交给 Coze 团队,希望能加紧优化。
2024-11-19
如何写好提示词
以下是关于如何写好提示词的一些要点: 1. 明确任务:清晰地定义任务,如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,在提示词中明确指出。 5. 使用示例:如有特定期望结果,提供示例帮助模型理解需求。 6. 保持简洁:提示词简洁明了,避免过多信息导致模型困惑。 7. 使用关键词和标签:有助于模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词,可能需多次迭代。 此外,还需注意以下几点: 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 利用“加权重”功能:在功能框增加提示词并调节权重,数值越大越优先,也可编辑已有提示词权重。 善用辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 同时要记住,提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2024-12-21
如何写提示词
以下是关于如何写提示词的一些建议: 1. 明确任务:清晰地定义任务,比如写故事时包含故事背景、角色和主要情节。 2. 提供上下文:若任务需要特定背景知识,要提供足够信息。 3. 使用清晰语言:尽量用简单、清晰的语言,避免模糊或歧义词汇。 4. 给出具体要求:如有特定格式或风格要求,应在提示词中明确指出。 5. 使用示例:如有期望结果,可提供示例帮助 AI 理解需求。 6. 保持简洁:避免过多信息导致 AI 模型困惑。 7. 使用关键词和标签:有助于 AI 模型理解任务主题和类型。 8. 测试和调整:生成文本后仔细检查结果,根据需要调整提示词。 对于特定的设计工具,如星流一站式 AI 设计工具: 1. 输入语言方面,通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),且支持中英文输入。 2. 写好提示词的方法包括: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,帮助 AI 理解不想生成的内容,如不好的质量、低像素、模糊、水印。 利用“加权重”功能:在功能框增加提示词并进行加权重调节,权重数值越大越优先,也可对已有的提示词权重进行编辑。 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 此外,还需注意提示词应清晰明确,避免模糊不清的指令,提供足够的背景信息和清楚的需求描述,以确保模型给出准确结果。
2024-12-21
如何通过提示词提高模型数据对比和筛选能力
以下是一些通过提示词提高模型数据对比和筛选能力的方法: 1. 选择自定义提示词或预定义话题,在网站上使用如 Llama3.1 8B Instruct 模型时,输入对话内容等待内容生成,若右边分析未刷新可在相关按钮间切换。由于归因聚类使用大模型,需稍作等待,最终结果可能因模型使用的温度等因素而不同。 2. 在写提示词时不能依赖直觉和偷懒,要实话实说,补充详细信息以避免模型在边缘情况上犯错,这样也能提高数据质量。 3. 在分类问题中,提示中的每个输入应分类到预定义类别之一。在提示末尾使用分隔符如“\n\n\n\n”,选择映射到单个 token 的类,推理时指定 max_tokens=1,确保提示加完成不超过 2048 个 token,每班至少有 100 个例子,可指定 logprobs=5 获得类日志概率,用于微调的数据集应在结构和任务类型上与模型使用的数据集相似。例如在确保网站广告文字正确的案例中,可微调分类器,使用合适的分隔符和模型。
2024-12-20
通过提示词可以提高模型的数学计算能力吗
通过提示词可以在一定程度上提高模型的数学计算能力。例如 PoT 技术,它是思维链技术的衍生,适用于数值推理任务,会引导模型生成一系列代码,再通过代码解释器工具进行运算,这种方式能显著提升模型在数学问题求解上的表现。PoT 作为 CoT 的衍生技术,遵循零样本和少样本的学习范式,零样本 PoT 与 CoT 方法相似,不需要大量样本即可进行有效推理,少样本 PoT 也通过较少样本优化模型表现。但需要注意的是,大模型在解决数学问题时可能存在不够可靠的情况。
2024-12-20
有哪些好的提示词网站
以下是一些好的提示词网站: 文本类 Prompt 网站: Learning Prompt:授人以渔,有非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney。网址: FlowGPT:国外最大的 prompt 站,内容全面且更新快。网址: LangChain Hub:LangChain 推出的提示词管理工具。网址: 微软 Prompt Flow:微软发布的开源 LLM 开发工具集,简化了基于 LLM 的人工智能应用程序的开发周期。网址: PromptPort(支持中文):AI Prompt 百科辞典,聚合了市场上大部分优质的 prompt 词库。网址: PromptKnit:The best playground for prompt designers。网址: ChatGPT Shortcut:提供了非常多使用模板,简单修改即可指定输出。网址: ClickPrompt:轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享。网址: Prompt Extend:让 AI 帮你自动拓展 Prompt。网址: 图像类 Prompt 网站: MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库。网址: MidJourney Prompt Tool:类型多样的 prompt 书写工具,点击按钮就能生成提示词修饰部分。网址: OPS 可视化提示词:有 Mid Journey 的图片风格、镜头等写好的词典库,方便快速可视化生成自己的绘画提示词。网址: AIart 魔法生成器:中文版的艺术作品 Prompt 生成器。网址: IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器。网址: Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney。网址: OpenArt:AI 人工智能图像生成器。网址: img2prompt:根据图片提取 Prompt。网址: MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用。网址: PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板。网址: AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格。网址: 其他图像类 Prompt 网站: NovelAI tag 生成器:设计类 Prompt 提词生成器。网址: 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器。网址: KREA:设计 AI 的 Prompt 集合站,create better prompts。网址: Public Prompts:免费的 prompt 合集,收集高质量的提示词。网址: AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词。网址:
2024-12-20
Ai视频镜头提示词,及案例
以下是一些 AI 视频镜头的提示词及案例: 一、视频镜头 1. 浅焦镜头(Shallow focus shot) 提示词:一个老奶奶手拿照片面对观众,镜头从照片聚焦到老奶奶脸上,营造出温馨和怀旧的氛围。 2. 窥视镜头(Spy shot) 提示词:镜头在一个隐蔽的位置拍摄。一位头发发白的老奶奶坐在窗前双手捧着一张老照片,面带思念地看着照片,场景温馨。 3. 摇晃镜头(Handheld shot) 提示词:镜头摇晃地跟随一个在战斗中的士兵,画面展示战场上的混乱、飞扬的尘土和四处奔跑的战友,增加紧张和真实感。 4. 穿梭镜头(Hyperlapse shot) 提示词:镜头穿过一条隧道,通过隧道外面是美丽的雪山。 5. 跟随镜头(Tracking shot) 提示词:镜头紧跟一辆在赛道上高速行驶和漂移的跑车。 6. 车载镜头(Carmounted shot) 提示词:镜头从驾驶员或汽车前部的视角出发,展示前方的道路和沿途的建筑物。 7. 动作镜头 提示词:镜头快速捕捉一个男人在激烈的打斗中差点摔倒,增强紧张感和动态性。 8. 无人机视角(Drone perspective shot) 提示词:无人机视角展示一个人站在高山顶峰,俯瞰壮丽景色,远处是连绵的山脉和云海,营造广阔和宏伟的氛围。 9. 低视角镜头 提示词:镜头从楼梯低处仰视一个天空和建筑,增强仰视感和宏伟感 提示词:相机在地上拍摄一个清晨正在跑步的人,背景远处虚焦。 10. 仰拍镜头(Lowangle shot) 提示词:镜头从树底向上拍摄,展示高大的树干和繁茂的树冠。 11. 推镜头(Dolly in) 提示词:镜头从远处向前推进,打开城堡的大门。 12. 旋转变焦镜头 提示词:镜头在变焦的同时快速旋转,展示一个人在旋转木马上。 13. 时间流逝镜头(Timelapse shot) 提示词:镜头固定不动,长时间拍摄并加速播放,展示城市从白天到夜晚的变化。 14. 背光镜头 提示词:镜头逆光拍摄,一个男人站在夕阳下,背光照亮他的轮廓,面部隐在阴影中。 15. 失焦镜头 提示词:镜头失焦拍摄城市的霓虹灯,灯光模糊,呈现出梦幻的效果。 16. 平行镜头(Side dolly shot) 提示词:镜头与骑自行车的少年平行移动,跟随他的骑行路径,保持在相同的水平线上。 17. 镜头推拉变焦 提示词:镜头同时进行推拉和变焦,展示一个人在惊讶地看着远方。 18. 虚实结合镜头 提示词:镜头将真实场景和虚拟场景结合,以 X 光效果拍摄骨骼,以真实场景展示一个手拿着一把钥匙,钥匙的轮廓清晰,背景虚化。 19. 反射镜面镜头(Reflection shot) 提示词:反射镜头,通过浴室镜子反射展示一个人在洗脸的画面 20. 黑白镜头 提示词:黑白镜头,展示一个老街区的复古场景,增强怀旧感。 21. 特写镜头(Closeup shot) 提示词:特写镜头展示一双男性眼睛。 二、全新 AI 整活计划第一期:平行宇宙通勤指南 1. 一致性多镜头提示词 Prompt:女孩后退,拿着斧头的骷髅朝镜头走近。镜头切换,近景正面拍摄女孩的上半身,她满脸惊恐发出尖叫。 基础参数:镜头固定,16:9,10s 视频链接: 2. 一致性多镜头提示词 Prompt:远景拍摄,一个男人转身朝画面左侧走去。镜头切换,近景拍摄男人的上半身,他一脸忧愁。 基础参数:镜头固定,16:9,10s 视频链接: 3. 一致性多镜头提示词 Prompt:穿黄色外套的长发白人女人和卷发黑色外套的男人对视微笑。镜头切换,近景拍摄黄色外套的长发女人微笑的脸。镜头切换,近景拍摄卷发黑外套男人微笑的脸。 基础参数:镜头固定,16:9,10s 视频链接:
2024-12-19